1
|
Preparation of silver nanoparticles decorated mesoporous silica nanorods with photothermal antibacterial property. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
2
|
Mooranian A, Jones M, Ionescu CM, Walker D, Wagle SR, Kovacevic B, Chester J, Foster T, Johnston E, Mikov M, Al-Salami H. Advancements in Assessments of Bio-Tissue Engineering and Viable Cell Delivery Matrices Using Bile Acid-Based Pharmacological Biotechnologies. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1861. [PMID: 34361247 PMCID: PMC8308343 DOI: 10.3390/nano11071861] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/07/2021] [Accepted: 07/14/2021] [Indexed: 12/18/2022]
Abstract
The utilisation of bioartificial organs is of significant interest to many due to their versatility in treating a wide range of disorders. Microencapsulation has a potentially significant role in such organs. In order to utilise microcapsules, accurate characterisation and analysis is required to assess their properties and suitability. Bioartificial organs or transplantable microdevices must also account for immunogenic considerations, which will be discussed in detail. One of the most characterized cases is the investigation into a bioartificial pancreas, including using microencapsulation of islets or other cells, and will be the focus subject of this review. Overall, this review will discuss the traditional and modern technologies which are necessary for the characterisation of properties for transplantable microdevices or organs, summarizing analysis of the microcapsule itself, cells and finally a working organ. Furthermore, immunogenic considerations of such organs are another important aspect which is addressed within this review. The various techniques, methodologies, advantages, and disadvantages will all be discussed. Hence, the purpose of this review is providing an updated examination of all processes for the analysis of a working, biocompatible artificial organ.
Collapse
Affiliation(s)
- Armin Mooranian
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; (A.M.); (M.J.); (C.M.I.); (D.W.); (S.R.W.); (B.K.); (J.C.); (T.F.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, WA 6009, Australia
| | - Melissa Jones
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; (A.M.); (M.J.); (C.M.I.); (D.W.); (S.R.W.); (B.K.); (J.C.); (T.F.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, WA 6009, Australia
| | - Corina Mihaela Ionescu
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; (A.M.); (M.J.); (C.M.I.); (D.W.); (S.R.W.); (B.K.); (J.C.); (T.F.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, WA 6009, Australia
| | - Daniel Walker
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; (A.M.); (M.J.); (C.M.I.); (D.W.); (S.R.W.); (B.K.); (J.C.); (T.F.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, WA 6009, Australia
| | - Susbin Raj Wagle
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; (A.M.); (M.J.); (C.M.I.); (D.W.); (S.R.W.); (B.K.); (J.C.); (T.F.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, WA 6009, Australia
| | - Bozica Kovacevic
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; (A.M.); (M.J.); (C.M.I.); (D.W.); (S.R.W.); (B.K.); (J.C.); (T.F.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, WA 6009, Australia
| | - Jacqueline Chester
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; (A.M.); (M.J.); (C.M.I.); (D.W.); (S.R.W.); (B.K.); (J.C.); (T.F.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, WA 6009, Australia
| | - Thomas Foster
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; (A.M.); (M.J.); (C.M.I.); (D.W.); (S.R.W.); (B.K.); (J.C.); (T.F.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, WA 6009, Australia
| | - Edan Johnston
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; (A.M.); (M.J.); (C.M.I.); (D.W.); (S.R.W.); (B.K.); (J.C.); (T.F.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, WA 6009, Australia
| | - Momir Mikov
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21101 Novi Sad, Serbia;
| | - Hani Al-Salami
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; (A.M.); (M.J.); (C.M.I.); (D.W.); (S.R.W.); (B.K.); (J.C.); (T.F.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, WA 6009, Australia
| |
Collapse
|
3
|
Fang X, Huang Y, Yu D, Shi C, Liu M. Highly stable folic acid functionalized copper-nanocluster/silica nanoparticles for selective targeting of cancer cells. RSC Adv 2020; 10:31463-31469. [PMID: 35520657 PMCID: PMC9056389 DOI: 10.1039/d0ra06523d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 08/18/2020] [Indexed: 12/15/2022] Open
Abstract
In this paper, we present a novel strategy to construct folic acid functionalized conjugated Cu nanoclusters (CuNCs) and silica (SiO2) nanocomposites for targeted detection of cancer cells. First of all, BSA capped CuNCs were encapsulated into a SiO2 matrix. The resulting CuNCs@SiO2 nanoparticles showed bright red fluorescence with an enhanced photoluminescence quantum yield compared with free CuNCs, as well as improved stability in a complex biological environment owning to the protection of the SiO2 matrix. Upon attachment of folic acid via the poly-l-lysine conjugates (PLL-FA) on the surface of CuNCs@SiO2 driven by electrostatic interaction, the as-prepared CuNCs@SiO2/PLL-FA nanocomposites are capable of selectively recognizing folate receptor (FR) over-expressed cancer cells rather than FR-negative cells. The cell viability assay proved the low biotoxicity of CuNCs@SiO2/PLL-FA nanocomposites toward living cells and the in vitro cellular imaging assay results demonstrated their selective endocytosis of FR-positive cells (KB cells), bringing about red fluorescence labeling within the cells. Intriguingly, our strategy provides a novel route to synthesize functional CuNCs@SiO2/PLL-FA nanocomposites equipped with superior fluorescence properties, high stability against external stimuli and good biocompatibility, and have great application potential in bioimaging imaging and targeted cell detection. Folic acid functionalized CuNCs@SiO2 nanocomposites with superior fluorescence properties, high stability and good biocompatibility for targeted cell imaging.![]()
Collapse
Affiliation(s)
- Xiaoming Fang
- Department of Respiratory, Affiliated Hospital of Nanjing Medical University, Changzhou Second People's Hospital Changzhou 213003 China
| | - Yanhua Huang
- Department of Respiratory, Affiliated Hospital of Nanjing Medical University, Changzhou Second People's Hospital Changzhou 213003 China
| | - Dan Yu
- Department of Respiratory, Affiliated Hospital of Nanjing Medical University, Changzhou Second People's Hospital Changzhou 213003 China
| | - Caiwen Shi
- Department of Respiratory, Affiliated Hospital of Nanjing Medical University, Changzhou Second People's Hospital Changzhou 213003 China
| | - Ming Liu
- Department of Respiratory, Affiliated Hospital of Nanjing Medical University, Changzhou Second People's Hospital Changzhou 213003 China
| |
Collapse
|
4
|
Smart and selective cancer-killing peptides with cell penetrating sequence and dual-targeting mechanism. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2019.124185] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Hassanpour S, Saadati A, Hasanzadeh M. pDNA conjugated with citrate capped silver nanoparticles towards ultrasensitive bio-assay of haemophilus influenza in human biofluids: A novel optical biosensor. J Pharm Biomed Anal 2019; 180:113050. [PMID: 31881396 DOI: 10.1016/j.jpba.2019.113050] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 12/09/2019] [Accepted: 12/17/2019] [Indexed: 12/21/2022]
Abstract
A sensitive and specific approach was developed for the determination of Haemophilus influenza using DNA based bio-assay. In this study, citrate capped silver nanoparticle was synthesized and employed for bioconjugation with pDNA toward target sequences detection. In this study, synthesized probe (SH-5'-AAT TTT CCA ACT TTT TCA CCT GCA T-3') of Haemophilus influenza was detected with great sensitivity and selectivity after hybridization with cDNA (5'-ATG CAG GTG AAA AAG TTG GAA AAT T-3'). Regarding to the obtained results, the low limit of quantification (LLOQ) of DNA sample was 1 ZM using 15 μL of probe and 200 μL of Cit/AgNPs. According to ultra-sensitivity of the fabricated optical DNA-based bio-assay, it has potential for bacterial determination both in clinical and environmental specimens. To evaluate the selectivity of developed DNA based biosensor, three mismatch sequences were applied. Finally, the designed genosensor is a significant diagnostic strategy for detection of Haemophilus influenza with great selectivity.
Collapse
Affiliation(s)
- Soodabeh Hassanpour
- Department of Analytical Chemistry, Faculty of Science, Palacky University Olomouc, 17. Listopadu 12, 77146 Olomouc, Czech Republic
| | - Arezoo Saadati
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
6
|
Luo Y, Yang Y, Cui Q, Peng R, Liu R, Cao Q, Li L. Fluorescent Nanoparticles Synthesized by Carbon-Nitride-Stabilized Pickering Emulsion Polymerization for Targeted Cancer Cell Imaging. ACS APPLIED BIO MATERIALS 2019; 2:5127-5135. [DOI: 10.1021/acsabm.9b00800] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Yufeng Luo
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yu Yang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Qianling Cui
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Rui Peng
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Ronghua Liu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Qian Cao
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Lidong Li
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
7
|
Tang S, Guo Y, Yang Y, Li Y, Gao Y, Zhang C, Xiong L. High resolution tracking of macrophage cells in deep organs and lymphatics using fluorescent polymer dots. RSC Adv 2019; 9:10966-10975. [PMID: 35515275 PMCID: PMC9062640 DOI: 10.1039/c9ra00954j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 04/03/2019] [Indexed: 11/21/2022] Open
Abstract
In vivo cell tracking can provide information on cell migration and accumulation in the organs. Here, both folate and amino modified polymer dots were synthesized and screened for in vitro and in vivo tracking of macrophage Ana-1 cells. Flow cytometry analysis demonstrated that prepared polymer dots showed cellular uptake of approximately 98% within a short incubation time of 2 h, and these polymer dots maintained a cell labeling rate over 97% after 2 d. Moreover, a CCK-8 assay suggested that these polymer dots increased Ana-1 cell viabilities up to 110% at concentrations from 5 to 50 μg mL-1. Furthermore, the in vivo real time imaging of labelled Ana-1 cells in the alveolus of lung and lymph nodes were clearly detected by probe-based confocal laser endomicroscopy (pCLE). This study demonstrates a unique approach using polymer dots for real-time high resolution tracking of macrophage cells in deep organs and the lymphatic system.
Collapse
Affiliation(s)
- Shiyi Tang
- Shanghai Med-X Engineering Center for Medical Equipment and Technology, School of Biomedical Engineering, Shanghai Jiao Tong University Shanghai 200030 P. R. China
| | - Yixiao Guo
- Shanghai Med-X Engineering Center for Medical Equipment and Technology, School of Biomedical Engineering, Shanghai Jiao Tong University Shanghai 200030 P. R. China
| | - Yidian Yang
- Shanghai Med-X Engineering Center for Medical Equipment and Technology, School of Biomedical Engineering, Shanghai Jiao Tong University Shanghai 200030 P. R. China
- The Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Shanghai Normal University Shanghai 200234 P. R. China
| | - Yao Li
- Shanghai Med-X Engineering Center for Medical Equipment and Technology, School of Biomedical Engineering, Shanghai Jiao Tong University Shanghai 200030 P. R. China
| | - Yanhong Gao
- Department of Geriatrics, Xinhua Hospital of Shanghai Jiao Tong University, School of Medicine Shanghai 200092 P. R. China
| | - Chunfu Zhang
- Shanghai Med-X Engineering Center for Medical Equipment and Technology, School of Biomedical Engineering, Shanghai Jiao Tong University Shanghai 200030 P. R. China
| | - Liqin Xiong
- Shanghai Med-X Engineering Center for Medical Equipment and Technology, School of Biomedical Engineering, Shanghai Jiao Tong University Shanghai 200030 P. R. China
| |
Collapse
|
8
|
Chinnakkannu Vijayakumar S, Venkatakrishnan K, Tan B. 3D quantum theranosomes: a new direction for label-free theranostics. NANOSCALE HORIZONS 2019; 4:495-515. [PMID: 32254103 DOI: 10.1039/c8nh00287h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Quantum-scale materials offer great potential in the field of cancer theranostics. At present, quantum materials are severely limited due to 0D & 1D materials lacking biocompatibility, resulting in coated materials with labelled tags for fluorescence excitation. In addition, the application of magnetic quantum materials has not been reported to date for cancer theranostics. In this current research study, we introduce the concept of applying nickel-based magnetic 3D quantum theranosomes for label-free broadband fluorescence enhancement and cancer therapy. To begin with, we present two (primary and secondary) distinct quantum theranosomes for cancer detection and differentiation (HeLa & MDAMB-231) from mammalian fibroblast cells. The primary theranosomes exhibit a metal enhanced fluorescence (MEF) property through localized surface plasmon resonance to act as cancer detectors, whereas the secondary theranosomes act as cancer differentiators through the fluorescence quenching of HeLa cancer cells. Apart from the above, the synthesized magnetic quantum theranosomes introduced therapeutic functionality wherein the theranosomes mimicked a tumor microenvironment by selectively accelerating the proliferation of mammalian fibroblasts cells while at the same time inducing cancer therapy. These quantum theranosomes were synthesized using femtosecond pulse laser ablation and self-assembled to form an interconnected 3D structure. The 3D architecture and the physicochemical properties of the laser synthesized quantum theranosomes closely resembled a tumor microenvironment. Furthermore, we anticipate that our current recorded findings can shed further light upon these unique magnetic quantum theranosomes as potential contenders towards opening an entirely new direction in the field of cancer theranostics.
Collapse
Affiliation(s)
- Sivaprasad Chinnakkannu Vijayakumar
- Ultrashort Laser Manufacturing Research Facility, Department of Mechanical and Industrial Engineering, Ryerson University, 350 Victoria street, Toronto, Ontario M5B 2K3, Canada.
| | | | | |
Collapse
|
9
|
Jiang C, Wei X, Bao S, Tu H, Wang W. Cu@Au(Ag)/Pt nanocomposite as peroxidase mimic and application of Cu@Au/Pt in colorimetric detection of glucose and l-cysteine. RSC Adv 2019; 9:41561-41568. [PMID: 35541589 PMCID: PMC9076479 DOI: 10.1039/c9ra08547e] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 12/06/2019] [Indexed: 12/16/2022] Open
Abstract
Nanomaterial-based artificial peroxidase has attracted extensive interests due to their distinct advantages over natural counterpart. Cu@Au/Pt and Cu@Ag/Pt nanocomposite with rambutan-like structure were prepared and discovered to function like peroxidase, which was illustrated by catalyzing the oxidation reaction of 3,3′,5,5′-tetramethylbenzidine (TMB) accompanied with a blue color change. Steady-state investigation indicates that the catalytic kinetics of Cu@Au/Pt and Cu@Ag/Pt all followed typical Michaelis–Menten behaviors and Cu@Au/Pt showed a strong affinity for H2O2, while Cu@Ag/Pt showed strong affinity for TMB. The color change and absorbance intensity strongly depend on the concentration of H2O2, thus the direct determination of H2O2 and indirect detection of glucose were demonstrated using Cu@Au/Pt with a detection limit of 1.5 μM and 6 μM, respectively. What is more important, the method was applied for detection of glucose in 50% fetal bovine serum with a detection limit of 80 μM, which is much lower than the lowest glucose content in blood for diabetes (7 mM). Moreover, the Cu@Au/Pt nanocomposite were also successfully applied for sensing l-cysteine because of the inhibition effect. Considering the good peroxidase-like activity and novel structure, Cu@Au(Ag)/Pt is expected to have a wide range of applications in bioassays and biocatalysis. Cu@Au(Ag)/Pt nanocomposite possess good peroxidase-like activity and can be used for detection of glucose and l-cysteine.![]()
Collapse
Affiliation(s)
- Cuifeng Jiang
- School of Materials Science and Engineering
- Yancheng Institute of Technology
- Yancheng
- China
| | - Xiaoxiu Wei
- School of Materials Science and Engineering
- Yancheng Institute of Technology
- Yancheng
- China
| | - Shuai Bao
- School of Materials Science and Engineering
- Yancheng Institute of Technology
- Yancheng
- China
| | - Huajian Tu
- School of Materials Science and Engineering
- Yancheng Institute of Technology
- Yancheng
- China
| | - Wei Wang
- School of Chemistry and Chemical Engineering
- Yancheng Institute of Technology
- Yancheng
- China
| |
Collapse
|
10
|
Chen B, Zhang Y, Yang Y, Chen S, Xu A, Wu L, Xu S. Involvement of telomerase activity inhibition and telomere dysfunction in silver nanoparticles anticancer effects. Nanomedicine (Lond) 2018; 13:2067-2082. [PMID: 30203702 DOI: 10.2217/nnm-2018-0036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
AIM To investigate the possible mechanisms of telomerase and telomere underlying the anticancer effects of silver nanoparticles (AgNPs). MATERIALS & METHODS 25nm polyvinylpyrrolidone-coated AgNPs were used. The telomerase activity and telomere function were evaluated. The anticancer effects of AgNPs were gauged with cell viability assay under different statement of telomerase and telomere. RESULTS & CONCLUSION AgNPs could inhibit telomerase activity and lead to telomere shortening and dysfunction. Overexpression of telomerase attenuated the anticancer activity of AgNPs, whereas downregulation of telomerase activity or dysfunction of the telomere enhanced the cytotoxicity of AgNPs in HeLa cells. Our findings provided strong evidence that the anticancer effects of AgNPs were mediated via interference with the telomerase/telomere.
Collapse
Affiliation(s)
- Biao Chen
- School of Environmental Science & Optoelectronic Technology, University of Science & Technology of China, Hefei, Anhui, 230026, PR China.,Key Laboratory of High Magnetic Field & Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
| | - Yajun Zhang
- Key Laboratory of High Magnetic Field & Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China.,Institute of Physical & Information Technology, Anhui University, Hefei, Anhui, 230601, PR China
| | - Yaning Yang
- School of Environmental Science & Optoelectronic Technology, University of Science & Technology of China, Hefei, Anhui, 230026, PR China.,Key Laboratory of High Magnetic Field & Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
| | - Shaopeng Chen
- Key Laboratory of High Magnetic Field & Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China.,Institute of Physical & Information Technology, Anhui University, Hefei, Anhui, 230601, PR China
| | - An Xu
- School of Environmental Science & Optoelectronic Technology, University of Science & Technology of China, Hefei, Anhui, 230026, PR China.,Key Laboratory of High Magnetic Field & Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China.,Institute of Physical & Information Technology, Anhui University, Hefei, Anhui, 230601, PR China
| | - Lijun Wu
- School of Environmental Science & Optoelectronic Technology, University of Science & Technology of China, Hefei, Anhui, 230026, PR China.,Key Laboratory of High Magnetic Field & Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China.,Key Laboratory of Environmental Toxicology & Pollution Control Technology of Anhui Province, Hefei, Anhui, 230031, PR China.,Institute of Physical & Information Technology, Anhui University, Hefei, Anhui, 230601, PR China
| | - Shengmin Xu
- Key Laboratory of High Magnetic Field & Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China.,Key Laboratory of Environmental Toxicology & Pollution Control Technology of Anhui Province, Hefei, Anhui, 230031, PR China
| |
Collapse
|
11
|
Tang L, Tang F, Li M, Li L. Facile synthesis of Ag@AgCl-contained cellulose hydrogels and their application. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2018.06.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
12
|
Qin H, Ma D, Du J. Distance dependent fluorescence quenching and enhancement of gold nanoclusters by gold nanoparticles. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 189:161-166. [PMID: 28810178 DOI: 10.1016/j.saa.2017.08.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 08/06/2017] [Accepted: 08/09/2017] [Indexed: 06/07/2023]
Abstract
The interaction between fluorescent gold nanoclusters (AuNCs) and gold nanoparticles (AuNPs) has been investigated. It was observed that the fluorescence of AuNCs was remarkably quenched when direct contact with AuNPs. The fluorescence quenching of AuNCs by AuNPs was dynamic quenching and exhibited size-dependent property. A larger size of AuNPs displayed a stronger quenching effect and gave a larger quenching constant. When a silica spacer shell was introduced between AuNPs and AuNCs, a fluorescence enhancement of AuNCs by Au@SiO2 NPs was observed. The fluorescence enhancement was strongly dependent on the separation distance between the AuNPs and the AuNCs. A maximal enhancement of 3.72 times was observed when Au@SiO2 NPs have a silica shell thickness of 12nm. This nanocomposite consisting of relatively nontoxic AuNPs and AuNCs may have a potential application in developing novel fluorescent sensor.
Collapse
Affiliation(s)
- Haiyan Qin
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, People's Republic of China
| | - Diao Ma
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, People's Republic of China
| | - Jianxiu Du
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, People's Republic of China.
| |
Collapse
|
13
|
Chambers JD, Anderson JE, Salem MN, Bügel SG, Fenech M, Mason JB, Weber P, West KP, Wilde P, Eggersdorfer M, Booth SL. The Decline in Vitamin Research Funding: A Missed Opportunity? Curr Dev Nutr 2017; 1:e000430. [PMID: 29955714 PMCID: PMC5998363 DOI: 10.3945/cdn.117.000430] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 02/13/2017] [Accepted: 03/03/2017] [Indexed: 01/08/2023] Open
Abstract
Background: The National Nutrition Research Roadmap has called for support of greater collaborative, interdisciplinary research for multiple areas of nutrition research. However, a substantial reduction in federal funding makes responding to these calls challenging. Objectives: The objectives of this study were to examine temporal trends in research funding and to discuss the potential consequences of these trends. Methods: We searched the NIH RePORTER database to identify NIH research grants and USASpending to identify National Science Foundation and USDA research grants awarded from 1992 to 2015. We focused on those that pertained to vitamin research. For the years 2000 to 2015, we examined funding trends for different vitamins, including vitamins A, B (one-carbon B-vitamins were considered separately from other B-vitamins), C, D, E, and K. Results: From 1992 to 2015, total federal research spending increased from ∼$14 to $45 billion (2016 US dollars). Although vitamin research spending increased from ∼$89 to $95 million, the proportion of grants awarded for vitamin research declined by more than two-thirds, from 0.65% in 1992 to 0.2% in 2015. Federal agencies awarded 6035 vitamin research grants over the time period, with vitamin A associated with the most research projects per year on average (n = 115) and vitamin K the fewest (n = 8). Vitamin D research projects were associated with the greatest average yearly project value ($34.8 million). Conclusions: Vitamin research has faced a disproportionate decline in research funding from 1992 to 2015. Insufficient federal research funding streams risk stalling progress in vitamin research and leaving important advancements unrealized.
Collapse
Affiliation(s)
- James D Chambers
- Center for the Evaluation of Value and Risk in Health, Tufts Medical Center, Boston, MA
| | - Jordan E Anderson
- Center for the Evaluation of Value and Risk in Health, Tufts Medical Center, Boston, MA
| | - Mark N Salem
- Center for the Evaluation of Value and Risk in Health, Tufts Medical Center, Boston, MA
| | - Susanne G Bügel
- Department of Nutrition, Exercise, and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Michael Fenech
- Genome Health and Personalized Nutrition, Commonwealth Scientific and Industrial Research Organisation Health and Biosecurity, Sydney, South Australia, Australia
| | - Joel B Mason
- Department of Medicine, Tufts University, Boston, MA
- Gerald J and Dorothy R Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA
| | - Peter Weber
- Department of Nutrition, University Stuttgart-Hohenheim, Stuttgart, Germany
| | - Keith P West
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Parke Wilde
- Gerald J and Dorothy R Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA
| | | | - Sarah L Booth
- Gerald J and Dorothy R Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA
| |
Collapse
|
14
|
Chen S, Tang F, Tang L, Li L. Synthesis of Cu-Nanoparticle Hydrogel with Self-Healing and Photothermal Properties. ACS APPLIED MATERIALS & INTERFACES 2017; 9:20895-20903. [PMID: 28569057 DOI: 10.1021/acsami.7b04956] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Copper (Cu) nanoparticles possess unusual electrical, thermal, and optical properties. However, applications of these materials are often limited by their tendency to oxidize. We prepared Cu nanoparticles by a simple polyol method, with a good control over the particle size. The reaction required no inert atmosphere or surfactant agents. The as-prepared Cu nanoparticles showed good resistance to oxidation in solution. These Cu nanoparticles were then incorporated into a biocompatible polysaccharide hydrogel, which further stabilized the nanoparticles. The hybrid hydrogel exhibited a rapid self-healing ability. Because of the excellent photothermal conversion properties of the embedded Cu nanoparticles, the hybrid hydrogel showed rapid temperature elevation under laser irradiation. The hybrid hydrogel showed limited cytotoxicity; however, under laser irradiation the hydrogel displayed antibacterial properties owing to the heating effects. This study demonstrates that our hybrid hydrogel may have applications in biomedical fields and photothermal therapy.
Collapse
Affiliation(s)
- Shuai Chen
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing , Beijing 100083, P. R. China
| | - Fu Tang
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing , Beijing 100083, P. R. China
| | - Liangzhen Tang
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing , Beijing 100083, P. R. China
| | - Lidong Li
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing , Beijing 100083, P. R. China
- State Key Laboratory of Fine Chemicals, Dalian University of Technology , Dalian 116024, P. R. China
| |
Collapse
|
15
|
Wu X, Tan YJ, Toh HT, Nguyen LH, Kho SH, Chew SY, Yoon HS, Liu XW. Stimuli-responsive multifunctional glyconanoparticle platforms for targeted drug delivery and cancer cell imaging. Chem Sci 2017; 8:3980-3988. [PMID: 28553540 PMCID: PMC5433505 DOI: 10.1039/c6sc05251g] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 03/17/2017] [Indexed: 12/12/2022] Open
Abstract
Targeted bioimaging or chemotherapeutic drug delivery to achieve the desired therapeutic effects while minimizing side effects has attracted considerable research attention and remains a clinical challenge. Presented herein is a multi-component delivery system based on carbohydrate-functionalized gold nanoparticles conjugated with a fluorophore or prodrug. The system leverages active targeting based on carbohydrate-lectin interactions and release of the payload by biological thiols. Cell-type specific delivery of the activatable fluorophore was examined by confocal imaging on HepG2 cells, and displays distinct selectivity towards HepG2 cells over HeLa and NIH3T3 cells. The system was further developed into a drug delivery vehicle with camptothecin (CPT) as a model drug. It was demonstrated that the complex exhibits similar cytotoxicity to that of free CPT towards HepG2 cells, and is significantly less cytotoxic to normal HDF and NIH3T3 cells, indicating excellent specificity. The delivery vehicle itself exhibits excellent biocompatibility and offers an attractive strategy for cell-type specific delivery depending on the carbohydrates conjugated in the system.
Collapse
Affiliation(s)
- Xumeng Wu
- Division of Chemistry and Biological Chemistry , School of Physical & Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , Singapore 637371 , Singapore .
| | - Yu Jia Tan
- Division of Chemistry and Biological Chemistry , School of Physical & Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , Singapore 637371 , Singapore .
| | - Hui Ting Toh
- Division of Structural Biology & Biochemistry , School of Biological Sciences , Nanyang Technological University , Singapore 639798 , Singapore
| | - Lan Huong Nguyen
- School of Chemical & Biomedical Engineering , Nanyang Technological University , Singapore 637459 , Singapore
| | - Shu Hui Kho
- Division of Chemistry and Biological Chemistry , School of Physical & Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , Singapore 637371 , Singapore .
| | - Sing Yian Chew
- School of Chemical & Biomedical Engineering , Nanyang Technological University , Singapore 637459 , Singapore
- Lee Kong Chian School of Medicine , Nanyang Technological University , Singapore 308232 , Singapore
| | - Ho Sup Yoon
- Division of Structural Biology & Biochemistry , School of Biological Sciences , Nanyang Technological University , Singapore 639798 , Singapore
- Department of Genetic Engineering , College of Life Sciences , Kyung Hee University , Yongin-si , Gyeonggi-do 446-701 , Republic of Korea
| | - Xue-Wei Liu
- Division of Chemistry and Biological Chemistry , School of Physical & Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , Singapore 637371 , Singapore .
| |
Collapse
|
16
|
Zhao X, Zhang J, Shi L, Xian M, Dong C, Shuang S. Folic acid-conjugated carbon dots as green fluorescent probes based on cellular targeting imaging for recognizing cancer cells. RSC Adv 2017. [DOI: 10.1039/c7ra07002k] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Green fluorescent CDs using the natural product dandelion as a carbon source were covalently conjugated with folate to differentiate cancer cells from normal cells.
Collapse
Affiliation(s)
- Xuewei Zhao
- Department of Chemistry and Chemical Engineering
- Center of Environmental Science and Engineering Research
- Shanxi University
- Taiyuan
- China
| | - Junli Zhang
- Department of Chemistry and Chemical Engineering
- Center of Environmental Science and Engineering Research
- Shanxi University
- Taiyuan
- China
| | - Lihong Shi
- Department of Chemistry and Chemical Engineering
- Center of Environmental Science and Engineering Research
- Shanxi University
- Taiyuan
- China
| | - Ming Xian
- Department of Chemistry
- Washington State University
- Pullman
- USA
| | - Chuan Dong
- Department of Chemistry and Chemical Engineering
- Center of Environmental Science and Engineering Research
- Shanxi University
- Taiyuan
- China
| | - Shaomin Shuang
- Department of Chemistry and Chemical Engineering
- Center of Environmental Science and Engineering Research
- Shanxi University
- Taiyuan
- China
| |
Collapse
|
17
|
Tang F, Wang X, Yao C, Chen S, Li L. An emission-tunable fluorescent organic molecule for specific cellular imaging. RSC Adv 2016. [DOI: 10.1039/c6ra13965e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
A color-tunable fluorescent molecule was synthesized and applied in specific lysosomal imaging.
Collapse
Affiliation(s)
- Fu Tang
- State Key Laboratory for Advanced Metals and Materials
- School of Materials Science and Engineering
- University of Science and Technology Beijing
- Beijing 100083
- P. R. China
| | - Xiaoyu Wang
- State Key Laboratory for Advanced Metals and Materials
- School of Materials Science and Engineering
- University of Science and Technology Beijing
- Beijing 100083
- P. R. China
| | - Chuang Yao
- State Key Laboratory for Advanced Metals and Materials
- School of Materials Science and Engineering
- University of Science and Technology Beijing
- Beijing 100083
- P. R. China
| | - Shuai Chen
- State Key Laboratory for Advanced Metals and Materials
- School of Materials Science and Engineering
- University of Science and Technology Beijing
- Beijing 100083
- P. R. China
| | - Lidong Li
- State Key Laboratory for Advanced Metals and Materials
- School of Materials Science and Engineering
- University of Science and Technology Beijing
- Beijing 100083
- P. R. China
| |
Collapse
|