1
|
Enrichment of IgG and HRP glycoprotein by dipeptide-based polymeric material. Talanta 2022; 241:123223. [PMID: 35030500 DOI: 10.1016/j.talanta.2022.123223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 01/06/2022] [Accepted: 01/09/2022] [Indexed: 12/30/2022]
Abstract
Separation, purification, and identification of glycoproteins are essential for understanding their vital roles in biological and pathological processes. However, glycoproteins are difficult to be captured due to their low abundance, strong interference from non-glycosylated proteins. Here, we report a promising dipeptide-based saccharide recognition platform to selectively enrich two typical glycoproteins, named immunoglobin G (IgG) and horseradish peroxidase (HRP). Different from the conventional glycoprotein enrichment method based on boronic acid affinity or hydrophilic interaction with glycans, the present method was established based on affinity between Pro-Glu (PE) dipeptide and mannose, which is a key unit in the pentasaccharide core of the IgG and HRP glycans. The prepared PE homopolymer surface was proved to selectively bind IgG and HRP superior to that of bovine serum albumin (BSA). Benefiting from this feature, selective enrichment of IgG and HRP was achieved from a protein mixture containing 200-fold BSA interference by using polyPE@SiO2 under a dispersive solid-phase extraction (dSPE) mode. High adsorption capacity, controllable and selective adsorption behaviors, as well as satisfactory recovery demonstrated the high potential of the dipeptide-based polymeric material in IgG and HRP enrichment. This study might provide a new insight to solve the challenging problem of glycoprotein separation.
Collapse
|
2
|
Chen Z, Chi Z, Sun Y, Lv Z. Chirality in peptide-based materials: From chirality effects to potential applications. Chirality 2021; 33:618-642. [PMID: 34342057 DOI: 10.1002/chir.23344] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/24/2021] [Accepted: 07/13/2021] [Indexed: 12/23/2022]
Abstract
Chirality is ubiquitous in nature with primary cellular functions that include construction of right-/left-handed helix and selective communications among diverse biomolecules. Of particularly intriguing are the chiral peptide-based materials that can be deliberately designed to change physicochemistry properties via tuning peptide sequences. Critically, understanding their chiral effects are fundamental for the development of novel materials in chemistry and biomedicine fields. Here, we review recent researches on chirality in peptide-based materials, summarizing relevant typical chiral effects towards recognition, amplification, and induction. Driven forces for the chiral discrimination in affinity interaction as well as the handedness preferences in supramolecular structure formation at both the macroscale and microscale are illustrated. The implementation of such chirality effects of artificial copolymers, assembled aggregates and their composites in the fields of bioseparation and bioenrichment, cell incubation, protein aggregation inhibitors, chiral smart gels, and bionic electro devices are also presented. At last, the challenges in these areas and possible directions are pointed out. The diversity of chiral roles in the origin of life and chirality design in different organic or composite systems as well as their applications in drug development and chirality detection in environmental protection are discussed.
Collapse
Affiliation(s)
- Zhonghui Chen
- Guangdong Engineering Technology Research Center for High performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of OEMT, School of Chemistry, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou, China
| | - Zhenguo Chi
- Guangdong Engineering Technology Research Center for High performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of OEMT, School of Chemistry, Sun Yat-sen University, Guangzhou, China
| | - Yifeng Sun
- Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou, China
| | - Ziyu Lv
- Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, China
| |
Collapse
|
3
|
[Advances in enrichment of phosphorylated peptides and glycopeptides by smart polymer-based materials]. Se Pu 2021; 39:15-25. [PMID: 34227355 PMCID: PMC9274847 DOI: 10.3724/sp.j.1123.2020.05036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
翻译后修饰是蛋白质组学研究的前沿和重点,它不仅调节着蛋白质的折叠、状态、活性、定位以及蛋白质间的相互作用,也能帮助科学家更全面地了解生物体的生命过程,为疾病的预测、诊断和治疗提供更加强大的支撑和依据。翻译后修饰产物(例如磷酸化肽和糖肽)丰度很低,且存在着强烈的背景干扰,很难直接用质谱进行分析,因此迫切需要开发高效的富集材料和技术来选择性富集翻译后修饰产物。近年来,智能聚合物基材料通过外部物理、化学或生物刺激可逆地改变其结构和功能,实现对磷酸化肽和糖肽高度可控的吸附和脱附,进而衍生开发出一系列新颖的富集方法,极大地吸引研究者们的兴趣。一方面,智能聚合物基材料的响应变化包括材料疏水性的增加或减少、形状和形貌的改变、表面电荷的重新分布以及亲和配体的暴露或隐藏等特性。这些特性使得目标物和智能聚合物基材料之间的亲和力可以通过简单改变外部条件(如温度、pH值、溶剂极性和生物分子等)实现更可控和更智能的精细调节。另一方面,智能聚合物基材料为集成功能模块提供了便捷的可扩展平台,例如特定的识别组件,显著提高了目标物质的分离选择性。智能聚合物基材料在分离方面展现出巨大的潜力,这为蛋白质翻译后修饰产物的分析和研究带来了希望。围绕上述主题,该文依据Web of Science近20年来近50篇代表性文献,概述了智能聚合物基材料在磷酸化肽和糖肽分离及富集中的发展方向。
Collapse
|
4
|
Ahmed W, Zhang H, Gao C. Influence of enantiomeric polylysine grafted on gold nanorods on the uptake and inflammatory response of bone marrow-derived macrophages in vitro. J Biomed Mater Res A 2021; 110:143-155. [PMID: 34289249 DOI: 10.1002/jbm.a.37272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/24/2021] [Accepted: 07/07/2021] [Indexed: 12/17/2022]
Abstract
The macrophages take significant roles in homeostasis, phagocytosis of pathogenic organisms, and modulation of host defense and inflammatory processes. In this study, the enantiomeric poly-D-lysine (PDL) and poly-L-lysine (PLL) were conjugated to gold nanorods (AuNRs) to study their influence on the polarization of macrophages. The AuNRs capped with cetyl trimethyl ammonium bromide (CTAB) (AuNRs@CTAB) exhibited larger toxicity to macrophages when their concentration was higher than 50 μg/ml, whereas the AuNRs@PDL and AuNRs@PLL showed neglectable toxicity at the same concentration compared with the control. The AuNRs@PDL and AuNRs@PLL were internalized into the macrophages with a higher value than the AuNRs@CTAB as revealed by transmission electron microscopy (TEM) and inductively coupled plasma mass spectrometry (ICP-MS) characterization. Unlike the grafted PDL/PLL on flat substrates, the AuNRs@PDL and AuNRs@PLL were not able to polarize M0 macrophages to any other phenotype after internalization as confirmed by ELISA, flow cytometry, and fluorescence microscopy analysis. Nonetheless, the expression of M1 phenotype markers was reduced after the internalization of AuNRs@PDL and AuNRs@PLL by M1 macrophages. The assays of ELISA, flow cytometry, and reactive oxygen species levels exhibited decrease in inflammation of the M1 macrophages.
Collapse
Affiliation(s)
- Wajiha Ahmed
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| | - Haolan Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| |
Collapse
|
5
|
Ma Y, Shi L, Yue H, Gao X. Recognition at chiral interfaces: From molecules to cells. Colloids Surf B Biointerfaces 2020; 195:111268. [DOI: 10.1016/j.colsurfb.2020.111268] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 06/26/2020] [Accepted: 07/21/2020] [Indexed: 01/24/2023]
|
6
|
Lu Q, Chen C, Xiong Y, Li G, Zhang X, Zhang Y, Wang D, Zhu Z, Li X, Qing G, Sun T, Liang X. High-Efficiency Phosphopeptide and Glycopeptide Simultaneous Enrichment by Hydrogen Bond–based Bifunctional Smart Polymer. Anal Chem 2020; 92:6269-6277. [DOI: 10.1021/acs.analchem.9b02643] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Qi Lu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
- Research & Development Center, Jushi Group. Co., Ltd, 669 Wenhua Road, Tongxiang 314500, China
| | - Cheng Chen
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Yuting Xiong
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Guodong Li
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Xiaofei Zhang
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Yahui Zhang
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Dongdong Wang
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Zhichao Zhu
- College of Chemistry and Chemical Engineering, Wuhan Textile University, 1 Sunshine Road, Wuhan 430200, China
| | - Xiuling Li
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Guangyan Qing
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- College of Chemistry and Chemical Engineering, Wuhan Textile University, 1 Sunshine Road, Wuhan 430200, China
| | - Taolei Sun
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Xinmiao Liang
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| |
Collapse
|
7
|
|
8
|
Chen Z, Lv Z, Sun Y, Chi Z, Qing G. Recent advancements in polyethyleneimine-based materials and their biomedical, biotechnology, and biomaterial applications. J Mater Chem B 2020; 8:2951-2973. [DOI: 10.1039/c9tb02271f] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Precise-synthesis strategies and integration approaches of bioinspired PEI-based systems, and their biomedical, biotechnology and biomaterial applications.
Collapse
Affiliation(s)
- Zhonghui Chen
- Guangdong Provincial Public Laboratory of Analysis and Testing Technology
- China National Analytical Center
- Guangzhou 510070
- China
- Guangdong Engineering Technology Research Center for High-performance Organic and Polymer Photoelectric Functional Films
| | - Ziyu Lv
- Institute of Microscale Optoelectronics
- Shenzhen University
- Shenzhen 518000
- China
| | - Yifeng Sun
- Guangdong Provincial Public Laboratory of Analysis and Testing Technology
- China National Analytical Center
- Guangzhou 510070
- China
| | - Zhenguo Chi
- Guangdong Engineering Technology Research Center for High-performance Organic and Polymer Photoelectric Functional Films
- State Key Laboratory of OEMT
- School of Chemistry
- Sun Yat-sen University
- Guangzhou 510275
| | - Guangyan Qing
- Key Laboratory of Separation Science for Analytical Chemistry
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116000
- China
| |
Collapse
|
9
|
Kang L, Zhang Y, Deng J. Helix-sense-selective surface grafting polymerization for preparing optically active hybrid microspheres. Polym Chem 2020. [DOI: 10.1039/c9py01860c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Chiral hybrid micro/nanomaterials have attracted great interest and have been extensively studied due to their intriguing properties and promising applications which cannot be achieved with each of the single components.
Collapse
Affiliation(s)
- Li Kang
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
- College of Materials Science and Engineering
| | - Yingjie Zhang
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
- College of Materials Science and Engineering
| | - Jianping Deng
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
- College of Materials Science and Engineering
| |
Collapse
|
10
|
|
11
|
Qing G, Lu Q, Xiong Y, Zhang L, Wang H, Li X, Liang X, Sun T. New Opportunities and Challenges of Smart Polymers in Post-Translational Modification Proteomics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1604670. [PMID: 28112833 DOI: 10.1002/adma.201604670] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 11/13/2016] [Indexed: 06/06/2023]
Abstract
Protein post-translational modifications (PTMs), which denote covalent additions of various functional groups (e.g., phosphate, glycan, methyl, or ubiquitin) to proteins, significantly increase protein complexity and diversity. PTMs play crucial roles in the regulation of protein functions and numerous cellular processes. However, in a living organism, native PTM proteins are typically present at substoichiometric levels, considerably impeding mass-spectrometry-based analyses and identification. Over the past decade, the demand for in-depth PTM proteomics studies has spawned a variety of selective affinity materials capable of capturing trace amounts of PTM peptides from highly complex biosamples. However, novel design ideas or strategies are urgently required for fulfilling the increasingly complex and accurate requirements of PTM proteomics analysis, which can hardly be met by using conventional enrichment materials. Considering two typical types of protein PTMs, phosphorylation and glycosylation, an overview of polymeric enrichment materials is provided here, with an emphasis on the superiority of smart-polymer-based materials that can function in intelligent modes. Moreover, some smart separation materials are introduced to demonstrate the enticing prospects and the challenges of smart polymers applied in PTM proteomics.
Collapse
Affiliation(s)
- Guangyan Qing
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, P. R. China
| | - Qi Lu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, P. R. China
| | - Yuting Xiong
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, P. R. China
| | - Lei Zhang
- Institute of Biomedical and Pharmaceutical Sciences, College of Bioengineering, Hubei University of Technology, 28 Nanli Road, Wuhan, 430068, P. R. China
| | - Hongxi Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, P. R. China
| | - Xiuling Li
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, P. R. China
| | - Xinmiao Liang
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, P. R. China
| | - Taolei Sun
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, P. R. China
- International School of Materials Science and Engineering, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, P. R. China
| |
Collapse
|
12
|
Chen Z, Lv Z, Qing G, Sun T. Exploring the role of molecular chirality in the photo-responsiveness of dipeptide-based gels. J Mater Chem B 2017; 5:3163-3171. [DOI: 10.1039/c7tb00402h] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Chiral effect: upon UV light irradiation, the l-gel has a markedly faster gel–sol transition than the d-gel.
Collapse
Affiliation(s)
- Zhonghui Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
- Wuhan University of Technology
- Wuhan 430070
- P. R. China
| | - Ziyu Lv
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
- Wuhan University of Technology
- Wuhan 430070
- P. R. China
| | - Guangyan Qing
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
- Wuhan University of Technology
- Wuhan 430070
- P. R. China
| | - Taolei Sun
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
- Wuhan University of Technology
- Wuhan 430070
- P. R. China
- School of Chemistry
| |
Collapse
|
13
|
Zhao W, Hao J. Colloidal chirality in wormlike micellar systems exclusively originated from achiral species: Role of secondary assembly and stimulus responsivity. J Colloid Interface Sci 2016; 478:303-10. [DOI: 10.1016/j.jcis.2016.06.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 06/03/2016] [Accepted: 06/04/2016] [Indexed: 10/21/2022]
|
14
|
Lv Z, Chen Z, Shao K, Qing G, Sun T. Stimuli-Directed Helical Chirality Inversion and Bio-Applications. Polymers (Basel) 2016; 8:polym8080310. [PMID: 30974585 PMCID: PMC6432277 DOI: 10.3390/polym8080310] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 08/09/2016] [Accepted: 08/12/2016] [Indexed: 12/21/2022] Open
Abstract
Helical structure is a sophisticated ubiquitous motif found in nature, in artificial polymers, and in supramolecular assemblies from microscopic to macroscopic points of view. Significant progress has been made in the synthesis and structural elucidation of helical polymers, nevertheless, a new direction for helical polymeric materials, is how to design smart systems with controllable helical chirality, and further use them to develop chiral functional materials and promote their applications in biology, biochemistry, medicine, and nanotechnology fields. This review summarizes the recent progress in the development of high-performance systems with tunable helical chirality on receiving external stimuli and discusses advances in their applications as drug delivery vesicles, sensors, molecular switches, and liquid crystals. Challenges and opportunities in this emerging area are also presented in the conclusion.
Collapse
Affiliation(s)
- Ziyu Lv
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China.
| | - Zhonghui Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China.
| | - Kenan Shao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China.
| | - Guangyan Qing
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China.
| | - Taolei Sun
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China.
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China.
| |
Collapse
|
15
|
Zhang K, Zheng H, Liang S, Gao C. Aligned PLLA nanofibrous scaffolds coated with graphene oxide for promoting neural cell growth. Acta Biomater 2016; 37:131-42. [PMID: 27063493 DOI: 10.1016/j.actbio.2016.04.008] [Citation(s) in RCA: 167] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 04/02/2016] [Accepted: 04/06/2016] [Indexed: 12/23/2022]
Abstract
UNLABELLED The graphene oxide (GO) has attracted tremendous attention in biomedical fields. In order to combine the unique physicochemical properties of GO nanosheets with topological structure of aligned nanofibrous scaffolds for nerve regeneration, the GO nanosheets were coated onto aligned and aminolyzed poly-l-lactide (PLLA) nanofibrous scaffolds. Scanning electronic microscopy (SEM) and atomic force microscopy (AFM) revealed that the surface of aligned PLLA nanofibers after being coated with GO became rougher than those of the aligned PLLA and aminolyzed PLLA nanofibrous scaffolds. The GO nanosheets did not destroy the alignment of nanofibers. The characterizations of X-ray photoelectron spectroscopy (XPS) and water contact angle displayed that the aligned PLLA nanofibrous scaffolds were introduced with hydrophilic groups such as NH2, COOH, and OH after aminolysis and GO nanosheets coating, showing better hydrophilicity. The GO-coated and aligned PLLA nanofibrous scaffolds significantly promoted Schwann cells (SCs) proliferation with directed cytoskeleton along the nanofibers compared with the aligned PLLA and aminolyzed PLLA nanofibrous scaffolds. These scaffolds also greatly improved the proliferation of rat pheochromocytoma 12 (PC12) cells, and significantly promoted their differentiation and neurite growth along the nanofibrous alignment in the presence of nerve growth factor (NGF). This type of scaffolds with nanofibrous surface topography and GO nanosheets is expected to show better performance in nerve regeneration. STATEMENT OF SIGNIFICANCE Recovery of damaged nerve functions remains a principal clinical challenge in spite of surgical intervention and entubulation. The use of aligned fibrous scaffolds provides suitable microenvironment for nerve cell attachment, proliferation and migration, enhancing the regeneration outcome of nerve tissue. Surface modification is generally required for the synthetic polymeric fibers by laminin, fibronectin and YIGSR peptides to stimulate specific cell functions and neurite outgrowth. Yet these proteins or peptides present the poor processibility, limited availability, and high cost, influencing their application in clinic. In this work, we combined GO nanosheets and topological structure of aligned nanofibrous scaffolds to direct cell migration, proliferation, and differentiation, and to induce neurite outgrowth for nerve regeneration. The GO coating improved several biomedical properties of the aligned PLLA nanofibrous scaffolds including surface roughness, hydrophilicity and promotion of cells/material interactions, which significantly promoted SCs growth and regulated cell orientation, and induced PC12 cells differentiation and neurite growth. The design of this type of structure is of both scientific and technical importance, and possesses broad interest in the fields of biomaterials, tissue engineering and regenerative medicine.
Collapse
|