1
|
Liu J, Cabral H, Mi P. Nanocarriers address intracellular barriers for efficient drug delivery, overcoming drug resistance, subcellular targeting and controlled release. Adv Drug Deliv Rev 2024; 207:115239. [PMID: 38437916 DOI: 10.1016/j.addr.2024.115239] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/16/2024] [Accepted: 02/27/2024] [Indexed: 03/06/2024]
Abstract
The cellular barriers are major bottlenecks for bioactive compounds entering into cells to accomplish their biological functions, which limits their biomedical applications. Nanocarriers have demonstrated high potential and benefits for encapsulating bioactive compounds and efficiently delivering them into target cells by overcoming a cascade of intracellular barriers to achieve desirable therapeutic and diagnostic effects. In this review, we introduce the cellular barriers ahead of drug delivery and nanocarriers, as well as summarize recent advances and strategies of nanocarriers for increasing internalization with cells, promoting intracellular trafficking, overcoming drug resistance, targeting subcellular locations and controlled drug release. Lastly, the future perspectives of nanocarriers for intracellular drug delivery are discussed, which mainly focus on potential challenges and future directions. Our review presents an overview of intracellular drug delivery by nanocarriers, which may encourage the future development of nanocarriers for efficient and precision drug delivery into a wide range of cells and subcellular targets.
Collapse
Affiliation(s)
- Jing Liu
- Department of Radiology, Huaxi MR Research Center (HMRRC), State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No.17 South Renmin Road, Chengdu, Sichuan 610041, China
| | - Horacio Cabral
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Peng Mi
- Department of Radiology, Huaxi MR Research Center (HMRRC), State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No.17 South Renmin Road, Chengdu, Sichuan 610041, China.
| |
Collapse
|
2
|
Tan C, Zhu Y, Ahari H, Jafari SM, Sun B, Wang J. Sonochemistry: An emerging approach to fabricate biopolymer cross-linked emulsions for the delivery of bioactive compounds. Adv Colloid Interface Sci 2023; 311:102825. [PMID: 36525841 DOI: 10.1016/j.cis.2022.102825] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
Sonochemistry shows remarkable potential in the synthesis or modification of new micro/nanomaterials, particularly the cross-linked emulsions for drug delivery. However, the trend of utilizing sonochemical emulsions for delivery of food-derived bioactive compounds has been just started. The extension of sonochemistry as a tool for engineering bioactive delivery systems will make the approach more universal and greatly increase its applications in the food industry. This review summarizes different types of biopolymeric cross-linked emulsions (CLEs) synthesized via sonochemical approach, including CLEs, surface-modified CLEs, cross-linked high internal phase emulsions, and some novel systems templated on CLEs. Special emphasis is directed toward the cross-linking mechanisms of biopolymers at the oil-water interfaces under acoustic cavitation and the physicochemical principles underlying sonochemical fabrication. We also highlight the advantages and challenges associated with the delivery performance of each system for bioactive compounds. The potential in delivering bioactives using sonochemical emulsions has not been fully reached. There are still a number of issues that need to be overcome, including low cross-linking degree of biopolymers, degradation of bioactives in sonochemical process, and unclear biological fate of encapsulated bioactive compounds. This review may guide future trends in exploring efficient sonochemical strategies and multifunctional delivery systems for food applications.
Collapse
Affiliation(s)
- Chen Tan
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Yuqian Zhu
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Hamed Ahari
- Department of Food Science and Technology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E-32004 Ourense, Spain; College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Baoguo Sun
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Jing Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing 100048, China.
| |
Collapse
|
3
|
Rajana N, Mounika A, Chary PS, Bhavana V, Urati A, Khatri D, Singh SB, Mehra NK. Multifunctional hybrid nanoparticles in diagnosis and therapy of breast cancer. J Control Release 2022; 352:1024-1047. [PMID: 36379278 DOI: 10.1016/j.jconrel.2022.11.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/04/2022] [Accepted: 11/04/2022] [Indexed: 11/18/2022]
Abstract
Breast cancer is the most prevalent non-cutaneous malignancy in women, with greater than a million new cases every year. In the last decennium, numerous diagnostic and treatment approaches have been enormously studied for Breast cancer. Among the different approaches, nanotechnology has appeared as a promising approach in preclinical and clinical studies for early diagnosis of primary tumors and metastases and eradicating tumor cells. Each of these nanocarriers has its particular advantages and drawbacks. Combining two or more than two constituents in a single nanocarrier system leads to the generation of novel multifunctional Hybrid Nanocarriers with improved structural and biological properties. These novel Hybrid Nanocarriers have the capability to overcome the drawbacks of individual constituents while having the advantages of those components. Various hybrid nanocarriers such as lipid polymer hybrid nanoparticles, inorganic hybrid nanoparticles, metal-organic hybrid nanoparticles, and hybrid carbon nanocarriers are utilized for the diagnosis and treatment of various cancers. Certainly, Hybrid Nanocarriers have the capability to encapsulate multiple cargos, targeting agents, enhancement in encapsulation, stability, circulation time, and structural disintegration compared to non-hybrid nanocarriers. Many studies have been conducted to investigate the utilization of Hybrid nanocarriers in breast cancer for imaging platforms, photothermal and photodynamic therapy, chemotherapy, gene therapy, and combinational therapy. In this review, we mainly discussed in detailed about of preparation techniques and toxicological considerations of hybrid nanoparticles. This review also discussed the role of hybrid nanocarriers as a diagnostic and therapeutic agent for the treatment of breast cancer along with alternative treatment approaches apart from chemotherapy including photothermal and photodynamic therapy, gene therapy, and combinational therapy.
Collapse
Affiliation(s)
- Naveen Rajana
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Aare Mounika
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Padakanti Sandeep Chary
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Valamla Bhavana
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Anuradha Urati
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Dharmendra Khatri
- Department of Biological science, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Shashi Bala Singh
- Department of Biological science, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Neelesh Kumar Mehra
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India.
| |
Collapse
|
4
|
Dong J, Wang Z, Yang F, Wang H, Cui X, Li Z. Update of ultrasound-assembling fabrication and biomedical applications for heterogeneous polymer composites. Adv Colloid Interface Sci 2022; 305:102683. [PMID: 35523099 DOI: 10.1016/j.cis.2022.102683] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 03/24/2022] [Accepted: 04/23/2022] [Indexed: 01/24/2023]
Abstract
As a power-driving approach, ultrasound irradiation is very appealing to the preparation or modification of new materials. In the review, we overviewed the latest development of ultrasound-mediated effects or reactions in polymer composites, and demonstrated its unique and powerful aspects on the polymerization or aggregation. The review generalized the different categories of heterogeneous polymer composites by defining the constituents, and described the shapes, sizes and basic properties of various purpose-specific or site-specific products. Importantly, the review paid more attention to the main biomedicine applications of heterogeneous polymer composites, such as drug or bioactive substance entrapment, delivery, release, imaging, and therapy, and emphasized many advantages of ultrasound-assembling approaches and heterogeneous polymer composites in biology and medicine fields. In addition, the review also indicated the prospective challenges of heterogeneous polymer composites both in ultrasound-assembling designs and in biomedical applications.
Collapse
|
5
|
Solanki R, Rostamabadi H, Patel S, Jafari SM. Anticancer nano-delivery systems based on bovine serum albumin nanoparticles: A critical review. Int J Biol Macromol 2021; 193:528-540. [PMID: 34655592 DOI: 10.1016/j.ijbiomac.2021.10.040] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 01/23/2023]
Abstract
Among the health-promotional protein-based vehicles, bovine serum albumin nanoparticles (BSA NPs) are particularly interesting. Meeting requirements e. g., non-toxicity, non-immunogenicity, biodegradability, biocompatibility, and high drug-binding capacity, has introduced BSA NPs as a promising candidate for efficient anti-cancer drug delivery and its application is now a rapidly-growing strategy to promote cancer therapy. Nevertheless, the leverage of such carriers requires an in-depth understanding of structural/physicochemical features of the BSA molecule and its derived nanovehicles, together with the utilized nano-formulation approaches, effective variables in delivery mechanism, specific shortfalls, and recent nanoencapsulation progresses. The current review highlights the novel advances in the application of BSA NPs to engineer drug vehicles for delivering anti-cancer agents. The factors influencing the efficiency of the therapeutics in such nano-delivery systems, alongside their advantaged and limitations are also discussed.
Collapse
Affiliation(s)
- Raghu Solanki
- School of Life Sciences, Central University of Gujarat, Sector-30, Gandhinagar 382030, India
| | - Hadis Rostamabadi
- Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sunita Patel
- School of Life Sciences, Central University of Gujarat, Sector-30, Gandhinagar 382030, India.
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
| |
Collapse
|
6
|
Lin Q, Ge S, McClements DJ, Li X, Jin Z, Jiao A, Wang J, Long J, Xu X, Qiu C. Advances in preparation, interaction and stimulus responsiveness of protein-based nanodelivery systems. Crit Rev Food Sci Nutr 2021:1-14. [PMID: 34726091 DOI: 10.1080/10408398.2021.1997908] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The improved understanding of the connection between diet and health has led to growing interest in the development of functional foods designed to improve health and wellbeing. Many of the potentially health-promoting bioactive ingredients that food manufacturers would like to incorporate into these products are difficult to utilize because of their chemical instability, poor solubility, or low bioavailability. For this reason, nano-based delivery systems are being developed to overcome these problems. Food proteins possess many functional attributes that make them suitable for formulating various kinds of nanocarriers, including their surface activity, water binding, structuring, emulsification, gelation, and foaming, as well as their nutritional aspects. Proteins-based nanocarriers are therefore useful for introducing bioactive ingredients into functional foods, especially for their targeted delivery in specific applications.This review focusses on the preparation, properties, and applications of protein-based nanocarriers, such as nanoparticles, micelles, nanocages, nanoemulsions, and nanogels. In particular, we focus on the development and application of stimulus-responsive protein-based nanocarriers, which can be used to release bioactive ingredients in response to specific environmental triggers. Finally, we discuss the potential and future challenges in the design and application of these protein-based nanocarriers in the food industry.
Collapse
Affiliation(s)
- Qianzhu Lin
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu, China
| | - Shengju Ge
- Department of Food, Yantai Nanshan University, Yantai, Shandong, China
| | | | - Xiaojing Li
- College of Light Industry and Food Engineering, Nanjing Forestry University, Jiangsu, China
| | - Zhengyu Jin
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu, China
| | - Aiquan Jiao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu, China
| | - Jinpeng Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China-Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Technology and Business University (BTBU), Beijing, China
| | - Jie Long
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu, China
| | - Xueming Xu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu, China
| | - Chao Qiu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
7
|
Dong J, Du X, Zhang Y, Zhuang T, Cui X, Li Z. Thermo/glutathione-sensitive release kinetics of heterogeneous magnetic micro-organogel prepared by sono-catalysis. Colloids Surf B Biointerfaces 2021; 208:112109. [PMID: 34562785 DOI: 10.1016/j.colsurfb.2021.112109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 12/17/2022]
Abstract
To improve the loading and delivery for hydrophobic drugs and optimize the release efficiency in tumor microenvironment, a novel core-shell magnetic micro-organogel carrier was successfully prepared by a sono-catalysis process in the study. As-synthesized magnetic micro-organogel had an appropriate dispersibility in water owing to the hydrophilicity of protein shell and could be kept steadily with a well-defined spherical morphology owing to the three-dimensional gel structure of oil core, and it promised an accessible targeted drug delivery owing to its good magnetism-mediated motion ability. Moreover, the magnetic micro-organogel showed a high loading efficiency up to 94.22% for coumarin 6 which was dissolved into the micro-organogel as a model hydrophobic drug. More importantly, the release kinetics revealed that the magnetic micro-organogel had a thermo-sensitive and glutathione (GSH)-sensitive ability to control the drug release, and proved that its release mechanisms referred to the combination of erosion, diffusion and degradation.
Collapse
Affiliation(s)
- Jun Dong
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Center, Qingdao University, 266071 Qingdao, China
| | - Xiaoyu Du
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Center, Qingdao University, 266071 Qingdao, China
| | - Yongqiang Zhang
- College of Chemistry, Jilin University, 130012 Changchun, China; Junan Sub-Bureau of Linyi Ecological Environmental Bureau, 276600 Linyi, China
| | - Tingting Zhuang
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Center, Qingdao University, 266071 Qingdao, China
| | - Xuejun Cui
- College of Chemistry, Jilin University, 130012 Changchun, China
| | - Zhanfeng Li
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Center, Qingdao University, 266071 Qingdao, China.
| |
Collapse
|
8
|
Lima AL, Gratieri T, Cunha-Filho M, Gelfuso GM. Polymeric nanocapsules: A review on design and production methods for pharmaceutical purpose. METHODS (SAN DIEGO, CALIF.) 2021; 199:54-66. [PMID: 34333117 DOI: 10.1016/j.ymeth.2021.07.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 07/07/2021] [Accepted: 07/27/2021] [Indexed: 11/17/2022]
Abstract
Polymeric nanocapsules have extensive application potential in medical, biological, and pharmaceutical fields, and, therefore, much research has been dedicated to their production. Indeed, production protocols and the materials used are decisive for obtaining the desired nanocapsules characteristics and biological performance. In addition to that, several technological strategies have been developed in the last decade to improve processing techniques and form more valuable nanocapsules. This review provides a guide to current methods for developing polymeric nanocapsules, reporting aspects to be considered when choosing appropriate materials, and discussing different ways to produce nanocapsules for superior performances.
Collapse
Affiliation(s)
- Ana Luiza Lima
- Laboratory of Food, Drugs, and Cosmetics (LTMAC), University of Brasilia, 70910-900, Brasilia, DF, Brazil
| | - Tais Gratieri
- Laboratory of Food, Drugs, and Cosmetics (LTMAC), University of Brasilia, 70910-900, Brasilia, DF, Brazil
| | - Marcilio Cunha-Filho
- Laboratory of Food, Drugs, and Cosmetics (LTMAC), University of Brasilia, 70910-900, Brasilia, DF, Brazil
| | - Guilherme M Gelfuso
- Laboratory of Food, Drugs, and Cosmetics (LTMAC), University of Brasilia, 70910-900, Brasilia, DF, Brazil.
| |
Collapse
|
9
|
Mamidi N, Villela Castrejón J, González-Ortiz A. Rational design and engineering of carbon nano-onions reinforced natural protein nanocomposite hydrogels for biomedical applications. J Mech Behav Biomed Mater 2020; 104:103696. [DOI: 10.1016/j.jmbbm.2020.103696] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 02/09/2020] [Accepted: 02/10/2020] [Indexed: 11/24/2022]
|
10
|
Nathiya D, Gurunathan K, Wilson J. Size controllable, pH triggered reduction of bovine serum albumin and its adsorption behavior with SnO2/SnS2 quantum dots for biosensing application. Talanta 2020; 210:120671. [DOI: 10.1016/j.talanta.2019.120671] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 12/06/2019] [Accepted: 12/22/2019] [Indexed: 01/17/2023]
|
11
|
Biswas A, Ghosh T, Gavel PK, Das AK. PEG Functionalized Stimuli Responsive Self-Healable Injectable Dynamic Imino-boronate G-quadruplex Hydrogel for the Delivery of Doxorubicin. ACS APPLIED BIO MATERIALS 2020; 3:1052-1060. [PMID: 35019307 DOI: 10.1021/acsabm.9b01034] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Ankan Biswas
- Department of Chemistry, Indian Institute of Technology Indore, Khandwa Road, Indore 453552, India
| | - Tapas Ghosh
- Department of Chemistry, Indian Institute of Technology Indore, Khandwa Road, Indore 453552, India
| | - Pramod K. Gavel
- Department of Chemistry, Indian Institute of Technology Indore, Khandwa Road, Indore 453552, India
| | - Apurba K. Das
- Department of Chemistry, Indian Institute of Technology Indore, Khandwa Road, Indore 453552, India
| |
Collapse
|
12
|
Shi C, Zhong S, Sun Y, Xu L, He S, Dou Y, Zhao S, Gao Y, Cui X. Sonochemical preparation of folic acid-decorated reductive-responsive ε-poly-L-lysine-based microcapsules for targeted drug delivery and reductive-triggered release. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 106:110251. [DOI: 10.1016/j.msec.2019.110251] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 09/24/2019] [Accepted: 09/24/2019] [Indexed: 12/12/2022]
|
13
|
Wu CG, Wang X, Shi YF, Wang BC, Xue W, Zhang Y. Transforming sustained release into on-demand release: self-healing guanosine–borate supramolecular hydrogels with multiple responsiveness for Acyclovir delivery. Biomater Sci 2020; 8:6190-6203. [DOI: 10.1039/d0bm00966k] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Supramolecular hydrogels derived from natural nucleoside have promising applications for on-demand drug release with controlled on/off switch and adjustable release kinetics in response to various stimuli.
Collapse
Affiliation(s)
- Cheng-guang Wu
- Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development
- Department of Biomedical Engineering
- Jinan University
- Guangzhou 510632
- China
| | - Xiang Wang
- Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development
- Department of Biomedical Engineering
- Jinan University
- Guangzhou 510632
- China
| | - Yun-feng Shi
- Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development
- Department of Biomedical Engineering
- Jinan University
- Guangzhou 510632
- China
| | - Bin-cheng Wang
- Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development
- Department of Biomedical Engineering
- Jinan University
- Guangzhou 510632
- China
| | - Wei Xue
- Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development
- Department of Biomedical Engineering
- Jinan University
- Guangzhou 510632
- China
| | - Yi Zhang
- School of Life Science
- South China Normal University
- Guangzhou 510631
- China
| |
Collapse
|
14
|
Mamidi N, González-Ortiz A, Lopez Romo I, V. Barrera E. Development of Functionalized Carbon Nano-Onions Reinforced Zein Protein Hydrogel Interfaces for Controlled Drug Release. Pharmaceutics 2019; 11:E621. [PMID: 31757093 PMCID: PMC6956117 DOI: 10.3390/pharmaceutics11120621] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/08/2019] [Accepted: 11/11/2019] [Indexed: 12/16/2022] Open
Abstract
In the current study, poly 4-mercaptophenyl methacrylate-carbon nano-onions (PMPMA-CNOs = f-CNOs) reinforced natural protein (zein) composites (zein/f-CNOs) are fabricated using the acoustic cavitation technique. The influence of f-CNOs inclusion on the microstructural properties, morphology, mechanical, cytocompatibility, in-vitro degradation, and swelling behavior of the hydrogels are studied. The tensile results showed that zein/f-CNOs hydrogels fabricated by the acoustic cavitation system exhibited good tensile strength (90.18 MPa), compared with the hydrogels fabricated by the traditional method and only microwave radiation method. It reveals the magnitude of physisorption and degree of colloidal stability of f-CNOs within the zein matrix under acoustic cavitation conditions. The swelling behaviors of hydrogels were also tested and improved results were noticed. The cytotoxicity of hydrogels was tested with osteoblast cells. The results showed good cell viability and cell growth. To explore the efficacy of hydrogels as drug transporters, 5-fluorouracil (5-FU) release was measured under gastric and intestinal pH environment. The results showed pH-responsive sustained drug release over 15 days of study, and pH 7.4 showed a more rapid drug release than pH 2.0 and 4.5. Nonetheless, all the results suggest that zein/f-CNOs hydrogel could be a potential pH-responsive drug transporter for a colon-selective delivery system.
Collapse
Affiliation(s)
- Narsimha Mamidi
- Tecnologico de Monterrey, Department of Chemistry and Nanotechnology, School of Engineering and Science, Monterrey 64849, Nuevo Leon, Mexico;
| | - Aldo González-Ortiz
- Tecnologico de Monterrey, Department of Chemistry and Nanotechnology, School of Engineering and Science, Monterrey 64849, Nuevo Leon, Mexico;
| | - Irasema Lopez Romo
- Tecnologico de Monterrey, Department of Biotechnology, School of Engineering and Science, Monterrey 64849, Nuevo Leon, Mexico;
| | - Enrique V. Barrera
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX 77005, USA;
- Department of Chemistry, Rice University, Houston, TX 77005, USA
| |
Collapse
|
15
|
Zhang Y, Fu H, Liu DE, An J, Gao H. Construction of biocompatible bovine serum albumin nanoparticles composed of nano graphene oxide and AIEgen for dual-mode phototherapy bacteriostatic and bacterial tracking. J Nanobiotechnology 2019; 17:104. [PMID: 31601275 PMCID: PMC6785860 DOI: 10.1186/s12951-019-0523-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 08/10/2019] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Efficient and highly controllable antibacterial effect, as well as good biocompatibility are required for antibacterial materials to overcome multi-drug resistance in bacteria. Herein, nano graphene oxide (NGO)-based near-infrared (NIR) photothermal antibacterial materials was schemed to complex with biocompatible bovine serum albumin (BSA) and aggregation-induced emission fluorogen (AIEgen) with daylight-stimulated ROS-producing property for dual-mode phototherapy in the treatment of antibiotic resistance bacteria. RESULTS Upon co-irradiation of daylight and NIR laser, NGO-BSA-AIE nanoparticles (NPs) showed superiorly antibacterial effect (more than 99%) both against amoxicillin (AMO)-resistant Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) by comparison with sing-model phototherapy. Meanwhile, the NGO-BSA-AIE NPs displayed prominent stability and excellently controllable biocompatibility. More importantly, under daylight irradiation, the AIEgen not only produced plentiful ROS for killing bacteria, but also presented fluorescence image for tracking bacteria. CONCLUSIONS Hence, the designed system provided tempting strategy of employing light as impetus for tracking bacterial distribution and photothermal/photodynamic synergistic treatment of antibiotic resistance antibacterial.
Collapse
Affiliation(s)
- Yongxin Zhang
- School of Chemistry and Chemical Engineering, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin University of Technology, No. 391, West Binshui Road, Tianjin, 300384, People's Republic of China
| | - Hao Fu
- School of Chemistry and Chemical Engineering, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin University of Technology, No. 391, West Binshui Road, Tianjin, 300384, People's Republic of China
| | - De-E Liu
- School of Chemistry and Chemical Engineering, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin University of Technology, No. 391, West Binshui Road, Tianjin, 300384, People's Republic of China
| | - Jinxia An
- School of Chemistry and Chemical Engineering, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin University of Technology, No. 391, West Binshui Road, Tianjin, 300384, People's Republic of China.
| | - Hui Gao
- School of Chemistry and Chemical Engineering, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin University of Technology, No. 391, West Binshui Road, Tianjin, 300384, People's Republic of China.
| |
Collapse
|
16
|
Li Z, Du X, Cui X, Wang Z. Ultrasonic-assisted fabrication and release kinetics of two model redox-responsive magnetic microcapsules for hydrophobic drug delivery. ULTRASONICS SONOCHEMISTRY 2019; 57:223-232. [PMID: 31078396 DOI: 10.1016/j.ultsonch.2019.04.037] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 04/12/2019] [Accepted: 04/26/2019] [Indexed: 05/27/2023]
Abstract
The smart biocompatible carriers have an advantage in the high-efficiency delivery and stimuli-responsive release of drugs. This study describes two model magnetic microcapsules (MMC) fabricated by sonicating the hydrophobic drug-loaded oil phase in an albumin aqueous solution, where magnetic nanoparticles are either encapsulated into the core or embedded onto the albumin shell. The as-prepared MMC with magnetic shell (MS) or with magnetic core (MC) shows an appropriate dispersibility with a well-defined spherical morphology in water, an excellent magnetism-mediated shifting ability for targeted drug delivery, and a good biocompatibility for high-level cell viability. Moreover, both the two microcapsules also show a high efficiency to trap the hydrophobic drugs, where the embedding ratios are 87.41% for MMC-MS and 95.31% for MMC-MC, respectively. Meanwhile in current study, the release kinetics and mechanism reveal that the sulfhydryl-crosslinked shell structure endows the MMC with a redox-responsive behavior to release the contents for controlled drug release, and the release rate or the release amount can be adjusted by changing the dosage of reducing agent. Therefore, the MMC have great potential as a smart carrier of hydrophobic drugs for enhancing the therapeutic efficiency.
Collapse
Affiliation(s)
- Zhanfeng Li
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, 266071 Qingdao, China; College of Chemistry, Jilin University, 130012 Changchun, China
| | - Xiaoyu Du
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, 266071 Qingdao, China
| | - Xuejun Cui
- College of Chemistry, Jilin University, 130012 Changchun, China.
| | - Zonghua Wang
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, 266071 Qingdao, China.
| |
Collapse
|
17
|
Xu L, Jiang G, Chen H, Zan Y, Hong S, Zhang T, Zhang Y, Pei R. Folic acid-modified fluorescent dye-protein nanoparticles for the targeted tumor cell imaging. Talanta 2019; 194:643-648. [DOI: 10.1016/j.talanta.2018.10.094] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 10/23/2018] [Accepted: 10/28/2018] [Indexed: 01/12/2023]
|
18
|
Facile sonochemistry-assisted assembly of the water-loving drug-loaded micro-organogel with thermo- and redox-sensitive behavior. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2018.10.047] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
19
|
Zhang Y, Xing Y, Xian M, Shuang S, Dong C. Folate-targeting and bovine serum albumin-gated mesoporous silica nanoparticles as a redox-responsive carrier for epirubicin release. NEW J CHEM 2019. [DOI: 10.1039/c8nj05476b] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A targeted DDS with covalently conjugated BSA and folate for GSH-triggered drug release and recognition of FR-positive cancer cells.
Collapse
Affiliation(s)
- Yuan Zhang
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan 030006
- China
| | - Yang Xing
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan 030006
- China
| | - Ming Xian
- Department of chemistry
- Washington State University
- Pullman
- USA
| | - Shaomin Shuang
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan 030006
- China
| | - Chuan Dong
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan 030006
- China
| |
Collapse
|
20
|
Xu L, Zhong S, Shi C, Sun Y, Zhao S, Gao Y, Cui X. Sonochemical fabrication of reduction-responsive magnetic starch-based microcapsules. ULTRASONICS SONOCHEMISTRY 2018; 49:169-174. [PMID: 30082250 DOI: 10.1016/j.ultsonch.2018.07.047] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 07/17/2018] [Accepted: 07/31/2018] [Indexed: 06/08/2023]
Abstract
In this work, a novel, biocompatible, non-immunogenic and reductive-responsive magnetic starch-based microcapsules (RMSMCs) were designed and fabricated successfully via a facile sonochemical method for targeted delivery and triggered release of hydrophobic drugs. TEM image indicated that oleic acid (OA) modified Fe3O4 nanoparticles (OA-Fe3O4 NPs) were encapsulated into RMSMCs. The obtained RMSMCs were endowed with magnetism for drug targeted delivery because that the superparamagnetic OA-Fe3O4 NPs were encapsulated into RMSMCs. Moreover, Coumarin 6 (C6), a green fluorescent dye, was used as a model hydrophobic drug and loaded into RMSMCs. As drug carriers, the obtained spherical RMSMCs with the average size of 2 μm presented excellent reductive-responsive release ability for hydrophobic drugs. Accordingly, the obtained RMSMCs would be promising carriers for targeted delivery and triggered release of hydrophobic drugs in biomedical applications.
Collapse
Affiliation(s)
- Lifeng Xu
- College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Shuangling Zhong
- College of Resources and Environment, Jilin Agricultural University, Changchun 130118, PR China
| | - Chao Shi
- College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Yuexin Sun
- College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Shengnan Zhao
- College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Yan Gao
- College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Xuejun Cui
- College of Chemistry, Jilin University, Changchun 130012, PR China.
| |
Collapse
|
21
|
Lee C, Hwang A, Jose L, Park JH, Song JK, Shim K, An SSA, Paik HJ. Orientation Controlled Protein Nanocapsules by Enzymatic Removal of a Polymer Template. Biomacromolecules 2018; 19:4219-4227. [PMID: 30265806 DOI: 10.1021/acs.biomac.8b00965] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Protein nanocapsules are potentially useful as functional nanocarriers because of their hollow structure and high biocompatibility and the intrinsic activity of their protein constituents. However, the development of a facile method for the preparation of oriented nanocapsules that retain their protein activity has been challenging. Here we describe the preparation of protein nanocapsules through the enzymatic removal of polymer templates. Nickel(II) nitrilotriacetic acid-end-functionalized poly(lactic acid) (Ni2+-NTA-PLA) was introduced as a polymeric template to immobilize hexa-histidine-tagged green fluorescence protein (His6-GFP) with consistent orientation. Following protein cross-linking and core-degradation, various measurements as a function of degradation time indicated the formation of hollow structures. We also demonstrated orientational control and activity preservation of the protein after capsule preparation. Protein nanocapsules prepared by this method can act as functional containers, taking advantage of the intrinsic function of their constituent proteins without additional modification.
Collapse
Affiliation(s)
- Chaeyeon Lee
- Department of Polymer Science and Engineering , Pusan National University , Busan , Korea 46241
| | - Aran Hwang
- Department of Polymer Science and Engineering , Pusan National University , Busan , Korea 46241
| | - Leeja Jose
- Department of Polymer Science and Engineering , Pusan National University , Busan , Korea 46241
| | - Ji Hyun Park
- Research Center for Bio-Based Chemistry , Korea Research Institute of Chemical Technology (KRICT) , Daejeon , Korea 34114
| | - Jae Kwang Song
- Research Center for Bio-Based Chemistry , Korea Research Institute of Chemical Technology (KRICT) , Daejeon , Korea 34114
| | - KyuHwan Shim
- Department of Bionano Technology , Gachon University , Sungnam , Korea 13120
| | - Seong Soo A An
- Department of Bionano Technology , Gachon University , Sungnam , Korea 13120
| | - Hyun-Jong Paik
- Department of Polymer Science and Engineering , Pusan National University , Busan , Korea 46241
| |
Collapse
|
22
|
Sun Y, Shi C, Yang J, Zhong S, Li Z, Xu L, Zhao S, Gao Y, Cui X. Fabrication of folic acid decorated reductive-responsive starch-based microcapsules for targeted drug delivery via sonochemical method. Carbohydr Polym 2018; 200:508-515. [DOI: 10.1016/j.carbpol.2018.08.036] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 08/09/2018] [Accepted: 08/09/2018] [Indexed: 12/18/2022]
|
23
|
Dashtestani F, Ghourchian H, Najafi A. Albumin coated copper-cysteine nanozyme for reducing oxidative stress induced during sperm cryopreservation. Bioorg Chem 2018; 80:621-630. [DOI: 10.1016/j.bioorg.2018.07.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/15/2018] [Accepted: 07/16/2018] [Indexed: 11/29/2022]
|
24
|
Zhou Y, Bai Y, Liu H, Jiang X, Tong T, Fang L, Wang D, Ke Q, Liang J, Xiao S. Tellurium/Bovine Serum Albumin Nanocomposites Inducing the Formation of Stress Granules in a Protein Kinase R-Dependent Manner. ACS APPLIED MATERIALS & INTERFACES 2018; 10:25241-25251. [PMID: 29993233 DOI: 10.1021/acsami.8b09402] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The effect of nanoparticles (NPs) on cellular stress responses is important to the understanding of nanotoxicities and developing safe therapies. Although the relationship between NPs and cellular stress responses has been preliminarily investigated, stress responses to NPs remain unclear. Here, tellurium/bovine serum albumin (Te/BSA) nanocomposites were prepared using sodium tellurite, BSA, and glutathione as precursors. The as-prepared Te/BSA nanocomposites, with particle size similar to that of many viruses, are found to induce the formation of stress granules (SGs), a kind of cytoplasmic RNA granule formed under various stresses. The SGs in Te/BSA nanocomposite-treated cells are composed of T-cell internal antigen 1 (TIA1), TIA1-related protein, and eukaryotic initiation factor 3η. Using chemical inhibitors and small interfering RNA-mediated silencing, protein kinase R (PKR) is identified as the α-subunit of eukaryotic initiation factor 2 (eIF2α)-kinase activated upon Te/BSA nanocomposite incubation, which is also the dominant kinase responsible for eIF2α activation under virus infection. Mechanistically, PKR is activated in a heparin-dependent manner. This study reveals a biological effect of Te/BSA nanocomposites on stress responses, providing a preliminary basis for further research on viruslike particles and the application of NPs in biology.
Collapse
|
25
|
Li Z, Wang Z, Du X, Shi C, Cui X. Sonochemistry-Assembled Stimuli-Responsive Polymer Microcapsules for Drug Delivery. Adv Healthc Mater 2018. [PMID: 29527834 DOI: 10.1002/adhm.201701326] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Stimuli-responsive polymer microcapsules (PMs) fabricated by the sonochemical method have emerged for developing useful drug delivery systems, and the latest developments are mainly focusing on the synthetic strategies and properties such as structure, size, stability, loading capacity, drug delivery, and release. There, the primary attribution of sonochemistry is to offer a simple and practical approach for the preparation of PMs. Structure, size, stability, and properties of PMs are designed mainly according to synthetic materials, implementation schemes, or specific demands. Numerous functionalities of PMs based on different stimuli are demonstrated: targeting motion in a magnetic field or adhering to the living cells with sensitive sites through molecular recognition, and stimuli-triggered release including enzymatic catalysis, chemical reaction as well as physical or mechanical process. The current review discusses the basic principles and mechanisms of stimuli effects, and describes the progress in the application such as targeted drug systems and controlled drug systems, and also gives an outlook on the future challenges and opportunities for drug delivery and theranostics.
Collapse
Affiliation(s)
- Zhanfeng Li
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials; Laboratory of Fiber Materials and Modern Textile; The Growing Base for State Key Laboratory; Qingdao University; 266071 Qingdao China
| | - Zonghua Wang
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials; Laboratory of Fiber Materials and Modern Textile; The Growing Base for State Key Laboratory; Qingdao University; 266071 Qingdao China
| | - Xiaoyu Du
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials; Laboratory of Fiber Materials and Modern Textile; The Growing Base for State Key Laboratory; Qingdao University; 266071 Qingdao China
| | - Chao Shi
- College of Chemistry; Jilin University; 130012 Changchun China
| | - Xuejun Cui
- College of Chemistry; Jilin University; 130012 Changchun China
| |
Collapse
|
26
|
Tian HH, Chen LT, Zhang RL, Zhao JS, Liu CY, Weng NS. A novel stable 3D luminescent uranyl complex for highly efficient and sensitive recognition of Ru3+ and biomolecules. J SOLID STATE CHEM 2018. [DOI: 10.1016/j.jssc.2017.11.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
27
|
Impact of albumin based approaches in nanomedicine: Imaging, targeting and drug delivery. Adv Colloid Interface Sci 2017; 246:13-39. [PMID: 28716187 DOI: 10.1016/j.cis.2017.06.012] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 06/28/2017] [Accepted: 06/29/2017] [Indexed: 01/17/2023]
Abstract
A major challenge in the field of nanomedicine is to transform laboratory innovations into commercially successful clinical products. In this campaign, a variety of nanoenabled approaches have been designed and investigated for their role in biomedical applications. The advantages associated with the unique structure of albumin imparts it with the ability to interact with variety of molecules, while the functional groups present on their surface provide base for large number of modifications making it as an ideal nanocarrier system. So far, a variety of albumin based nanoenabled approaches have been intensively exploited for effective diagnosis and personalized medicine, among them some have successfully completed their journey from lab bench to marketed products. This review focuses on the recent most promising advancement in the field of albumin based nanoenabled approaches for various biomedical applications and their potential use in cancer diagnosis and therapy.
Collapse
|
28
|
Zhong S, Zhang H, Liu Y, Wang G, Shi C, Li Z, Feng Y, Cui X. Folic acid functionalized reduction-responsive magnetic chitosan nanocapsules for targeted delivery and triggered release of drugs. Carbohydr Polym 2017; 168:282-289. [DOI: 10.1016/j.carbpol.2017.03.083] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 03/22/2017] [Accepted: 03/27/2017] [Indexed: 12/25/2022]
|
29
|
Dong L, Shi C, Guo L, Yang T, Sun Y, Cui X. Fabrication of redox and pH dual-responsive magnetic graphene oxide microcapsules via sonochemical method. ULTRASONICS SONOCHEMISTRY 2017; 36:437-445. [PMID: 28069231 DOI: 10.1016/j.ultsonch.2016.12.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 12/19/2016] [Accepted: 12/20/2016] [Indexed: 06/06/2023]
Abstract
In this study, the biocompatible redox and pH dual-responsive magnetic graphene oxide microcapsules (MGOMCs) were prepared by a simple sonochemical method. The disulfide bonds cross-linked the wall of MGOMCs were formed from the hydrosulfuryl on the surface of thiolated graphene oxide, which was synthesized by functionalizing graphene oxide with cysteine, showed an excellent redox-responsive property to control drugs release. Moreover, oleic acid modified Fe3O4 nanoparticles were encapsulated into the microcapsules successfully with the hydrophobic drugs dispersed in the hydroxy silicone oil. The MGOMCs possess distinguished magnetic property and pH-responsive ability. Besides, the microcapsules could be engulfed by Hela cells successfully due to the appropriate size and flexible shell. The MGOMCs could be a good carrier for hydrophobic drugs, especially the anticancer drugs.
Collapse
Affiliation(s)
- Linlin Dong
- College of Chemistry, Jilin University, Changchun, Jilin 130012, PR China
| | - Chao Shi
- College of Chemistry, Jilin University, Changchun, Jilin 130012, PR China
| | - Lanlan Guo
- College of Electronic Science and Engineering, Jilin University, Changchun, Jilin 130012, PR China
| | - Ting Yang
- College of Chemistry, Jilin University, Changchun, Jilin 130012, PR China
| | - Yuexin Sun
- College of Chemistry, Jilin University, Changchun, Jilin 130012, PR China
| | - Xuejun Cui
- College of Chemistry, Jilin University, Changchun, Jilin 130012, PR China.
| |
Collapse
|
30
|
Li Y, Liu Y, Ma R, Xu Y, Zhang Y, Li B, An Y, Shi L. A G-Quadruplex Hydrogel via Multicomponent Self-Assembly: Formation and Zero-Order Controlled Release. ACS APPLIED MATERIALS & INTERFACES 2017; 9:13056-13067. [PMID: 28357860 DOI: 10.1021/acsami.7b00957] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Stimuli-sensitive hydrogels are ideal candidates for biomedical and bioengineering purposes, although applications of hydrogels may be limited, due in part to the limited choice of suitable materials for constructing hydrogels, the complexity in the synthesis of the source materials, and the undesired fast-then-slow drug-release behaviors of usual hydrogels. Herein, we describe the fabrication of a new supramolecular guanosine (G)-quadruplex hydrogel by multicomponent self-assembly of endogenous guanosine (G), 2-formylboronic acid (2-FPBA), and tris(2-aminoethyl)amine (TAEA) in the presence of KCl in an easy and convenient way. The features of the G-quadruplex hydrogel include (1) versatility and commercial availability of building blocks with different functions, (2) dynamic iminoboronate bonds with pH and glucose responsiveness, and (3) zero-order drug-release behavior because of the superficial peel-off of the hydrogel in response to stimuli. The structure, morphology, and properties of the G-quadruplex hydrogel were well-characterized, and satisfactory zero-order drug release was successfully achieved. This kind of supramolecular G-quadruplex hydrogels may find applications in biological fields.
Collapse
Affiliation(s)
| | | | | | - Yanling Xu
- Department of Biological Pharmacy, College of Basic Science, Tianjin Agricultural University , Tianjin 300384, China
| | - Yunliang Zhang
- Endocrinology Department, Baoding First Central Hospital , Baoding 071000, Hebei, China
| | - Baoxin Li
- Endocrinology Department, Baoding First Central Hospital , Baoding 071000, Hebei, China
| | | | | |
Collapse
|
31
|
Monolayers of the HSA dimer on polymeric microparticles-electrokinetic characteristics. Colloids Surf B Biointerfaces 2016; 148:229-237. [DOI: 10.1016/j.colsurfb.2016.08.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 08/09/2016] [Accepted: 08/12/2016] [Indexed: 12/25/2022]
|
32
|
Synthesis of multifunctional bovine serum albumin microcapsules by the sonochemical method for targeted drug delivery and controlled drug release. Colloids Surf B Biointerfaces 2015; 136:470-8. [DOI: 10.1016/j.colsurfb.2015.09.056] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Revised: 09/02/2015] [Accepted: 09/27/2015] [Indexed: 02/07/2023]
|