1
|
Xenodochidis C, Hristova-Panusheva K, Kamenska T, Santhosh PB, Petrov T, Stoychev L, Genova J, Krasteva N. Graphene Oxide Nanoparticles for Photothermal Treatment of Hepatocellular Carcinoma Using Low-Intensity Femtosecond Laser Irradiation. Molecules 2024; 29:5650. [PMID: 39683809 DOI: 10.3390/molecules29235650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Graphene oxide-mediated photothermal therapy using femtosecond lasers has recently shown promise in treating hepatocellular carcinoma. However, significant work remains to optimize irradiation parameters for specific nanoparticle types and cancer cells to improve nanomaterial-mediated photothermal anticancer therapy. This study investigated the photothermal potential of nGO and nGO-PEG nanoparticles (NPs) combined with femtosecond laser irradiation at 515 nm and 1030 nm wavelengths, with varying power (0.1 and 0.2 W/cm2) and duration (5 and 10 min), to optimize photothermal therapy for hepatocellular carcinoma. Conversion efficiency of NPs, morphology and viability of HepG2 and normal MDCK cells after treatments were evaluated using an electronic thermometer, phase-contrast microscopy, and WST-1 assay. The results revealed that nGO-PEG NPs exhibited better photothermal efficiency than nGO, with 515 nm of irradiation inducing a temperature increase up to 19.1 °C compared to 4.7 °C with 1030 nm of light. Laser exposure to 515 nm significantly reduced HepG2 cell viability, with the most intense conditions (10 min at 0.2 W/cm2) causing a decrease of up to 58.2% with nGO and 43.51% with nGO-PEG. Normal MDCK cells showed minimal impact or a slight viability increase, especially with nGO-PEG. Combined treatment with laser irradiation and NPs induced significant morphological changes in HepG2 cells, including cell detachment and apoptotic-like characteristics, particularly with 1030 nm of irradiation. MDCK cells exhibited minimal morphological changes, with some recovery observed under lower energy conditions. These findings suggest that low-energy lasers and engineered nanomaterials could provide a minimally invasive approach to photothermal cancer therapy with reduced side effects.
Collapse
Affiliation(s)
- Charilaos Xenodochidis
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. Bl.21, 1113 Sofia, Bulgaria
| | - Kamelia Hristova-Panusheva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. Bl.21, 1113 Sofia, Bulgaria
| | - Trayana Kamenska
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. Bl.21, 1113 Sofia, Bulgaria
| | - Poornima Budime Santhosh
- Institute of Solid State Physics, Bulgarian Academy of Sciences, Tzarigradsko Chaussee 72, 1784 Sofia, Bulgaria
| | - Todor Petrov
- Institute of Solid State Physics, Bulgarian Academy of Sciences, Tzarigradsko Chaussee 72, 1784 Sofia, Bulgaria
- Faculty of Applied Mathematics and Informatics, Technical University of Sofia, 8 Kliment Ohridski Str., 1000 Sofia, Bulgaria
| | - Lyubomir Stoychev
- Institute of Solid State Physics, Bulgarian Academy of Sciences, Tzarigradsko Chaussee 72, 1784 Sofia, Bulgaria
| | - Julia Genova
- Institute of Solid State Physics, Bulgarian Academy of Sciences, Tzarigradsko Chaussee 72, 1784 Sofia, Bulgaria
| | - Natalia Krasteva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. Bl.21, 1113 Sofia, Bulgaria
| |
Collapse
|
2
|
Pinto de Sousa B, Fateixa S, Trindade T. Surface-Enhanced Raman Scattering Using 2D Materials. Chemistry 2024; 30:e202303658. [PMID: 38530022 DOI: 10.1002/chem.202303658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 03/01/2024] [Accepted: 03/25/2024] [Indexed: 03/27/2024]
Abstract
The use of surface-enhanced Raman scattering (SERS) as a technique for detecting small amounts of (bio)chemical analytes has become increasingly popular in various fields. While gold and silver nanostructures have been extensively studied as SERS substrates, the availability of other types of substrates is currently expanding the applications of this spectroscopic method. Recently, researchers have begun exploring two-dimensional (2D) materials (e. g., graphene-like nanostructures) as substrates for SERS analysis. These materials offer unique optical properties, a well-defined structure, and the ability to modify their surface chemistry. As a contribution to advance this field, this concept article highlights the significance of understanding the chemical mechanism that underlies the experimental Raman spectra of chemisorbed molecules onto 2D materials' surfaces. Therefore, the article discusses recent advancements in fabricating substrates using 2D layered materials and the synergic effects of using their metallic composites for SERS applications. Additionally, it provides a new perspective on using Raman imaging in developing 2D materials as analytical platforms for Raman spectroscopy, an exciting emerging research area with significant potential.
Collapse
Affiliation(s)
- Beatriz Pinto de Sousa
- Department of Chemistry and CICECO - Aveiro Materials Institute, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Sara Fateixa
- Department of Chemistry and CICECO - Aveiro Materials Institute, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Tito Trindade
- Department of Chemistry and CICECO - Aveiro Materials Institute, University of Aveiro, 3810-193, Aveiro, Portugal
| |
Collapse
|
3
|
Li L, Zhang T, Zhang L, Li W, Xu T, Wang L, Liu C, Li W, Li J, Lu R. One-step fabrication of flexible polyamide@Ag-dodecanethiol membranes for highly sensitive SERS detection of thiram. NANOTECHNOLOGY 2023; 35:105601. [PMID: 38035399 DOI: 10.1088/1361-6528/ad115e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 11/30/2023] [Indexed: 12/02/2023]
Abstract
The surface-enhanced Raman scattering (SERS) is an effective spectral technology based on Raman scattering, but in practice, the commonly used SERS substrates suffer from low sensitivity and poor stability. In order to overcome these limitations, the SERS substrates were prepared from hydrophobic modification of dodecanethiol (C12) coupled with a flexible substrate, which was then used for pesticides detection in water. A flexible PA@Ag-C12 substrate with surface functionalization has been obtained. This work aims to investigate the self-assembly of Ag NPs modified with C12 onto polyamide (PA) membranes. Initially, transmission electron microscopy and scanning electron microscopy were used to analyze the substrate's morphology. Then with the help of an energy-dispersive spectrometer, sulfur content of C12-modified Ag NPs was analyzed. In order to determine the hydrophobicity of the modified Ag NPs, the contact angle was used. The results indicate that the gap between Ag NPs on PA membrane can be effectively controlled in order to prevent Ag NPs from aggregating. Furthermore, the finite-difference time-domain analysis indicated that the PA@Ag-C12 substrate exhibited a stronger electromagnetic enhancement effect than the PA@Ag substrate. By reducing NPs gaps on the PA membrane, the number of 'hot spots' increased, and the SERS performance of the substrate was improved as a result. According to the results of this study, this method can greatly reduce the manufacturing costs and time costs of the SERS substrate while maintaining the original uniformity. The SERS performance of PA@Ag-C12 was found to be three orders of magnitude better than that of PA@Ag direct self-assembled substrate, and the detection limit for Rhodamine 6G (R6G) was approximately 8.47 × 10-14M. On the basis of the PA@Ag-C12 substrate, thiram is detectable at a detection limit of 5.88 × 10-11M with a high degree of sensitivity and repeatability.
Collapse
Affiliation(s)
- Lujie Li
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China
| | - Tingting Zhang
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China
| | - Lan Zhang
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China
| | - Wei Li
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China
| | - Tao Xu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China
| | - Lingling Wang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, People's Republic of China
| | - Chang Liu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei 230601, People's Republic of China
| | - Weihua Li
- School of Environment and Energy Engineering, Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, Anhui Jianzhu University, Hefei, People's Republic of China
| | - Jiansheng Li
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China
| | - Rui Lu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China
| |
Collapse
|
4
|
Grafting PDMAEMA brushes onto graphene oxide for fabricating Ag nanosheet-assembled microspheres as SERS substrates. Chem Phys Lett 2023. [DOI: 10.1016/j.cplett.2023.140296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
5
|
Li X, An Q, Ma Z, Zhang Y, Chen X, Chai Y, Fu M. Bioactive NAD + Regeneration Promoted by Multimetallic Nanoparticles Based on Graphene-Polymer Nanolayers. ACS APPLIED MATERIALS & INTERFACES 2022; 14:39285-39292. [PMID: 35996209 DOI: 10.1021/acsami.2c12971] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The concentration of nicotinamide adenine dinucleotide oxidized form (NAD+) changes during aging, and the production of NAD+ can significantly affect both health span and life span. However, it is still of great challenge to regenerate NAD+ from its precursors. Herein, we introduce a method to prepare multimetallic nanoparticles (including Au, Pt, Cu, and MgO) that can efficiently promote the conversion of NADH to NAD+. The nanoparticles are made by mixing reduced graphene oxide-polyethyleneimine-polyacrylic acid nano-films with metallic salts, where four different metal ions are reduced and grow at the surface of the nanolayers. The morphology, size, and growth rate of nanoparticles can be controlled by adding surfactants, applying an electric field, and so forth. Our multimetallic nanoparticles exhibit excellent catalytic performance that a complete conversion of NADH to NAD+ can be finished in 3 min without introducing additional oxygen. This work presents a way for the preparation of multimetallic nanoparticles to promote NAD+ regeneration, which shows great promise for the future design of high-performance materials for antiaging.
Collapse
Affiliation(s)
- Xiangming Li
- Department of Functional Materials, School of Materials Sciences and Technology, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Qi An
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, School of Materials Sciences and Technology, China University of Geosciences, Beijing 100083, China
| | - Zequn Ma
- Institute of Materials Science and Devices, Suzhou University of Science and Technology, Suzhou 215000, China
| | - Yi Zhang
- Institute of Materials Science and Devices, Suzhou University of Science and Technology, Suzhou 215000, China
| | - Xingyuan Chen
- Department of Physics, School of Science, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Yu Chai
- Department of Physics, City University of Hong Kong, Kowloon 999077, Hong Kong, China
| | - Meng Fu
- Department of Functional Materials, School of Materials Sciences and Technology, Guangdong University of Petrochemical Technology, Maoming 525000, China
| |
Collapse
|
6
|
Zhou Q, Jin M, Wu W, Fu L, Yin C, Karimi-Maleh H. Graphene-Based Surface-Enhanced Raman Scattering (SERS) Sensing: Bibliometrics Based Analysis and Review. CHEMOSENSORS 2022; 10:317. [DOI: 10.3390/chemosensors10080317] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2025]
Abstract
Surface-enhanced Raman scattering (SERS) has received increasing attention from researchers since it was first discovered on rough silver electrode surfaces in 1974 and has promising applications in life sciences, food safety, and environmental monitoring. The discovery of graphene has stirred considerable waves in the scientific community, attracting widespread attention in theoretical research and applications. Graphene exhibits the properties of a semi-metallic material and has also been found to have Raman enhancement effects such as in metals. At the same time, it quenches the fluorescence background and improves the ratio of a Raman signal to a fluorescence signal. However, graphene single-component substrates exhibit only limited SERS effects and are difficult to use for trace detection applications. The common SERS substrates based on noble metals such as Au and Ag can produce strong electromagnetic enhancement, which results in strong SERS signals from molecules adsorbed on the surface. However, these substrates are less stable and face the challenge of long-term use. The combination of noble metals and graphene to obtain composite structures was an effective solution to the problem of poor stability and sensitivity of SERS substrates. Therefore, graphene-based SERS has been a popular topic within the last decade. This review presents a statistically based analysis of graphene-based SERS using bibliometrics. Journal and category analysis were used to understand the historical progress of the topic. Geographical distribution was used to understand the contribution of different countries and institutions to the topic. In addition, this review describes the different directions under this topic based on keyword analysis and keyword co-occurrence. The studies on this topic do not show a significant divergence. The researchers’ attention has gradually shifted from investigating materials science and chemistry to practical sensing applications. At the end of the review, we summarize the main contents of this topic. In addition, several perspectives are presented based on bibliometric analysis.
Collapse
Affiliation(s)
- Qingwei Zhou
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Meiqing Jin
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Weihong Wu
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Li Fu
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Chengliang Yin
- National Engineering Laboratory for Medical Big Data Application Technology, Chinese PLA General Hospital, Beijing 100853, China
- Medical Big Data Research Center, Medical Innovation Research Division of PLA General Hospital, Beijing 100853, China
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu 610056, China
- Laboratory of Nanotechnology, Department of Chemical Engineering and Energy, Quchan University of Technology, Quchan 94771-67335, Iran
- Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, Johannesburg 2028, South Africa
| |
Collapse
|
7
|
Chen J, Zhou Y, Wang W. Spontaneous Growth of Au Microflowers on Poly( N-isopropylacrylamide) Brushes-grafted-Graphene Oxide Films for Surface-enhanced Raman Spectroscopy. CHEM LETT 2020. [DOI: 10.1246/cl.200468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Jiajun Chen
- School of Materials Science and Chemical Engineering, Ningbo University, No. 818, Fenghua Road, Ningbo 315211, P. R. China
| | - Yumeng Zhou
- School of Materials Science and Chemical Engineering, Ningbo University, No. 818, Fenghua Road, Ningbo 315211, P. R. China
| | - Wenqin Wang
- School of Materials Science and Chemical Engineering, Ningbo University, No. 818, Fenghua Road, Ningbo 315211, P. R. China
| |
Collapse
|
8
|
Podolska MJ, Barras A, Alexiou C, Frey B, Gaipl U, Boukherroub R, Szunerits S, Janko C, Muñoz LE. Graphene Oxide Nanosheets for Localized Hyperthermia-Physicochemical Characterization, Biocompatibility, and Induction of Tumor Cell Death. Cells 2020; 9:E776. [PMID: 32209981 PMCID: PMC7140890 DOI: 10.3390/cells9030776] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/17/2020] [Accepted: 03/20/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The main goals of cancer treatment are not only to eradicate the tumor itself but also to elicit a specific immune response that overcomes the resistance of tumor cells against chemo- and radiotherapies. Hyperthermia was demonstrated to chemo- and radio-sensitize cancerous cells. Many reports have confirmed the immunostimulatory effect of such multi-modal routines. METHODS We evaluated the interaction of graphene oxide (GO) nanosheets; its derivatives reduced GO and PEGylated rGO, with components of peripheral blood and evaluated its thermal conductivity to induce cell death by localized hyperthermia. RESULTS We confirmed the sterility and biocompatibility of the graphene nanomaterials and demonstrated that hyperthermia applied alone or in the combination with radiotherapy induced much more cell death in tumor cells than irradiation alone. Cell death was confirmed by the release of lactate dehydrogenase from dead and dying tumor cells. CONCLUSION Biocompatible GO and its derivatives can be successfully used in graphene-induced hyperthermia to elicit tumor cell death.
Collapse
Affiliation(s)
- Malgorzata J. Podolska
- Department of Internal Medicine 3—Rheumatology and Immunology, Universitätsklinikum Erlangen, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, 90154 Erlangen, Germany;
| | - Alexandre Barras
- Univ. Lille, CNRS, Centrale Lille Univ. Polytechnique Hauts-de-France, UMR 8520-IEMN, F-59000 Lille, France; (A.B.); (R.B.); (S.S.)
| | - Christoph Alexiou
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, Universitätsklinikum Erlangen, 91054 Erlangen, Germany; (C.A.); (C.J.)
| | - Benjamin Frey
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, 90154 Erlangen, Germany; (B.F.); (U.G.)
| | - Udo Gaipl
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, 90154 Erlangen, Germany; (B.F.); (U.G.)
| | - Rabah Boukherroub
- Univ. Lille, CNRS, Centrale Lille Univ. Polytechnique Hauts-de-France, UMR 8520-IEMN, F-59000 Lille, France; (A.B.); (R.B.); (S.S.)
| | - Sabine Szunerits
- Univ. Lille, CNRS, Centrale Lille Univ. Polytechnique Hauts-de-France, UMR 8520-IEMN, F-59000 Lille, France; (A.B.); (R.B.); (S.S.)
| | - Christina Janko
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, Universitätsklinikum Erlangen, 91054 Erlangen, Germany; (C.A.); (C.J.)
| | - Luis E. Muñoz
- Department of Internal Medicine 3—Rheumatology and Immunology, Universitätsklinikum Erlangen, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, 90154 Erlangen, Germany;
| |
Collapse
|
9
|
Liang Z, Luo Y, Lv Y. Mesenchymal stem cell-derived microvesicles mediate BMP2 gene delivery and enhance bone regeneration. J Mater Chem B 2020; 8:6378-6389. [DOI: 10.1039/d0tb00422g] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Microvesicles–polyethyleneimine/pDNA formed via layer-by-layer self-assembly increase the delivery of hBMP2 plasmids and enhance bone repair.
Collapse
Affiliation(s)
- Zhuo Liang
- Mechanobiology and Regenerative Medicine Laboratory
- Bioengineering College
- Chongqing University
- Chongqing 400044
- P. R. China
| | - Yue Luo
- Mechanobiology and Regenerative Medicine Laboratory
- Bioengineering College
- Chongqing University
- Chongqing 400044
- P. R. China
| | - Yonggang Lv
- Mechanobiology and Regenerative Medicine Laboratory
- Bioengineering College
- Chongqing University
- Chongqing 400044
- P. R. China
| |
Collapse
|
10
|
Feng L, Wang W, Li X, Chen T. Spontaneous Growth of 3D Silver Mesoflowers on Poly(4-vinylpyridine) Brushes-Grafted-Graphene Oxide Films and Facile Creation of Nanoporosities over their Surface. Chemistry 2019; 25:16377-16381. [PMID: 31631457 DOI: 10.1002/chem.201903959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Indexed: 11/10/2022]
Abstract
Fabricating three-dimensional (3D) hierarchical noble-metal particles by spontaneous redox reactions between graphene and noble-metal salts still remains a great challenge. Herein, the fact that graphene oxide (GO) itself acts as both a platform for grafting polymer brushes and a reducing agent to reduce [Ag(NH3 )2 ]+ ions is taken advantages of. 3D flower-like Ag mesoparticles (Ag mesoflowers, Ag MFs) with tunable size and shapes can spontaneous grow on poly(4-vinylpyridine) brushes-grafted-graphene oxide (P4VP-g-GO) films in Ag(NH3 )2 OH solution without the use of any additional reducing agent. The residual Ag(NH3 )2 OH on 3D Ag MFs surface can be further reduced by NaBH4 , causing abundant nanoporosities over the entire Ag MFs. The resulting Ag nanoporous MFs (Ag NMFs) with larger surface-to-volume ratio and higher nanoscale roughness exhibit ultrasensitivity in surface-enhanced Raman spectroscopy (SERS) detection, and the detection limit for 4-aminothiophenol is as low as 10-13 m.
Collapse
Affiliation(s)
- Lihua Feng
- Faculty of Materials Science and Chemical Engineering, Ningbo University, 818 Fenghua Road, Ningbo, 315211, P.R. China
| | - Wenqin Wang
- Faculty of Materials Science and Chemical Engineering, Ningbo University, 818 Fenghua Road, Ningbo, 315211, P.R. China
| | - Xiyong Li
- Faculty of Materials Science and Chemical Engineering, Ningbo University, 818 Fenghua Road, Ningbo, 315211, P.R. China
| | - Tao Chen
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, 315201, P.R. China
| |
Collapse
|
11
|
Li X, Zhang Y, Fu M, Tang Y, Yin S, Ma Z, Dai H, Li H, Gao H, Russell TP, An Q. Using a Graphene-Polyelectrolyte Complex Reducing Agent To Promote Cracking in Single-Crystalline Gold Nanoplates. ACS APPLIED MATERIALS & INTERFACES 2019; 11:41602-41610. [PMID: 31609573 DOI: 10.1021/acsami.9b16500] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
It is a challenge to produce single-crystalline gold nanoparticles having regular size definition designed for controlled light absorbance and internal structural inhomogeneities to enhance electro-magnetic fields. Here, we report a synthetic strategy to generate large single-crystalline triangular or hexagonal gold nanoplates with multiple cracks within the plates using a graphene-polyelectrolyte complex as both a surface adsorbent and bulk reducing agent. Large-scale gold nanoplates can be synthesized within 48 h. First-principles calculations indicate that the nanoplates have a kinetically limited morphology resulting from prior growth of {111} facets confined by the graphene-polyelectrolyte multilayer. The nanocracks result from the inability of the bulk reducing agent to enter narrow defect spaces during growth that remained permanently. The nanoplates had extraordinary physical-chemical detection sensitivity when used for surface-enhanced Raman scattering (SERS) and surface-enhanced infrared absorption (SEIRA). The limit of rhodamine 6G (Rh6G) SERS detection is as low as 5 × 10-13 M. The gold nanoplates also showed a remarkable light-to-heat conversion efficiency (68.5%). The approach described may be applicable to other metals so that tunable nanostructures can be generated by the graphene-polyelectrolyte multilayer strategy.
Collapse
Affiliation(s)
- Xiangming Li
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Sciences and Technology , China University of Geosciences , Beijing , 100083 , China
- College of Materials Sciences and Technology , Guangdong University of Petrochemical Technology , Maoming , 525000 , China
- Materials Sciences Division , Lawrence Berkeley National Laboratory , 1 Cyclotron Road , Berkeley , California 94720 , United States
| | - Yihe Zhang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Sciences and Technology , China University of Geosciences , Beijing , 100083 , China
| | - Meng Fu
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Sciences and Technology , China University of Geosciences , Beijing , 100083 , China
- College of Materials Sciences and Technology , Guangdong University of Petrochemical Technology , Maoming , 525000 , China
| | - Yunhui Tang
- The Molecular Foundry , Lawrence Berkeley National Laboratory , 1 Cyclotron Road , Berkeley , California 94720 , United States
| | - Sheng Yin
- Materials Sciences Division , Lawrence Berkeley National Laboratory , 1 Cyclotron Road , Berkeley , California 94720 , United States
- School of Engineering , Brown University , Providence , Rhode Island 02912 , United States
| | - Zequn Ma
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Sciences and Technology , China University of Geosciences , Beijing , 100083 , China
| | - Han Dai
- Department of Materials, School of Technology , Yantai Nanshan University , Longkou , Shandong 265713 , China
| | - Haitao Li
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Sciences and Technology , China University of Geosciences , Beijing , 100083 , China
| | - Hua Gao
- School of Science , China University of Geosciences , Beijing , 100083 , China
| | - Thomas P Russell
- Materials Sciences Division , Lawrence Berkeley National Laboratory , 1 Cyclotron Road , Berkeley , California 94720 , United States
| | - Qi An
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Sciences and Technology , China University of Geosciences , Beijing , 100083 , China
| |
Collapse
|
12
|
Budimir M, Jijie R, Ye R, Barras A, Melinte S, Silhanek A, Markovic Z, Szunerits S, Boukherroub R. Efficient capture and photothermal ablation of planktonic bacteria and biofilms using reduced graphene oxide-polyethyleneimine flexible nanoheaters. J Mater Chem B 2019; 7:2771-2781. [PMID: 32255079 DOI: 10.1039/c8tb01676c] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Bacterial infections are one of the leading causes of disease worldwide. Conventional antibiotics are becoming less efficient, due to antibiotic-resistant bacterial strains. Therefore, the development of novel antibacterial materials and advanced treatment strategies are becoming increasingly important. In the present work, we developed a simple and efficient strategy for effective bacterial capture and their subsequent eradication through photothermal killing. The developed device consists of a flexible nanoheater, comprising a Kapton/Au nanoholes substrate, coated with reduced graphene oxide-polyethyleneimine (K/Au NH/rGO-PEI) thin films. The Au NH plasmonic structure was tailored to feature strong absorption in the near-infrared (NIR) region, where most biological matter has limited absorption, while PEI was investigated for its strong binding with bacteria through electrostatic interactions. The K/Au NH/rGO-PEI device was demonstrated to capture and eliminate effectively both planktonic Gram-positive Staphilococcus aureus (S. aureus) and Gram-negative Escherichia coli (E. coli) bacteria after 10 min of NIR (980 nm) irradiation and, to destroy and eradicate Staphilococcus epidermidis (S. epidermidis) biofilms after 30 min irradiation. The technique developed herein is simple and universal with potential applications for eradication of different micro-organisms.
Collapse
Affiliation(s)
- Milica Budimir
- Univ. Lille, CNRS, Centrale Lille, ISEN, Univ. Valenciennes, UMR 8520 - IEMN, F-59000 Lille, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Bai L, Zhang Y, Tong W, Sun L, Huang H, An Q, Tian N, Chu PK. Graphene for Energy Storage and Conversion: Synthesis and Interdisciplinary Applications. ELECTROCHEM ENERGY R 2019. [DOI: 10.1007/s41918-019-00042-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
14
|
Li X, Zhang Y, Ma Z, He C, Wu Y, An Q. Designing cancer nanodrugs that are highly loaded, pH-responsive, photothermal, and possess a favored morphology: A hierarchical assembly of DOX and layer-by-layer modified rGO. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2018.03.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
15
|
Li X, Ma Z, Zhang Y, Pan S, Fu M, He C, An Q. Multiple-Enzyme Graphene Microparticle Presenting Adaptive Chemical Network Capabilities. ACS APPLIED MATERIALS & INTERFACES 2018; 10:39194-39204. [PMID: 30336666 DOI: 10.1021/acsami.8b13183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Interrelated reaction networks steered by multiple types of enzymes are among the most intriguing enzyme-based cellular features. These reaction networks display advanced features such as adaptation, stimuli-responsiveness, and decision-making in accordance with environmental cues. However, artificial enzyme particles are still deficient in network-level capabilities, mostly because delicate enzymes are difficult to immobilize and assemble. In this study, we propose a general strategy to prepare enzyme-based particles that demonstrate network reaction capability. We assembled multiple types of proteins with a nanoscopic binder prepared from polyelectrolyte and graphene. After assembly, the enzymes all preserved their catalytic capabilities. By incorporating multiple types of enzymes, the particles additionally displayed network-reaction capabilities. We were able to use NIR irradiations to quasi-reversibly adjust the catalytic abilities of these enzyme-based particles. In addition, after a biomimetic mineralization process was used to wrap the protein complexes in a MOF shell, the particles were more robust and catalytically active even after being immersed in acidic (pH 4) or basic (pH 10) solutions for 3 days. This study provides an insight into the study of network properties of functional enzyme particles experimentally and enriches scientific understanding of multifunctional or stimuli-responsive behaviors at the reaction network level. The building of artificial reaction networks possesses high potential in realizing intelligent microparticles that can perform complicated tasks.
Collapse
Affiliation(s)
- Xiangming Li
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Sciences and Technology , China University of Geosciences , Beijing 100083 , P. R. China
| | - Zequn Ma
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Sciences and Technology , China University of Geosciences , Beijing 100083 , P. R. China
| | - Yihe Zhang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Sciences and Technology , China University of Geosciences , Beijing 100083 , P. R. China
| | - Shaofeng Pan
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Sciences and Technology , China University of Geosciences , Beijing 100083 , P. R. China
| | - Meng Fu
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Sciences and Technology , China University of Geosciences , Beijing 100083 , P. R. China
| | - Chengjun He
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Sciences and Technology , China University of Geosciences , Beijing 100083 , P. R. China
| | - Qi An
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Sciences and Technology , China University of Geosciences , Beijing 100083 , P. R. China
| |
Collapse
|
16
|
Li X, Zhang Y, Ma Z, Fu M, An Q. The Fabrication of rGO/(PLL/PASP) 3 @DOX Nanorods with pH-Switch for Photothermal Therapy and Chemotherapy. Chemistry 2018; 24:13830-13838. [PMID: 29907974 DOI: 10.1002/chem.201801884] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 06/01/2018] [Indexed: 11/12/2022]
Abstract
The development of well-controlled drug carriers that are stable and highly effective for the delivery of anticancer agents is challenging. Herein, we report a novel pH-controlled drug delivery system, utilizing reducing graphene oxide (rGO)-polymer self-assembly films as carriers, for the preparation of effective drug nanorods and nanoparticles. In this system, the rGO-polymer carriers were constructed by the alternating assembly of poly-l-lysine (PLL) and polyaspartic acid (PASP) around the rGO sheets. Furthermore, the rGO-polymer cores, which possess a positively charged surface as the desired template, could assemble with negatively charged doxorubicin (DOX) via electrostatic interactions. The DOX embedding efficiency and the morphology of the drug nanocomposites could be controlled by the number of rGO-polymer bilayers and concentration of the rGO-polymer bilayers and the initial DOX concentration. Importantly, the release of DOX could be regulated by controlling the pH and by using a NIR laser. Under acidic conditions, the interactions between the PASP layer and DOX molecules can be broken, resulting in gradual release of the DOX molecules. Upon NIR irradiation, the release of DOX could be further accelerated and a photothermal effect from rGO induced. Cellular uptake and cytotoxicity experiments indicate that the drug nanocomposites possess effective anticancer activity. Thus, in this work, we present a useful strategy for the fabrication of pH-responsive drug nanocomposites for combined photothermal and chemical therapy. The nanocomposite can be used as a potential drug delivery system for practical cancer treatment.
Collapse
Affiliation(s)
- Xiangming Li
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing, 100083, P. R. China
| | - Yihe Zhang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing, 100083, P. R. China
| | - Zequn Ma
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing, 100083, P. R. China
| | - Meng Fu
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing, 100083, P. R. China
| | - Qi An
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing, 100083, P. R. China
| |
Collapse
|
17
|
Feng L, Wang K, Li P, Wang W, Chen T. Fried egg-like Au mesostructures grown on poly(4-vinylpyridine) brushes grafted onto graphene oxide. NEW J CHEM 2018. [DOI: 10.1039/c8nj03272f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hierarchical Au mesostructures as SERS-active substrates were facilely fabricated by the reduction of HAuCl4-loaded poly(4-vinylpyridine) brushes with ascorbic acid.
Collapse
Affiliation(s)
- Lihua Feng
- School of Materials Science and Chemical Engineering
- Ningbo University
- Ningbo 315211
- P. R. China
| | - Ke Wang
- School of Materials Science and Chemical Engineering
- Ningbo University
- Ningbo 315211
- P. R. China
| | - Ping Li
- School of Materials Science and Chemical Engineering
- Ningbo University
- Ningbo 315211
- P. R. China
| | - Wenqin Wang
- School of Materials Science and Chemical Engineering
- Ningbo University
- Ningbo 315211
- P. R. China
| | - Tao Chen
- Division of Polymer and Composite Materials, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Science
- Ningbo 315201
- P. R. China
| |
Collapse
|
18
|
Li H, Dai H, Zhang Y, Tong W, Gao H, An Q. Surface-Enhanced Raman Spectra Promoted by a Finger Press in an All-Solid-State Flexible Energy Conversion and Storage Film. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201610737] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Haitao Li
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes; National Laboratory of Mineral Materials; School of Materials Science and Technology; China University of Geosciences; Beijing 100083 China
| | - Han Dai
- Yantai Nanshan University; Longkou Shandong Province 265713 China
| | - Yihe Zhang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes; National Laboratory of Mineral Materials; School of Materials Science and Technology; China University of Geosciences; Beijing 100083 China
| | - Wangshu Tong
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes; National Laboratory of Mineral Materials; School of Materials Science and Technology; China University of Geosciences; Beijing 100083 China
| | - Hua Gao
- School of Science; China University of Geosciences; Beijing 100083 P.R. China
| | - Qi An
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes; National Laboratory of Mineral Materials; School of Materials Science and Technology; China University of Geosciences; Beijing 100083 China
| |
Collapse
|
19
|
Li H, Dai H, Zhang Y, Tong W, Gao H, An Q. Surface-Enhanced Raman Spectra Promoted by a Finger Press in an All-Solid-State Flexible Energy Conversion and Storage Film. Angew Chem Int Ed Engl 2017; 56:2649-2654. [DOI: 10.1002/anie.201610737] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 12/19/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Haitao Li
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes; National Laboratory of Mineral Materials; School of Materials Science and Technology; China University of Geosciences; Beijing 100083 China
| | - Han Dai
- Yantai Nanshan University; Longkou Shandong Province 265713 China
| | - Yihe Zhang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes; National Laboratory of Mineral Materials; School of Materials Science and Technology; China University of Geosciences; Beijing 100083 China
| | - Wangshu Tong
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes; National Laboratory of Mineral Materials; School of Materials Science and Technology; China University of Geosciences; Beijing 100083 China
| | - Hua Gao
- School of Science; China University of Geosciences; Beijing 100083 P.R. China
| | - Qi An
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes; National Laboratory of Mineral Materials; School of Materials Science and Technology; China University of Geosciences; Beijing 100083 China
| |
Collapse
|
20
|
Luan X, Huang T, Zhou Y, An Q, Wang Y, Wu Y, Li X, Li H, Shi F, Zhang Y. Controlled Interfacial Permeation, Nanostructure Formation, Catalytic Efficiency, Signal Enhancement Capability, and Cell Spreading by Adjusting Photochemical Cross-Linking Degrees of Layer-by-Layer Films. ACS APPLIED MATERIALS & INTERFACES 2016; 8:34080-34088. [PMID: 27669359 DOI: 10.1021/acsami.6b10453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Interfacial properties including permeation, catalytic efficiency, Raman signal enhancement capabilities, and cell spreading efficiencies are important features that determine material functionality and applications. Here, we propose a facile method to adjust the above-mentioned properties by controlling the cross-linking degrees of multilayer using a photoactive molecule. After treating the cross-linked films in basic solutions, films with different cross-linking degrees presented varying residue thicknesses and film morphologies. As a result, these different films possessed distinct molecular loading and release characteristics. In addition, gold nanoparticles (AuNPs) of different morphological traits were generated by redox reactions coupled with diffusion within these films. The AuNP-polyelectrolyte obtained from the polyelectrolyte films of the medium cross-linking degrees displayed the highest catalytic efficiency and signal enhancement capabilities. Furthermore, cells responded to the variation of film cross-linking degrees, and on the films with the highest cross-linking degree, cells adhered with the highest speed. We expect this report to provide a general interfacial material engineering strategy for material designs.
Collapse
Affiliation(s)
- Xinglong Luan
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences , Beijing 100083, China
| | - Tao Huang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences , Beijing 100083, China
| | - Yan Zhou
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences , Beijing 100083, China
| | - Qi An
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences , Beijing 100083, China
| | - Yue Wang
- Soft Matter Center and Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology , Beijing 100029, PR China
| | - Yaling Wu
- School of Chemistry and Molecular Engineering, Peking University , Beijing 100083, China
| | - Xiangming Li
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences , Beijing 100083, China
| | - Haitao Li
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences , Beijing 100083, China
| | - Feng Shi
- Soft Matter Center and Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology , Beijing 100029, PR China
| | - Yihe Zhang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences , Beijing 100083, China
| |
Collapse
|
21
|
Jiang X, Li Z, Yao J, Shao Z, Chen X. One-step synthesis of soy protein/graphene nanocomposites and their application in photothermal therapy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 68:798-804. [DOI: 10.1016/j.msec.2016.07.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 07/04/2016] [Accepted: 07/16/2016] [Indexed: 12/25/2022]
|
22
|
Zhang Y, Zou Y, Liu F, Xu Y, Wang X, Li Y, Liang H, Chen L, Chen Z, Tan W. Stable Graphene-Isolated-Au-Nanocrystal for Accurate and Rapid Surface Enhancement Raman Scattering Analysis. Anal Chem 2016; 88:10611-10616. [DOI: 10.1021/acs.analchem.6b02958] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Yin Zhang
- Molecular
Sciences and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing
and Chemometrics, College of Chemistry and Chemical Engineering, College
of Biology, and Collaborative Innovation Center for Molecular Engineering
and Theranostics, Hunan University, Changsha 410082, China
| | - Yuxiu Zou
- Molecular
Sciences and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing
and Chemometrics, College of Chemistry and Chemical Engineering, College
of Biology, and Collaborative Innovation Center for Molecular Engineering
and Theranostics, Hunan University, Changsha 410082, China
| | - Fang Liu
- Molecular
Sciences and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing
and Chemometrics, College of Chemistry and Chemical Engineering, College
of Biology, and Collaborative Innovation Center for Molecular Engineering
and Theranostics, Hunan University, Changsha 410082, China
| | - Yiting Xu
- Molecular
Sciences and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing
and Chemometrics, College of Chemistry and Chemical Engineering, College
of Biology, and Collaborative Innovation Center for Molecular Engineering
and Theranostics, Hunan University, Changsha 410082, China
| | - Xuewei Wang
- Molecular
Sciences and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing
and Chemometrics, College of Chemistry and Chemical Engineering, College
of Biology, and Collaborative Innovation Center for Molecular Engineering
and Theranostics, Hunan University, Changsha 410082, China
| | - Yunjie Li
- Molecular
Sciences and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing
and Chemometrics, College of Chemistry and Chemical Engineering, College
of Biology, and Collaborative Innovation Center for Molecular Engineering
and Theranostics, Hunan University, Changsha 410082, China
| | - Hao Liang
- Molecular
Sciences and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing
and Chemometrics, College of Chemistry and Chemical Engineering, College
of Biology, and Collaborative Innovation Center for Molecular Engineering
and Theranostics, Hunan University, Changsha 410082, China
| | - Long Chen
- Faculty
of Science and Technology, University of Macau, E11, Avenida da
Universidade, Taipa, Macau, China
| | - Zhuo Chen
- Molecular
Sciences and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing
and Chemometrics, College of Chemistry and Chemical Engineering, College
of Biology, and Collaborative Innovation Center for Molecular Engineering
and Theranostics, Hunan University, Changsha 410082, China
| | - Weihong Tan
- Molecular
Sciences and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing
and Chemometrics, College of Chemistry and Chemical Engineering, College
of Biology, and Collaborative Innovation Center for Molecular Engineering
and Theranostics, Hunan University, Changsha 410082, China
| |
Collapse
|
23
|
Li X, Hu Y, An Q, Luan X, Zhang Q, Zhang Y. Fuzzy, copper-based multi-functional composite particles serving simultaneous catalytic and signal-enhancing roles. NANOSCALE 2016; 8:9376-9381. [PMID: 27091497 DOI: 10.1039/c6nr02022d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Multifunctional plasmonic particles serving simultaneously as catalysts and label-free reporting agents are highly pursued due to their great potential in enhancing reaction operational efficiencies. Copper is an abundant and economic resource, and it possesses practical applicability in industries, but no dual-functional copper-based catalytic and self-reporting particles have been reported so far. This study proposes a facile strategy to prepare high-performance dual-functional copper-based composite particles that catalyze reactions and simultaneously serve as a SERS (surface enhanced Raman spectra) active, label-free reporting agent. Polyelectrolyte-modified reduced graphene oxide particles are used as the reactive precursors in the fabrication method. Upon adding Cu(NO3)2 solutions into the precursor dispersions, composite particles comprised by copper/copper oxide core and polyelectrolyte-graphene shell were facilely obtained under sonication. The as-prepared composite particles efficiently catalyzed the conversion of 4-nitrophenol to 4-aminophenol and simultaneously acted as the SERS-active substrate to give enhanced Raman spectra of the produced 4-aminophenol. Taking advantage of the assembling capabilities of polyelectrolyte shells, the composite particles could be further assembled onto a planar substrate to catalyze organic reactions, facilitating their application in various conditions. We expect this report to promote the fabrication and application of copper-based multifunctional particles.
Collapse
Affiliation(s)
- Xiangming Li
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing, 100083, China.
| | - Yingmo Hu
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing, 100083, China.
| | - Qi An
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing, 100083, China.
| | - Xinglong Luan
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing, 100083, China.
| | - Qian Zhang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing, 100083, China.
| | - Yihe Zhang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing, 100083, China.
| |
Collapse
|
24
|
Li X, Zhu J, Wei B. Hybrid nanostructures of metal/two-dimensional nanomaterials for plasmon-enhanced applications. Chem Soc Rev 2016; 45:3145-87. [DOI: 10.1039/c6cs00195e] [Citation(s) in RCA: 298] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
25
|
Xie M, Lei H, Zhang Y, Xu Y, Shen S, Ge Y, Li H, Xie J. Non-covalent modification of graphene oxide nanocomposites with chitosan/dextran and its application in drug delivery. RSC Adv 2016. [DOI: 10.1039/c5ra23823d] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Graphene oxide nanosheets non-covalent functionalized with chitosan/dextran was successfully developed via LbL self-assembly technique for anti-cancer drug delivery application.
Collapse
Affiliation(s)
- Meng Xie
- School of Pharmacy
- Jiangsu University
- Zhenjiang
- P. R. China
| | - Hailin Lei
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang
- P. R. China
| | - Yufeng Zhang
- School of Pharmacy
- Jiangsu University
- Zhenjiang
- P. R. China
| | - Yuanguo Xu
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang
- P. R. China
| | - Song Shen
- School of Pharmacy
- Jiangsu University
- Zhenjiang
- P. R. China
| | - Yanru Ge
- School of Pharmacy
- Jiangsu University
- Zhenjiang
- P. R. China
| | - Huaming Li
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang
- P. R. China
| | - Jimin Xie
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang
- P. R. China
| |
Collapse
|