1
|
Coatrini-Soares A, Soares JC, Popolin-Neto M, de Mello SS, Sanches EA, Paulovich FV, Oliveira ON, Mattoso LHC. Multidimensional calibration spaces in Staphylococcus Aureus detection using chitosan-based genosensors and electronic tongue. Int J Biol Macromol 2024; 271:132460. [PMID: 38772468 DOI: 10.1016/j.ijbiomac.2024.132460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/06/2024] [Accepted: 05/10/2024] [Indexed: 05/23/2024]
Abstract
Mastitis diagnosis can be made by detecting Staphylococcus aureus (S. aureus), which requires high sensitivity and selectivity. Here, we report on microfluidic genosensors and electronic tongues to detect S. aureus DNA using impedance spectroscopy with data analysis employing visual analytics and machine learning techniques. The genosensors were made with layer-by-layer films containing either 10 bilayers of chitosan/chondroitin sulfate or 8 bilayers of chitosan/sericin functionalized with an active layer of cpDNA S. aureus. The specific interactions leading to hybridization in these genosensors allowed for a low limit of detection of 5.90 × 10-19 mol/L. The electronic tongue had four sensing units made with 6-bilayer chitosan/chondroitin sulfate films, 10-bilayer chitosan/chondroitin sulfate, 8-bilayer chitosan/sericin, and 8-bilayer chitosan/gold nanoparticles modified with sericin. Despite the absence of specific interactions, various concentrations of DNA S. aureus could be distinguished when the impedance data were plotted using a dimensionality reduction technique. Selectivity of S. aureus DNA was confirmed using multidimensional calibration spaces, based on machine learning, with accuracy up to 89 % for the genosensors and 66 % for the electronic tongue. Hence, with these computational methods one may opt for the more expensive genosensors or the simpler and cheaper electronic tongue, depending on the sensitivity level required to diagnose mastitis.
Collapse
Affiliation(s)
- Andrey Coatrini-Soares
- Embrapa Instrumentação, Nanotechnology National Laboratory for Agriculture (LNNA), São Carlos, Brazil.
| | - Juliana Coatrini Soares
- São Carlos Institute of Physics (IFSC), University of São Paulo (USP), 13566-590 São Carlos, Brazil
| | - Mario Popolin-Neto
- Institute of Mathematics and Computer Sciences (ICMC), University of São Paulo (USP), 13566-590 São Carlos, Brazil; Federal Institute of São Paulo (IFSP), 14804-296 Araraquara, Brazil
| | | | | | - Fernando V Paulovich
- Department of Mathematics and Computer Science, Eindhoven University of Technology (TU/e), 5600 MB Eindhoven, the Netherlands
| | - Osvaldo N Oliveira
- São Carlos Institute of Physics (IFSC), University of São Paulo (USP), 13566-590 São Carlos, Brazil.
| | | |
Collapse
|
2
|
Alharthi SD, Kanniyappan H, Prithweeraj S, Bijukumar D, Mathew MT. Proteomic-based electrochemical non-invasive biosensor for early breast cancer diagnosis. Int J Biol Macromol 2023; 253:126681. [PMID: 37666403 DOI: 10.1016/j.ijbiomac.2023.126681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/09/2023] [Accepted: 09/01/2023] [Indexed: 09/06/2023]
Abstract
Breast cancer is the second highest cause of cancer-related mortality in women worldwide and in the United States, accounting for around 571,000 deaths per year. Early detection of breast cancer increases treatment results and the possibility of a cure. While existing diagnostic modalities such as mammography, ultrasound, and biopsy exist, some are prohibitively expensive, uncomfortable, time-consuming, and have limited sensitivity, necessitating the development of a cost-effective, rapid, and highly sensitive approach such as an electrochemical biosensor. Our research focuses on detecting breast cancer patients using the ECM1 biomarker, which has higher expression in synthetic urine. Our study has two primary objectives: (i) Diverse ECM1 protein concentrations are measured using electrochemical impedance spectroscopy and ELISA. Establishing a standard curve for the electrochemical biosensor by calibrating ECM-1 protein levels using electrochemical impedance spectroscopy. (ii) Validation of the effectiveness of the electrochemical biosensor. This aim entails testing the unknown concentration of ECM1 in the synthetic urine to ensure the efficiency of the biosensor to detect the biomarker in the early stages. The results show that the synthetic urine solution's ECM-1 detection range ranges from 1 pg/ml to 500 ng/ml. This shows that by detecting changes in ECM-1 protein levels in patient urine, the electrochemical biosensor can consistently diagnose breast cancer in its early stages or during increasing recurrence. Our findings highlight the electrochemical biosensor's efficacy in detecting early-stage breast cancer biomarkers (ECM-1) in patient urine. Further studies will be conducted with patient samples and develop handheld hardware for patient usage.
Collapse
Affiliation(s)
- Sara D Alharthi
- Regenerative Medicine Disability Research lab, Department of Biomedical Science, UIC College of Medicine at Rockford, Rockford, IL, United States
| | - Hemalatha Kanniyappan
- Regenerative Medicine Disability Research lab, Department of Biomedical Science, UIC College of Medicine at Rockford, Rockford, IL, United States
| | - Soundarya Prithweeraj
- Regenerative Medicine Disability Research lab, Department of Biomedical Science, UIC College of Medicine at Rockford, Rockford, IL, United States
| | - Divya Bijukumar
- Regenerative Medicine Disability Research lab, Department of Biomedical Science, UIC College of Medicine at Rockford, Rockford, IL, United States
| | - Mathew T Mathew
- Regenerative Medicine Disability Research lab, Department of Biomedical Science, UIC College of Medicine at Rockford, Rockford, IL, United States.
| |
Collapse
|
3
|
Soares A, Soares JC, dos Santos DM, Migliorini FL, Popolin-Neto M, dos Santos Cinelli Pinto D, Carvalho WA, Brandão HM, Paulovich FV, Correa DS, Oliveira ON, Mattoso LHC. Nanoarchitectonic E-Tongue of Electrospun Zein/Curcumin Carbon Dots for Detecting Staphylococcus aureusin Milk. ACS OMEGA 2023; 8:13721-13732. [PMID: 37091421 PMCID: PMC10116536 DOI: 10.1021/acsomega.2c07944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/22/2023] [Indexed: 05/03/2023]
Abstract
We report a nanoarchitectonic electronic tongue made with flexible electrodes coated with curcumin carbon dots and zein electrospun nanofibers, which could detect Staphylococcus aureus(S. aureus) in milk using electrical impedance spectroscopy. Electronic tongues are based on the global selectivity concept in which the electrical responses of distinct sensing units are combined to provide a unique pattern, which in this case allowed the detection of S. aureus through non-specific interactions. The electronic tongue used here comprised 3 sensors with electrodes coated with zein nanofibers, carbon dots, and carbon dots with zein nanofibers. The capacitance data obtained with the three sensors were processed with a multidimensional projection technique referred to as interactive document mapping (IDMAP) and analyzed using the machine learning-based concept of multidimensional calibration space (MCS). The concentration of S. aureus could be determined with the sensing units, especially with the one containing zein as the limit of detection was 0.83 CFU/mL (CFU stands for colony-forming unit). This high sensitivity is attributed to molecular-level interactions between the protein zein and C-H groups in S. aureus according to polarization-modulated infrared reflection-absorption spectroscopy (PM-IRRAS) data. Using machine learning and IDMAP, we demonstrated the selectivity of the electronic tongue in distinguishing milk samples from mastitis-infected cows from milk collected from healthy cows, and from milk spiked with possible interferents. Calibration of the electronic tongue can also be reached with the MCS concept employing decision tree algorithms, with an 80.1% accuracy in the diagnosis of mastitis. The low-cost electronic tongue presented here may be exploited in diagnosing mastitis at early stages, with tests performed in the farms without requiring specialized laboratories or personnel.
Collapse
Affiliation(s)
- Andrey
Coatrini Soares
- Nanotechnology
National Laboratory for Agriculture (LNNA), Embrapa Instrumentação, São Carlos 13560-970, Brazil
| | - Juliana Coatrini Soares
- São
Carlos Institute of Physics (IFSC), University
of São Paulo (USP), São Carlos 13566-590, Brazil
| | - Danilo Martins dos Santos
- Nanotechnology
National Laboratory for Agriculture (LNNA), Embrapa Instrumentação, São Carlos 13560-970, Brazil
| | - Fernanda L. Migliorini
- Nanotechnology
National Laboratory for Agriculture (LNNA), Embrapa Instrumentação, São Carlos 13560-970, Brazil
| | | | - Danielle dos Santos Cinelli Pinto
- Embrapa
Gado de Leite CEP, Juiz de Fora 3603-330, Brazil
- Programa
de Pós-Graduação em Ciências Veterinárias, Federal University of Lavras (UFLA), Lavras 37200-900, Brazil
| | | | - Humberto Mello Brandão
- Embrapa
Gado de Leite CEP, Juiz de Fora 3603-330, Brazil
- Programa
de Pós-Graduação em Ciências Veterinárias, Federal University of Lavras (UFLA), Lavras 37200-900, Brazil
| | - Fernando Vieira Paulovich
- Department
of Mathematics and Computer Science, Eindhoven
University of Technology (TU/e), Eindhoven 5600 MB, the Netherlands
| | - Daniel Souza Correa
- Nanotechnology
National Laboratory for Agriculture (LNNA), Embrapa Instrumentação, São Carlos 13560-970, Brazil
| | - Osvaldo N. Oliveira
- São
Carlos Institute of Physics (IFSC), University
of São Paulo (USP), São Carlos 13566-590, Brazil
| | - Luiz Henrique Capparelli Mattoso
- Nanotechnology
National Laboratory for Agriculture (LNNA), Embrapa Instrumentação, São Carlos 13560-970, Brazil
- luiz.mattoso@embrapa,br
| |
Collapse
|
4
|
dos Santos D, Migliorini F, Soares A, Mattoso L, Oliveira O, Correa D. Electrochemical immunosensor made with zein‐based nanofibers for on‐site detection of Aflatoxin B1. ELECTROANAL 2022. [DOI: 10.1002/elan.202100672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
5
|
Bondancia TJ, Soares AC, Popolin-Neto M, Gomes NO, Raymundo-Pereira PA, Barud HS, Machado SA, Ribeiro SJ, Melendez ME, Carvalho AL, Reis RM, Paulovich FV, Oliveira ON. Low-cost bacterial nanocellulose-based interdigitated biosensor to detect the p53 cancer biomarker. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2022; 134:112676. [DOI: 10.1016/j.msec.2022.112676] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/10/2022] [Accepted: 01/18/2022] [Indexed: 01/29/2023]
|
6
|
Soares JC, Soares AC, Angelim MKSC, Proença-Modena JL, Moraes-Vieira PM, Mattoso LHC, Oliveira ON. Diagnostics of SARS-CoV-2 infection using electrical impedance spectroscopy with an immunosensor to detect the spike protein. Talanta 2021; 239:123076. [PMID: 34876273 PMCID: PMC8607795 DOI: 10.1016/j.talanta.2021.123076] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/09/2021] [Accepted: 11/16/2021] [Indexed: 11/04/2022]
Abstract
Mass testing for the diagnostics of COVID-19 has been hampered in many countries owing to the high cost of the methodologies to detect genetic material of SARS-CoV-2. In this paper, we report on a low-cost immunosensor capable of detecting the spike protein of SARS-CoV-2, including in samples of inactivated virus. Detection is performed with electrical impedance spectroscopy using an immunosensor that contains a monolayer film of carboxymethyl chitosan as matrix, coated with an active layer of antibodies specific to the spike protein. In addition to a low limit of detection of 0.179 fg/mL within an almost linear behavior from 10−20 g/mL to 10−14 g/mL, the immunosensor was highly selective. For the samples with the spike protein could be distinguished in multidimensional projection plots from samples with other biomarkers and analytes that could be interfering species for healthy and infected patients. The excellent analytical performance of the immunosensors was validated with the distinction between control samples and those containing inactivated SARS-CoV-2 at different concentrations. The mechanism behind the immunosensor performance is the specific antibody-protein interaction, as confirmed with the changes induced in C–H stretching and protein bands in polarization-modulated infrared reflection absorption spectra (PM-IRRAS). Because impedance spectroscopy measurements can be made with low-cost portable instruments, the immunosensor proposed here can be applied in point-of-care diagnostics for mass testing even in places with limited resources.
Collapse
Affiliation(s)
- Juliana C Soares
- São Carlos Institute of Physics (IFSC), University of São Paulo (USP), 13566-590, São Carlos, Brazil
| | - Andrey C Soares
- Nanotechnology National Laboratory for Agriculture (LNNA), Embrapa Instrumentação, 13560-970, São Carlos, SP, Brazil
| | - Monara Kaelle S C Angelim
- Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, 13083-862, Campinas, SP, Brazil
| | - Jose Luiz Proença-Modena
- Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, 13083-862, Campinas, SP, Brazil; Experimental Medicine Research Cluster (EMRC), University of Campinas, 13083-862, Campinas, SP, Brazil
| | - Pedro M Moraes-Vieira
- Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, 13083-862, Campinas, SP, Brazil; Experimental Medicine Research Cluster (EMRC), University of Campinas, 13083-862, Campinas, SP, Brazil; Obesity and Comorbilities Research Center (OCRC), University of Campinas, 13083-862, Campinas, SP, Brazil
| | - Luiz H C Mattoso
- Nanotechnology National Laboratory for Agriculture (LNNA), Embrapa Instrumentação, 13560-970, São Carlos, SP, Brazil
| | - Osvaldo N Oliveira
- São Carlos Institute of Physics (IFSC), University of São Paulo (USP), 13566-590, São Carlos, Brazil.
| |
Collapse
|
7
|
Immunosensors containing solution blow spun fibers of poly(lactic acid) to detect p53 biomarker. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 115:111120. [DOI: 10.1016/j.msec.2020.111120] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 04/22/2020] [Accepted: 05/24/2020] [Indexed: 01/28/2023]
|
8
|
Soares AC, Soares JC, Rodrigues VC, Oliveira ON, Capparelli Mattoso LH. Controlled molecular architectures in microfluidic immunosensors for detecting Staphylococcus aureus. Analyst 2020; 145:6014-6023. [PMID: 32779664 DOI: 10.1039/d0an00714e] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Detection of pathogenic microorganisms is essential for food quality control and diagnosis of various diseases, which is currently performed with high-cost, sophisticated methods. In this paper, we report on a low-cost detection method based on impedance spectroscopy to detect Staphylococcus aureus (S. aureus). The immunosensors were made with microfluidic devices made of interdigitated electrodes coated with layer-by-layer (LbL) films of chitosan and chondroitin sulfate, on which a layer of anti-S. aureus antibodies was adsorbed. The limit of detection was 2.83 CFU mL-1 with a limit of quantification of 9.42 CFU mL-1 for immunosensors with 10-bilayer LbL films. This level of sensitivity is sufficient to detect traces of bacteria that cause mastitis in milk, which we have confirmed by distinguishing milk samples containing various concentrations of S. aureus from pure milk and milk contaminated with Escherichia coli (E. coli) and Salmonella. Distinction of these samples was made possible by projecting the electrical impedance data with the interactive document mapping (IDMAP) technique. The high sensitivity and selectivity are attributed to the highly specific interaction with anti-S. aureus antibodies captured with polarization-modulated reflection absorption spectroscopy (PM-IRRAS), with adsorption on the antibodies explained with the Langmuir-Freundlich model. Since these immunosensors are stable for up to 25 days and detection measurements can be made within minutes, the methodology proposed is promising for monitoring S. aureus contamination in the food industry and hospitals, and in detecting bovine mastitis.
Collapse
Affiliation(s)
- Andrey Coatrini Soares
- Nanotechnology National Laboratory for Agriculture (LNNA), Embrapa Instrumentação, 13560-970 São Carlos, SP, Brazil.
| | | | | | | | | |
Collapse
|
9
|
Bibi N, Awan IT, Awan AT. New Adsorption-Based Biosensors for Cancer Detections and Role of Nano-medicine in Its Prognosis and Inhibition. 'ESSENTIALS OF CANCER GENOMIC, COMPUTATIONAL APPROACHES AND PRECISION MEDICINE 2020:107-140. [DOI: 10.1007/978-981-15-1067-0_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
10
|
Wei T, Xing H, Wang H, Zhang Y, Wang J, Shen J, Dai Z. Bovine serum albumin encapsulation of near infrared fluorescent nano-probe with low nonspecificity and cytotoxicity for imaging of HER2-positive breast cancer cells. Talanta 2019; 210:120625. [PMID: 31987166 DOI: 10.1016/j.talanta.2019.120625] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 12/03/2019] [Accepted: 12/07/2019] [Indexed: 10/25/2022]
Abstract
Breast cancer with HER2 overexpressing type links to malignant tumor growth and poor clinical outcome. Successful development of sensitive and selective nano-probe for identification of HER2-positive breast cancer cells is of great importance for breast cancer early diagnosis, subtype classification, and treatment planning. Herein, we report a HER2 antibody conjugated near infrared (NIR) emitted MnCuInS/ZnS qumtun dots (QDs) encapsulated bovine serum albumin (BSA) nano-probe for accurately targeted imaging of HER2-positive breast cancer cells. This NIR nano-probe shows good biocompatibility, low nonspecificity and cytotoxicity, high colloidal stability, and allows HER2-positive breast cancer cell identification with good selectivity. The practicality of this targeted NIR fluorescent nano-probe was proved by successful identifying HER2-positive breast cancer cells from HER2-negative breast cancer cells, which indicates that it can be efficiently applied in selective screening of HER2 overexpressing cancer cells, and provide a platform for the strategy design on the distinction of different breast cancer subtypes.
Collapse
Affiliation(s)
- Tianxiang Wei
- Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, PR China; School of Environment, Nanjing Normal University, Nanjing, 210023, PR China
| | - Hong Xing
- Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, PR China
| | - Huafeng Wang
- Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, PR China
| | - Yuluan Zhang
- Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, PR China
| | - Junning Wang
- Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, PR China
| | - Jian Shen
- Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, PR China.
| | - Zhihui Dai
- Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, PR China; Nanjing Normal University Center for Analysis and Testing, Nanjing, 210023, PR China.
| |
Collapse
|
11
|
Camilo DE, Miyazaki CM, Shimizu FM, Ferreira M. Improving direct immunoassay response by layer-by-layer films of gold nanoparticles – Antibody conjugate towards label-free detection. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 102:315-323. [DOI: 10.1016/j.msec.2019.04.055] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/04/2019] [Accepted: 04/18/2019] [Indexed: 01/04/2023]
|
12
|
Soares AC, Soares JC, Rodrigues VC, Follmann HDM, Arantes LMRB, Carvalho AC, Melendez ME, Fregnani JHTG, Reis RM, Carvalho AL, Oliveira ON. Microfluidic-Based Genosensor To Detect Human Papillomavirus (HPV16) for Head and Neck Cancer. ACS APPLIED MATERIALS & INTERFACES 2018; 10:36757-36763. [PMID: 30296059 DOI: 10.1021/acsami.8b14632] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
High-risk human papillomavirus (HPV) infection, mainly with HPV16 type, has been increasingly considered as an important etiologic factor in head and neck cancers. Detection of HPV16 is therefore crucial for these types of cancer, but clinical tests are not performed routinely in public health systems owing to the high cost and limitations of the existing tests. In this article, we report on a potentially low-cost genosensor capable of detecting low concentrations of HPV16 in buffer samples and distinguishing, with high accuracy, head and neck cancer cell lines according to their HPV16 status. The genosensor consisted of a microfluidic device that had an active layer of a HPV16 capture DNA probe (cpHPV16) deposited onto a layer-by-layer film of chitosan and chondroitin sulfate. Impedance spectroscopy was the principle of detection utilized, leading to a limit of detection of 10.5 pM for complementary ssDNA HPV16 oligos (ssHPV16). The genosensor was also able to distinguish among HPV16+ and HPV16- cell lines, using the multidimensional projection technique interactive document mapping. Hybridization between the ssHPV16 oligos and cpHPV16 probe was confirmed with polarization-modulated infrared reflection-absorption spectroscopy, where PO2 and amide I and amide II bands from adenine and thymine were monitored. The electrical response could be modeled as resulting from an adsorption process represented in a Freundlich model. Because the fabrication procedures of the microfluidic devices and genosensors and the data collection and analysis can be implemented at low cost, the results presented here amount to a demonstration of possible routine screening for HPV infections.
Collapse
Affiliation(s)
- Andrey Coatrini Soares
- São Carlos Institute of Physics , University of São Paulo , 13566-590 São Carlos , Brazil
| | | | | | | | | | - Ana Carolina Carvalho
- Molecular Oncology Research Center , Barretos Cancer Hospital , 14784-400 Barretos , Brazil
| | - Matias Eliseo Melendez
- Molecular Oncology Research Center , Barretos Cancer Hospital , 14784-400 Barretos , Brazil
| | | | - Rui Manuel Reis
- Molecular Oncology Research Center , Barretos Cancer Hospital , 14784-400 Barretos , Brazil
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences , University of Minho , 4710-057 Braga , Portugal
- ICVS/3B's-PT Government Associate Laboratory , 4710-057 Braga , Portugal
| | - André Lopes Carvalho
- Molecular Oncology Research Center , Barretos Cancer Hospital , 14784-400 Barretos , Brazil
| | - Osvaldo N Oliveira
- São Carlos Institute of Physics , University of São Paulo , 13566-590 São Carlos , Brazil
| |
Collapse
|
13
|
Soares AC, Soares JC, Shimizu FM, Rodrigues VDC, Awan IT, Melendez ME, Piazzetta MHO, Gobbi AL, Reis RM, Fregnani JHTG, Carvalho AL, Oliveira ON. A simple architecture with self-assembled monolayers to build immunosensors for detecting the pancreatic cancer biomarker CA19-9. Analyst 2018; 143:3302-3308. [DOI: 10.1039/c8an00430g] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Film architecture for the immunosensor.
Collapse
Affiliation(s)
- Andrey Coatrini Soares
- São Carlos Institute of Physics
- University of São Paulo
- São Carlos
- Brazil
- Department of Materials Engineering
| | | | - Flavio Makoto Shimizu
- São Carlos Institute of Physics
- University of São Paulo
- São Carlos
- Brazil
- Brazilian Nanotechnology National Laboratory
| | | | - Iram Taj Awan
- São Carlos Institute of Physics
- University of São Paulo
- São Carlos
- Brazil
| | | | | | - Angelo Luiz Gobbi
- Brazilian Nanotechnology National Laboratory
- Brazilian Center for Research in Energy and Materials
- Campinas
- Brazil
| | - Rui Manuel Reis
- Molecular Oncology Research Center
- Barretos Cancer Hospital
- Barretos
- Brazil
- Life and Health Sciences Research Institute (ICVS)
| | | | | | | |
Collapse
|
14
|
Yang T, Hou P, Zheng LL, Zhan L, Gao PF, Li YF, Huang CZ. Surface-engineered quantum dots/electrospun nanofibers as a networked fluorescence aptasensing platform toward biomarkers. NANOSCALE 2017; 9:17020-17028. [PMID: 29082397 DOI: 10.1039/c7nr04817c] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A membrane-based fluorescent sensing platform is a facile, point-of-care and promising technique in chemo/bio-analytical fields. However, the existing fluorescence sensing films for cancer biomarkers have several problems, with dissatisfactory sensitivity and selectivity, low utilization of probes encapsulated in films as well as the tedious design of membrane structures. In this work, a novel fluorescence sensing platform is fabricated by bio-grafting quantum dots (QDs) onto the surface of electrospun nanofibers (NFs). The aptamer integrated into the QDs/NFs can result in high specificity for recognizing and capturing biomarkers. Partially complementary DNA-attached gold nanoparticles (AuNPs) are employed to efficiently hybridize with the remaining aptamer to quench the fluorescence of QDs by nanometal surface energy transfer (NSET) between them both, which are constructed for prostate specific antigen (PSA) assay. Taking advantage of the networked nanostructure of aptamer-QDs/NFs, the fluorescent film can detect PSA with high sensitivity and a detection limit of 0.46 pg mL-1, which was further applied in real clinical serum samples. Coupling the surface grafted techniques to the advanced network nanostructure of electrospun NFs, the proposed aptasensing platform can be easily extended to achieve sensitive and selective assays for other biomarkers.
Collapse
Affiliation(s)
- Tong Yang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
15
|
Soares J, Iwaki LEO, Soares AC, Rodrigues VC, Melendez ME, Fregnani JHG, Reis RM, Carvalho AL, Corrêa DS, Oliveira ON. Immunosensor for Pancreatic Cancer Based on Electrospun Nanofibers Coated with Carbon Nanotubes or Gold Nanoparticles. ACS OMEGA 2017; 2:6975-6983. [PMID: 30023536 PMCID: PMC6044935 DOI: 10.1021/acsomega.7b01029] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 10/05/2017] [Indexed: 05/15/2023]
Abstract
We report the fabrication of immunosensors based on nanostructured mats of electrospun nanofibers of polyamide 6 and poly(allylamine hydrochloride) coated either with multiwalled carbon nanotubes (MWCNTs) or gold nanoparticles (AuNPs), whose three-dimensional structure was suitable for the immobilization of anti-CA19-9 antibodies to detect the pancreatic cancer biomarker CA19-9. Using impedance spectroscopy, the sensing platform was able to detect CA19-9 with a detection limit of 1.84 and 1.57 U mL-1 for the nanostructured architectures containing MWCNTs and AuNPs, respectively. The high sensitivity achieved can be attributed to the irreversible adsorption between antibodies and antigens, as confirmed with polarization-modulated infrared reflection absorption spectroscopy. The adsorption mechanism was typical Langmuir-Freundlich processes. The high sensitivity and selectivity of the immunosensors were also explored in tests with blood serum from patients with distinct concentrations of CA19-9, for which the impedance spectra data were processed with a multidimensional projection technique. The robustness of the immunosensors in dealing with patient samples without suffering interference from analytes present in biological fluids is promising for a simple, effective diagnosis of pancreatic cancer at early stages.
Collapse
Affiliation(s)
- Juliana
C. Soares
- São
Carlos Institute of Physics, University
of São Paulo, 13560-60 São Carlos, Brazil
| | - Leonardo E. O. Iwaki
- São
Carlos Institute of Physics, University
of São Paulo, 13560-60 São Carlos, Brazil
- Department
of Materials Engineering, São Carlos School of Engineering, University of São Paulo, 13563-120 São Carlos, Brazil
| | - Andrey C. Soares
- São
Carlos Institute of Physics, University
of São Paulo, 13560-60 São Carlos, Brazil
- Department
of Materials Engineering, São Carlos School of Engineering, University of São Paulo, 13563-120 São Carlos, Brazil
| | | | - Matias E. Melendez
- Molecular
Oncology Research Center, Barretos Cancer
Hospital, 14784-400 Barretos, Brazil
| | | | - Rui M. Reis
- Molecular
Oncology Research Center, Barretos Cancer
Hospital, 14784-400 Barretos, Brazil
- ICVS/3B’s-PT
Government Associate Laboratory, Life and Health Sciences Research
Institute (ICVS), University of Minho, 4710-057 Braga, Portugal
| | - Andre L. Carvalho
- Molecular
Oncology Research Center, Barretos Cancer
Hospital, 14784-400 Barretos, Brazil
| | - Daniel S. Corrêa
- Nanotechnology
National Laboratory for Agriculture (LNNA), Embrapa Instrumentação, 13560-970 São Carlos, Brazil
| | - Osvaldo N. Oliveira
- São
Carlos Institute of Physics, University
of São Paulo, 13560-60 São Carlos, Brazil
| |
Collapse
|
16
|
Thapa A, Soares AC, Soares JC, Awan IT, Volpati D, Melendez ME, Fregnani JHTG, Carvalho AL, Oliveira ON. Carbon Nanotube Matrix for Highly Sensitive Biosensors To Detect Pancreatic Cancer Biomarker CA19-9. ACS APPLIED MATERIALS & INTERFACES 2017; 9:25878-25886. [PMID: 28696659 DOI: 10.1021/acsami.7b07384] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Biosensors fabricated with nanomaterials promise faster, cheaper, and more efficient alternatives to traditional, often bulky devices for early cancer diagnosis. In this study, we fabricated a thin film sensing unit on interdigitated gold electrodes combining polyethyleneimine and carbon nanotubes in a layer by layer fashion, onto which antibodies anti-CA19-9 were adsorbed with a supporting layer of N-hydroxysuccinimide and 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide solution. By use of impedance spectroscopy, the pancreatic cancer biomarker CA19-9 was detected in a buffer with limit of detection of 0.35 U/mL. This high sensitivity allowed for distinction between samples of blood serum from patients with distinct probabilities to develop pancreatic cancer. The selectivity of the biosensor was confirmed in subsidiary experiments with HT-29 and SW-620 cell lines and possible interferents, e.g., p53 protein, ascorbic acid, and glucose, where significant changes in capacitance could only be measured with HT-29 that contained the CA19-9 biomarker. Chemisorption of CA19-9 molecules onto the layer of anti-CA19-9 antibodies was the mechanism responsible for sensing while electrostatic interactions drove the adsorption of carbon nanotubes, according to polarization-modulated infrared reflection absorption spectroscopy (PM-IRRAS). The adsorption behavior was successfully described by the Langmuir-Freundlich isotherm.
Collapse
Affiliation(s)
- Anshu Thapa
- São Carlos Institute of Physics, University of São Paulo , São Carlos 13560-970, Brazil
- Department of Physics, University of Bath , Bath BA2 7AY, United Kingdom
| | | | | | - Iram Taj Awan
- São Carlos Institute of Physics, University of São Paulo , São Carlos 13560-970, Brazil
| | - Diogo Volpati
- Department of Natural Sciences, Mittuniversitetet , Sundsvall 851 70, Sweden
| | - Matias Eliseo Melendez
- Molecular Oncology Research Center, Barretos Cancer Hospital , Barretos 14784-400, Brazil
| | | | - André Lopes Carvalho
- Molecular Oncology Research Center, Barretos Cancer Hospital , Barretos 14784-400, Brazil
| | - Osvaldo N Oliveira
- São Carlos Institute of Physics, University of São Paulo , São Carlos 13560-970, Brazil
| |
Collapse
|
17
|
Shimizu FM, Todão FR, Gobbi AL, Oliveira ON, Garcia CD, Lima RS. Functionalization-Free Microfluidic Electronic Tongue Based on a Single Response. ACS Sens 2017; 2:1027-1034. [PMID: 28750534 DOI: 10.1021/acssensors.7b00302] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Electronic tongues (e-tongues) are promising analytical devices for a variety of applications to address the challenges of quality control in water monitoring and industries of foods, beverages, and pharmaceuticals. A crucial drawback in the current e-tongues is the need to recalibrate the device when one or more sensing units (usually with modified surface) are replaced. Another downside is the necessity to perform subsequent surface modifications and analyses to each of the diverse sensing units, undermining the simplicity and velocity of the method. These features have prevented widespread commercial use of the e-tongues. In this paper, we introduce a microfluidic e-tongue that overcomes all such limitations. The key principle of global selectivity of the e-tongue was achieved by recording only a single response, namely, the equivalent admittance spectrum of an association of resistors in parallel. Such resistors consisted of five nonfunctionalized stainless steel microwires (sensing units), which were short-circuited and coated with gold, platinum, nickel, iron, and aluminum oxide films. The microwires were inserted in a chip composed of a single piece of polydimethylsiloxane (PDMS). Using impedance spectroscopy, the e-tongue was successfully applied in classification of basic tastes at a concentration below the threshold for the human tongue. In addition, our chip allowed the distinction of various chemicals used in oil industry. Finally, our cleanroom-free prototyping allows the mass production of chips with easily replaceable and reproducible sensing units. Hence, one can now envisage the widespread dissemination of e-tongues with fast and reproducible data.
Collapse
Affiliation(s)
- Flavio M. Shimizu
- Instituto
de Física de São Carlos, Universidade de São Paulo, São
Carlos, São Paulo 13560-970, Brasil
| | - Fagner R. Todão
- Laboratório
Nacional de Nanotecnologia, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, São Paulo 13083-970, Brasil
| | - Angelo L. Gobbi
- Laboratório
Nacional de Nanotecnologia, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, São Paulo 13083-970, Brasil
| | - Osvaldo N. Oliveira
- Instituto
de Física de São Carlos, Universidade de São Paulo, São
Carlos, São Paulo 13560-970, Brasil
| | - Carlos D. Garcia
- Department
of Chemistry, Clemson University, 219 Hunter Laboratories, Clemson, South Carolina 29634, United States
| | - Renato S. Lima
- Laboratório
Nacional de Nanotecnologia, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, São Paulo 13083-970, Brasil
- Instituto
de Química, Universidade Estadual de Campinas, Campinas, São Paulo 13083-970, Brasil
| |
Collapse
|
18
|
Daikuzono CM, Shimizu FM, Manzoli A, Riul A, Piazzetta MHO, Gobbi AL, Correa DS, Paulovich FV, Oliveira ON. Information Visualization and Feature Selection Methods Applied to Detect Gliadin in Gluten-Containing Foodstuff with a Microfluidic Electronic Tongue. ACS APPLIED MATERIALS & INTERFACES 2017; 9:19646-19652. [PMID: 28481518 DOI: 10.1021/acsami.7b04252] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The fast growth of celiac disease diagnosis has sparked the production of gluten-free food and the search for reliable methods to detect gluten in foodstuff. In this paper, we report on a microfluidic electronic tongue (e-tongue) capable of detecting trace amounts of gliadin, a protein of gluten, down to 0.005 mg kg-1 in ethanol solutions, and distinguishing between gluten-free and gluten-containing foodstuff. In some cases, it is even possible to determine whether gluten-free foodstuff has been contaminated with gliadin. That was made possible with an e-tongue comprising four sensing units, three of which made of layer-by-layer (LbL) films of semiconducting polymers deposited onto gold interdigitated electrodes placed inside microchannels. Impedance spectroscopy was employed as the principle of detection, and the electrical capacitance data collected with the e-tongue were treated with information visualization techniques with feature selection for optimizing performance. The sensing units are disposable to avoid cross-contamination as gliadin adsorbs irreversibly onto the LbL films according to polarization-modulated infrared reflection absorption spectroscopy (PM-IRRAS) analysis. Small amounts of material are required to produce the nanostructured films, however, and the e-tongue methodology is promising for low-cost, reliable detection of gliadin and other gluten constituents in foodstuff.
Collapse
Affiliation(s)
- Cristiane M Daikuzono
- São Carlos Institute of Physics, University of São Paulo , 13560-970 São Carlos, São Paulo, Brazil
- São Carlos School of Engineering, University of São Paulo , 13560-000, São Carlos, São Paulo, Brazil
| | - Flavio M Shimizu
- São Carlos Institute of Physics, University of São Paulo , 13560-970 São Carlos, São Paulo, Brazil
| | - Alexandra Manzoli
- Nanotechnology National Laboratory for Agriculture (LNNA), Embrapa Instrumentação , 13560-970 São Carlos, São Paulo, Brazil
| | - Antonio Riul
- DFA, IFGW, Universidade Estadual de Campinas/Unicamp , 13083-859 Campinas, São Paulo, Brazil
| | - Maria H O Piazzetta
- LNNano, Centro Nacional de Pesquisa em Energia e Materiais/CNPEM , 13083-970 Campinas, São Paulo, Brazil
| | - Angelo L Gobbi
- DFA, IFGW, Universidade Estadual de Campinas/Unicamp , 13083-859 Campinas, São Paulo, Brazil
| | - Daniel S Correa
- Nanotechnology National Laboratory for Agriculture (LNNA), Embrapa Instrumentação , 13560-970 São Carlos, São Paulo, Brazil
| | - Fernando V Paulovich
- Institute of Mathematical Sciences and Computing, University of São Paulo , 13566-590 São Carlos, São Paulo, Brazil
| | - Osvaldo N Oliveira
- São Carlos Institute of Physics, University of São Paulo , 13560-970 São Carlos, São Paulo, Brazil
| |
Collapse
|
19
|
Rodrigues VDC, Comin CH, Soares JC, Soares AC, Melendez ME, Fregnani JHTG, Carvalho AL, Costa LDF, Oliveira ON. Analysis of Scanning Electron Microscopy Images To Investigate Adsorption Processes Responsible for Detection of Cancer Biomarkers. ACS APPLIED MATERIALS & INTERFACES 2017; 9:5885-5890. [PMID: 28117964 DOI: 10.1021/acsami.6b16105] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Adsorption processes are responsible for detection of cancer biomarkers in biosensors (and immunosensors), which can be captured with various principles of detection. In this study, we used a biosensor made with nanostructured films of polypyrrole and p53 antibodies, and image analysis of scanning electron microscopy data made it possible to correlate morphological changes of the biosensor with the concentration of cells containing the cancer biomarker p53. The selectivity of the biosensor was proven by distinguishing images obtained with exposure of the biosensor to cells containing the biomarker from those acquired with cells that did not contain it. Detection was confirmed with cyclic voltammetry measurements, while the adsorption of the p53 biomarker was probed with polarization-modulated infrared reflection absorption (PM-IRRAS) and a quartz crystal microbalance (QCM). Adsorption is described using the Langmuir-Freundlich model, with saturation taking place at a concentration of 100 Ucells/mL. Taken together, our results point to novel ways to detect biomarkers or any type of analyte for which detection is based on adsorption as is the case of the majority of biosensors.
Collapse
Affiliation(s)
| | - Cesar H Comin
- São Carlos Institute of Physics, University of São Paulo , 13560-970 São Carlos, São Paulo, Brazil
| | - Juliana Coatrini Soares
- São Carlos Institute of Physics, University of São Paulo , 13560-970 São Carlos, São Paulo, Brazil
| | - Andrey Coatrini Soares
- São Carlos Institute of Physics, University of São Paulo , 13560-970 São Carlos, São Paulo, Brazil
- Departament of Materials Engineering, São Carlos School of Engineering, University of São Paulo , 13563-120 São Carlos, São Paulo, Brazil
| | - Matias Eliseo Melendez
- Molecular Oncology Research Center, Barretos Cancer Hospital , 14784-400 Barretos, São Paulo, Brazil
| | | | - André Lopes Carvalho
- Molecular Oncology Research Center, Barretos Cancer Hospital , 14784-400 Barretos, São Paulo, Brazil
| | - Luciano da F Costa
- São Carlos Institute of Physics, University of São Paulo , 13560-970 São Carlos, São Paulo, Brazil
| | - Osvaldo N Oliveira
- São Carlos Institute of Physics, University of São Paulo , 13560-970 São Carlos, São Paulo, Brazil
| |
Collapse
|
20
|
da Silva ETSG, Souto DEP, Barragan JTC, de F. Giarola J, de Moraes ACM, Kubota LT. Electrochemical Biosensors in Point-of-Care Devices: Recent Advances and Future Trends. ChemElectroChem 2017. [DOI: 10.1002/celc.201600758] [Citation(s) in RCA: 171] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Everson T. S. G. da Silva
- Department of Analytical Chemistry; Institute of Chemistry -; State University of Campinas - Unicamp; P.O. Box 6154 13084-974 Campinas-SP Brazil
| | - Dênio E. P. Souto
- Department of Analytical Chemistry; Institute of Chemistry -; State University of Campinas - Unicamp; P.O. Box 6154 13084-974 Campinas-SP Brazil
| | - José T. C. Barragan
- Department of Analytical Chemistry; Institute of Chemistry -; State University of Campinas - Unicamp; P.O. Box 6154 13084-974 Campinas-SP Brazil
| | - Juliana de F. Giarola
- Department of Analytical Chemistry; Institute of Chemistry -; State University of Campinas - Unicamp; P.O. Box 6154 13084-974 Campinas-SP Brazil
| | - Ana C. M. de Moraes
- Department of Analytical Chemistry; Institute of Chemistry -; State University of Campinas - Unicamp; P.O. Box 6154 13084-974 Campinas-SP Brazil
| | - Lauro T. Kubota
- Department of Analytical Chemistry; Institute of Chemistry -; State University of Campinas - Unicamp; P.O. Box 6154 13084-974 Campinas-SP Brazil
| |
Collapse
|
21
|
Delezuk JA, Pavinatto A, Moraes ML, Shimizu FM, Rodrigues VC, Campana-Filho SP, Ribeiro SJ, Oliveira ON. Silk fibroin organization induced by chitosan in layer-by-layer films: Application as a matrix in a biosensor. Carbohydr Polym 2017; 155:146-151. [DOI: 10.1016/j.carbpol.2016.08.060] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 08/16/2016] [Accepted: 08/17/2016] [Indexed: 01/28/2023]
|
22
|
Affiliation(s)
- Wei Wen
- School of Mechanical and Material Engineering, Washington State University , Pullman, Washington 99164, United States
| | - Xu Yan
- School of Mechanical and Material Engineering, Washington State University , Pullman, Washington 99164, United States
| | - Chengzhou Zhu
- School of Mechanical and Material Engineering, Washington State University , Pullman, Washington 99164, United States
| | - Dan Du
- School of Mechanical and Material Engineering, Washington State University , Pullman, Washington 99164, United States.,Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University , Wuhan, Hubei 430079, P.R. China
| | - Yuehe Lin
- School of Mechanical and Material Engineering, Washington State University , Pullman, Washington 99164, United States
| |
Collapse
|
23
|
Rodrigues JF, Paulovich FV, de Oliveira MCF, de Oliveira ON. On the convergence of nanotechnology and Big Data analysis for computer-aided diagnosis. Nanomedicine (Lond) 2016; 11:959-82. [PMID: 26979668 DOI: 10.2217/nnm.16.35] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
An overview is provided of the challenges involved in building computer-aided diagnosis systems capable of precise medical diagnostics based on integration and interpretation of data from different sources and formats. The availability of massive amounts of data and computational methods associated with the Big Data paradigm has brought hope that such systems may soon be available in routine clinical practices, which is not the case today. We focus on visual and machine learning analysis of medical data acquired with varied nanotech-based techniques and on methods for Big Data infrastructure. Because diagnosis is essentially a classification task, we address the machine learning techniques with supervised and unsupervised classification, making a critical assessment of the progress already made in the medical field and the prospects for the near future. We also advocate that successful computer-aided diagnosis requires a merge of methods and concepts from nanotechnology and Big Data analysis.
Collapse
Affiliation(s)
- Jose F Rodrigues
- Institute of Mathematics & Computer Science, University of Sao Paulo (USP), 13560-970 Sao Carlos, SP, Brazil
| | - Fernando V Paulovich
- Institute of Mathematics & Computer Science, University of Sao Paulo (USP), 13560-970 Sao Carlos, SP, Brazil
| | - Maria CF de Oliveira
- Institute of Mathematics & Computer Science, University of Sao Paulo (USP), 13560-970 Sao Carlos, SP, Brazil
| | - Osvaldo N de Oliveira
- Sao Carlos Institute of Physics, University of Sao Paulo (USP), CP 369, 13560-970 Sao Carlos, SP, Brazil
| |
Collapse
|
24
|
Soares JC, Soares AC, Pereira PAR, Rodrigues VDC, Shimizu FM, Melendez ME, Scapulatempo Neto C, Carvalho AL, Leite FL, Machado SAS, Oliveira ON. Adsorption according to the Langmuir-Freundlich model is the detection mechanism of the antigen p53 for early diagnosis of cancer. Phys Chem Chem Phys 2016; 18:8412-8418. [PMID: 26932233 DOI: 10.1039/c5cp07121f] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Biosensors for early detection of cancer biomarkers normally depend on specific interactions between such biomarkers and immobilized biomolecules in the sensing units. Though these interactions are expected to yield specific, irreversible adsorption, the underlying mechanism appears not to have been studied in detail. In this paper, we show that adsorption explained with the Langmuir-Freundlich model is responsible for detection of the antigen p53 associated with various types of cancers. Irreversible adsorption was proven between anti-p53 antibodies immobilized on the biosensors and the antigen p53, with the adequacy of the Langmuir-Freundlich model being confirmed with three independent experimental methods, viz. polarization-modulated infrared reflection absorption spectroscopy (PM-IRRAS), nanogravimetry using a quartz crystal microbalance and electrochemical impedance spectroscopy. The method based on this irreversible adsorption was sufficiently sensitive (limit of detection of 1.4 pg mL(-1)) for early diagnosis of Hodgkin lymphoma, pancreatic and colon carcinomas, and bladder, ovarian and lung cancers, and could distinguish between MCF7 cells containing the antigen p53 from Saos-2 cells that do not contain it.
Collapse
Affiliation(s)
| | - Andrey Coatrini Soares
- São Carlos Institute of Physics, University of São Paulo, 13560-970 São Carlos-SP, Brazil.
| | | | | | - Flavio Makoto Shimizu
- São Carlos Institute of Physics, University of São Paulo, 13560-970 São Carlos-SP, Brazil.
| | | | - Cristovam Scapulatempo Neto
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos-SP, Brazil and Department of Pathology, Barretos Cancer Hospital, Barretos-SP, Brazil
| | - André Lopes Carvalho
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos-SP, Brazil
| | - Fábio L Leite
- Federal University of São Carlos, Sorocaba-SP, Brazil
| | - Sergio A S Machado
- São Carlos Institute of Chemistry, University of São Paulo, 13560-970 São Carlos-SP, Brazil
| | - Osvaldo N Oliveira
- São Carlos Institute of Physics, University of São Paulo, 13560-970 São Carlos-SP, Brazil.
| |
Collapse
|