1
|
Roy I, David AHG, Das PJ, Pe DJ, Stoddart JF. Fluorescent cyclophanes and their applications. Chem Soc Rev 2022; 51:5557-5605. [PMID: 35704949 DOI: 10.1039/d0cs00352b] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
With the serendipitous discovery of crown ethers by Pedersen more than half a century ago and the subsequent introduction of host-guest chemistry and supramolecular chemistry by Cram and Lehn, respectively, followed by the design and synthesis of wholly synthetic cyclophanes-in particular, fluorescent cyclophanes, having rich structural characteristics and functions-have been the focus of considerable research activity during the past few decades. Cyclophanes with remarkable emissive properties have been investigated continuously over the years and employed in numerous applications across the field of science and technology. In this Review, we feature the recent developments in the chemistry of fluorescent cyclophanes, along with their design and synthesis. Their host-guest chemistry and applications related to their structure and properties are highlighted.
Collapse
Affiliation(s)
- Indranil Roy
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA.
| | - Arthur H G David
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA.
| | - Partha Jyoti Das
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA.
| | - David J Pe
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA.
| | - J Fraser Stoddart
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA. .,School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia.,Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310021, China.,ZJU-Hangzhou Global Scientific and Technological Innovation Center Hangzhou, 311215, China
| |
Collapse
|
2
|
Uttam B, Jahan I, Sen S, Rao CP. Coumarin-Calix[4]arene Conjugate-Anchored SiO 2 Nanoparticles as an Ultrasensor Material for Fe 3+ to Work in Water, in Serum, and in Biological Cells. ACS OMEGA 2020; 5:21288-21299. [PMID: 32875265 PMCID: PMC7450711 DOI: 10.1021/acsomega.0c03373] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 07/28/2020] [Indexed: 05/05/2023]
Abstract
A coumarin-appended calixarene derivative ( CouC4A ) and a hybrid material generated by covalently linking this onto a silica surface ( CouC4A@SiO 2 ) were synthesized and were characterized by various analytical, spectroscopy, and microscopy methods. Both these materials are capable of sensing Fe3+ with greater sensitivity and selectivity. The sensitivity is enhanced by 30,000 fold on going from a simple solution phase to the silica surface with the limit of Fe3+ detection being 1.75 ± 0.4 pM when CouC4A@SiO 2 is used, and the sensing is partially reversible with phosphates, while it is completely reversible with adenosine 5'-triphosphate (ATP). While the calix precursor, CouC4A , has a limitation to work in water, anchoring this onto SiO2 endowed it with the benefit of its use in water as well as in buffer and thereby extends its application toward Fe3+ sensing even in the biorelevant medium such as fetal bovine serum and human serum. The hybrid material is biocompatible and shows ∼90% cell viability in the case of MDA-MB231 and 3T3 cell lines. CouC4A@SiO 2 functions as a reversible sensor for Fe3+ with the use of ATP in vitro as well as in biological cells. Thus, the inorganic-organic hybrid material, such as, CouC4A@SiO 2 , is an indispensable material for sensitive and selective detection of Fe3+ in a picomolar range in solution and in nanomolar to micromolar range in biorelevant fluids and biological cells, respectively.
Collapse
Affiliation(s)
- Bhawna Uttam
- Department
of Chemistry, Indian Institute of Technology
Bombay, Powai, Mumbai 400 076, India
| | - Iffat Jahan
- Department
of Biosciences & Bioengineering, Indian
Institute of Technology Bombay, Powai, Mumbai 400 076, India
| | - Shamik Sen
- Department
of Biosciences & Bioengineering, Indian
Institute of Technology Bombay, Powai, Mumbai 400 076, India
| | - Chebrolu Pulla Rao
- Department
of Chemistry, Indian Institute of Technology
Tirupati, Settipalli Post, Tirupati 517 506, Andhra Pradesh, India
| |
Collapse
|
3
|
Vyas G, Bhatt S, Si MK, Jindani S, Suresh E, Ganguly B, Paul P. Colorimetric dual sensor for Cu(II) and tyrosine and its application as paper strips for detection in water and human saliva as real samples. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 230:118052. [PMID: 31955120 DOI: 10.1016/j.saa.2020.118052] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 01/07/2020] [Accepted: 01/09/2020] [Indexed: 06/10/2023]
Abstract
A calix[4]arene based compound incorporating amide and morpholine moieties has been synthesized and its ion recognition property towards metal ions and application of its metal complex towards sensing of amino acids has been investigated. The synthesized compound interacts with Cu2+ with high selectivity and sensitivity (LOD, 0.1 ppb) in aqueous media with instant color change from colorless to yellow without interference from any other metal ions used in this study. The molecular structure of the calix compound (1) has been determined by single crystal X-ray study and the structure of its Cu2+ complex has been established by DFT calculation. The Cu2+ complex of 1 selectively detects tyrosine (LOD, 1.2 ppm) in water with distinct color change and without any interference from other 22 amino acids used in this study. The mechanism for detection of tyrosine with color change is also presented. For easy field application, paper based sensor strips have been prepared by coating compound 1 and its Cu2+ complex on filter paper, which have been used for semi-quantitative measurement of Cu2+ and tyrosine. Compound 1 and its Cu2+ complex have also been used for detection of Cu2+ and tyrosine, respectively in water and human saliva as real samples and satisfactory results are obtained.
Collapse
Affiliation(s)
- Gaurav Vyas
- Analytical and Environmental Science Division & Centralized Instrument Facility, CSIR-Central Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar 364002, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shreya Bhatt
- Analytical and Environmental Science Division & Centralized Instrument Facility, CSIR-Central Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar 364002, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Mrinal K Si
- Analytical and Environmental Science Division & Centralized Instrument Facility, CSIR-Central Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar 364002, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sana Jindani
- Analytical and Environmental Science Division & Centralized Instrument Facility, CSIR-Central Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar 364002, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Eringathodi Suresh
- Analytical and Environmental Science Division & Centralized Instrument Facility, CSIR-Central Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar 364002, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Bishwajit Ganguly
- Analytical and Environmental Science Division & Centralized Instrument Facility, CSIR-Central Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar 364002, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Parimal Paul
- Analytical and Environmental Science Division & Centralized Instrument Facility, CSIR-Central Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar 364002, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
4
|
Nag R, Polepalli S, Althaf Hussain M, Rao CP. Ratiometric Cu 2+ Binding, Cell Imaging, Mitochondrial Targeting, and Anticancer Activity with Nanomolar IC 50 by Spiro-Indoline-Conjugated Calix[4]arene. ACS OMEGA 2019; 4:13231-13240. [PMID: 31460450 PMCID: PMC6704586 DOI: 10.1021/acsomega.9b01402] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/16/2019] [Indexed: 05/23/2023]
Abstract
A triazole-derivatized, spiro-indoline-linked, 1,3-di-derivative of calix[4]arene (L) has been synthesized to take advantage of its ion-binding capability in the ring-open form. Indeed, the spiro-indoline moiety is well known for its photochromic, acidochromic, and metallochromic properties. Therefore, the L has been explored for Cu2+ binding, cell imaging, and anticancer activity of the corresponding complex since Cu2+ complexes are known for such activity. The conversion from the closed to open form of L is expedited by light or proton, while the metal ion can open as well as stabilize it. The open form of L showed binding of Cu2+ ratiometrically as demonstrated by absorption and fluorescence spectroscopy. This leads to the formation of 1:1 complex with a binding constant of (6.9 ± 2.3) × 105 M-1, with the lowest detection limit being 1.9 nM. In the complex, the Cu2+ is bound by two triazole-N and two phenolic-O groups resulting in a distorted tetrahedral coordination core of CuN2O2 as demonstrated based on density functional theory studies. To form such coordination core, the arms underwent considerable changes in some of the dihedral angles. The binding of Cu2+ to L induces self-assembly of L by varying from simple particles to rodlike structures when bound to Cu2+. The on-off fluorescence intensity of L and its Cu2+-bound species are responsible for imaging cancer cells. The L shows red fluorescence in MDA-MB-231 cancer cells by targeting mitochondria as proved based on the colocalization study carried out using MitoTracker Green. While the L alone is nontoxic to cancer cells, the presence of Cu2+ brings cell death to an extent of 90% with an IC50 value of 165 nM by bringing a substantial quench in the fluorescence of L. A shift of population from G0/G1 and G2M phases to the Sub-G1 phase was observed as the concentration of the complex was increased, indicating cell death as studied by fluorescence-activated cell sorting. Thus, the present work clearly proved that a calix[4]arene functionalized at the lower rim with spiro-indoline moieities when complexed with Cu2+ acts as an efficient anticancer agent and is capable of imaging cancer cells.
Collapse
Affiliation(s)
- Rahul Nag
- Bioinorganic Laboratory,
Department of Chemistry, Indian Institute
of Technology Bombay, Powai, Mumbai 400076, India
| | - Sirilata Polepalli
- Bioinorganic Laboratory,
Department of Chemistry, Indian Institute
of Technology Bombay, Powai, Mumbai 400076, India
| | - Mohammed Althaf Hussain
- Bioinorganic Laboratory,
Department of Chemistry, Indian Institute
of Technology Bombay, Powai, Mumbai 400076, India
| | - Chebrolu Pulla Rao
- Bioinorganic Laboratory,
Department of Chemistry, Indian Institute
of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
5
|
Kumar R, Sharma A, Singh H, Suating P, Kim HS, Sunwoo K, Shim I, Gibb BC, Kim JS. Revisiting Fluorescent Calixarenes: From Molecular Sensors to Smart Materials. Chem Rev 2019; 119:9657-9721. [DOI: 10.1021/acs.chemrev.8b00605] [Citation(s) in RCA: 212] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Rajesh Kumar
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Amit Sharma
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Hardev Singh
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Paolo Suating
- Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| | - Hyeong Seok Kim
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Kyoung Sunwoo
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Inseob Shim
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Bruce C. Gibb
- Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul 02841, Korea
| |
Collapse
|
6
|
Uttam B, Hussain MA, Joshi S, Rao CP. Physicochemical and Ion-Sensing Properties of Benzofurazan-Appended Calix[4]arene in Solution and on Gold Nanoparticles: Spectroscopy, Microscopy, and DFT Computations in Support of the Species of Recognition. ACS OMEGA 2018; 3:16989-16999. [PMID: 31458321 PMCID: PMC6644172 DOI: 10.1021/acsomega.8b02848] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 11/28/2018] [Indexed: 05/21/2023]
Abstract
A calix[4]arene conjugate (L) functionalized at the lower rim with a benzofurazan fluorophore (NBD) and at the upper rim with a thioether moiety has been synthesized and characterized by 1H NMR, 13C NMR, and mass spectrometry techniques. Both the absorption and emission spectral data for L in different solvents exhibited progressive changes with an increase in polarity. Ion recognition studies were performed by absorption and fluorescence spectroscopy using 10 different metal ions. Among these, Hg2+ exhibited greater changes in these spectra, whereas Cu2+ showed only significant changes and all other ions showed no change in the spectral features. Although the Hg2+ has dominant influence on the spectral features and provides a detection limit of 56.0 ± 0.6 ppb, the selectivity was hampered because of the presence of the derivatizations present on both the rims of L for ion interaction in solution. Therefore, L was immobilized onto gold nanoparticles (AuNPL's) so that the upper rim derivatizations anchor onto the gold surface through Au-S interactions, and this leaves out only the lower rim NBD derivatization for interaction with ions selectively. The AuNPL's were characterized by transmission electron microscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy (XPS) analyses. The surface characteristics were analyzed by contact angle measurements. The AuNPL's exhibit greater selectivity and enhanced sensitivity for Hg2+ ions with a lowest detection limit of 48.0 ± 0.8 ppb. The immobilization of L onto AuNPs was reflected in the corresponding fluorescence lifetime values, and the addition of Hg2+ to either L or AuNPL showed fluorescence quenching. The reversible recognition of Hg2+ by L was demonstrated by titrating L or AuNPL with Hg2+ followed by tetra-butyl ammonium iodide for several cycles. The structural features of Hg2+-bound species were demonstrated by density functional theory computations and were supported by the XPS data. The Hg2+ induces aggregated fibrillar morphology into supramolecular L, as demonstrated by microscopy when Hg2+ was added either to L or to AuNPL, supporting aggregation-caused quenching.
Collapse
|
7
|
Patra S, Boricha VP, Paul P. Dual-Mode Calixarene-Based Chemosensor: Highly Selective Fluorogenic Detection of Hg2+
and Chromogenic Detection of Cu2+
with a Single Ionophore. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201800925] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Subrata Patra
- Analytical and Environmental Science Division & Centralized Instrument Facility; CSIR-Central Salt and Marine Chemicals Research Institute; G. B. Marg 364002 Bhavnagar India
- Department of Chemistry; Marwadi University; -360007 Rajkot Gujarat India
| | - Vinod P. Boricha
- Analytical and Environmental Science Division & Centralized Instrument Facility; CSIR-Central Salt and Marine Chemicals Research Institute; G. B. Marg 364002 Bhavnagar India
| | - Parimal Paul
- Analytical and Environmental Science Division & Centralized Instrument Facility; CSIR-Central Salt and Marine Chemicals Research Institute; G. B. Marg 364002 Bhavnagar India
| |
Collapse
|
8
|
Sreedevi P, Nair JB, Preethanuj P, Jeeja BS, Suresh CH, Maiti KK, Varma RL. Calix[4]arene Based Redox Sensitive Molecular Probe for SERS Guided Recognition of Labile Iron Pool in Tumor Cells. Anal Chem 2018; 90:7148-7153. [PMID: 29792682 DOI: 10.1021/acs.analchem.8b01982] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Targeting the intracellular "labile" iron pool is turned as a key modulator for cancer progression since the former is responsible for several pathological processes in tumor cells. Herein, we report a nonfluorescent calix[4]arene based triazole appended molecular probe (PTBC) for redox-specific detection of Fe3+ under physiological condition by UV-vis, FT-IR, 1H NMR, HR-MS spectroscopies, ITC, and the binding strategy between Calix[4]arene and Fe3+ was modeled by DFT calculations. As a new insight PTBC probe showed significant Raman fingerprint through surface enhanced Raman scattering (SERS) modality revealing the ultrasensitive detection of Fe3+ with a LOD of 2 nM. Interestingly, intracellular "iron pool" has been recognized in human lung adenocarcinoma cells (A549) by the PTBC illustrating the distinct Raman mapping. Finally, PTBC imparted cytotoxicity via reactive oxygen species (ROS) generation in cellular milieu signifies its capability as a theranostic molecular probe.
Collapse
Affiliation(s)
- Padincharapad Sreedevi
- Organic Chemistry Section, Chemical Sciences & Technology Division (CSTD) , CSIR-National Institute for Interdisciplinary Science & Technology (CSIR-NIIST) , Thiruvananthapuram , 695019 , Kerala India
| | - Jyothi B Nair
- Organic Chemistry Section, Chemical Sciences & Technology Division (CSTD) , CSIR-National Institute for Interdisciplinary Science & Technology (CSIR-NIIST) , Thiruvananthapuram , 695019 , Kerala India.,Academy of Scientific and Innovative Research (AcSIR) , New Delhi , 110020 , India
| | - Preethalayam Preethanuj
- Organic Chemistry Section, Chemical Sciences & Technology Division (CSTD) , CSIR-National Institute for Interdisciplinary Science & Technology (CSIR-NIIST) , Thiruvananthapuram , 695019 , Kerala India
| | - Benadicta S Jeeja
- Organic Chemistry Section, Chemical Sciences & Technology Division (CSTD) , CSIR-National Institute for Interdisciplinary Science & Technology (CSIR-NIIST) , Thiruvananthapuram , 695019 , Kerala India
| | - Cherumuttathu H Suresh
- Organic Chemistry Section, Chemical Sciences & Technology Division (CSTD) , CSIR-National Institute for Interdisciplinary Science & Technology (CSIR-NIIST) , Thiruvananthapuram , 695019 , Kerala India.,Academy of Scientific and Innovative Research (AcSIR) , New Delhi , 110020 , India
| | - Kaustabh Kumar Maiti
- Organic Chemistry Section, Chemical Sciences & Technology Division (CSTD) , CSIR-National Institute for Interdisciplinary Science & Technology (CSIR-NIIST) , Thiruvananthapuram , 695019 , Kerala India.,Academy of Scientific and Innovative Research (AcSIR) , New Delhi , 110020 , India
| | - Ramavarma Luxmi Varma
- Organic Chemistry Section, Chemical Sciences & Technology Division (CSTD) , CSIR-National Institute for Interdisciplinary Science & Technology (CSIR-NIIST) , Thiruvananthapuram , 695019 , Kerala India.,Academy of Scientific and Innovative Research (AcSIR) , New Delhi , 110020 , India
| |
Collapse
|
9
|
Nag R, Vashishtha M, Rao CP. Switching the Ion Selectivity from Fe 3+
to Al 3+
by a Triazole-Appended Calix[4]arene-Based Amphiphile †. ChemistrySelect 2018. [DOI: 10.1002/slct.201702999] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Rahul Nag
- Department of Chemistry; Department of Chemical Engineering; Indian Institute of Technology Bombay, Powai; Mumbai- 400076 India, Tel: +91-22-25767162
| | - Manu Vashishtha
- Department of Chemical Engineering; Indian Institute of Technology Bombay, Powai; Mumbai- 400076 India
| | - Chebrolu Pulla Rao
- Department of Chemistry; Department of Chemical Engineering; Indian Institute of Technology Bombay, Powai; Mumbai- 400076 India, Tel: +91-22-25767162
| |
Collapse
|
10
|
Samanta K, Ranade DS, Upadhyay A, Kulkarni PP, Rao CP. A Bimodal, Cationic, and Water-Soluble Calix[4]arene Conjugate: Design, Synthesis, Characterization, and Transfection of Red Fluorescent Protein Encoded Plasmid in Cancer Cells. ACS APPLIED MATERIALS & INTERFACES 2017; 9:5109-5117. [PMID: 28103012 DOI: 10.1021/acsami.6b14656] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
A new bimodal fluorescent cationic calix[4]arene (L1) conjugate has been synthesized in multiple steps and well characterized by NMR and electrospray ionization-mass spectrometry (ESI-MS) techniques. L1 has been investigated for its DNA binding ability by various spectroscopy techniques like absorption, fluorescence, and circular dichroism (CD). The formation of L1-DNA complex has been confirmed by the gel electrophoresis in the presence of incremental concentration of L1. To visualize the packing of the plasmid (pBR322), detailed tapping mode atomic force microscopy study has been performed, which revealed blob-like structure of plasmid upon addition of the incremental amount of L1. Concentration dependent transfection ability of L1 has been established in MCF-7 cells by confocal microscopy by carrying the red fluorescent protein (RFP) encoded plasmid pCMV-tdTomato-N1 to emit both intrinsic fluorescence of L1 as well as that from RFP. All this has been possible in the absence of any adjuvant phospholipids (DOPE) that are commonly used as helper. Further transfection efficiency of L1 has been compared with the commercially available lipofectamine (LTX) in two cancer cell lines, MCF 7 and SH-SY5Y, and found that the L1 is as efficient as that of LTX. Hence, L1 is an efficient and effective cargo to transport genetic material into the cells.
Collapse
Affiliation(s)
- Kushal Samanta
- Bioinorganic Laboratory, Department of Chemistry, Indian Institute of Technology Bombay , Powai, Mumbai 400076, India
| | - Dnyanesh S Ranade
- Bioprospecting Group, Agharkar Research Institute , G. G. Agarkar Road, Pune 411004, India
| | - Aekta Upadhyay
- Bioinorganic Laboratory, Department of Chemistry, Indian Institute of Technology Bombay , Powai, Mumbai 400076, India
| | - Prasad P Kulkarni
- Bioprospecting Group, Agharkar Research Institute , G. G. Agarkar Road, Pune 411004, India
| | - Chebrolu Pulla Rao
- Bioinorganic Laboratory, Department of Chemistry, Indian Institute of Technology Bombay , Powai, Mumbai 400076, India
| |
Collapse
|
11
|
Bhatt M, Maity D, Hingu V, Suresh E, Ganguly B, Paul P. Functionalized calix[4]arene as a colorimetric dual sensor for Cu(ii) and cysteine in aqueous media: experimental and computational study. NEW J CHEM 2017. [DOI: 10.1039/c7nj02537h] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The sensors developed detect Cu2+and the metal complex recognizes cysteine, detectable by the naked eye, and DFT calculations corroborate the experimental results.
Collapse
Affiliation(s)
- Madhuri Bhatt
- Analytical Division and Centralized Instrument Facility
- CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI)
- Bhavnagar-364002
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Debdeep Maity
- Analytical Division and Centralized Instrument Facility
- CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI)
- Bhavnagar-364002
- India
| | - Vinayak Hingu
- Analytical Division and Centralized Instrument Facility
- CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI)
- Bhavnagar-364002
- India
| | - Eringathodi Suresh
- Analytical Division and Centralized Instrument Facility
- CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI)
- Bhavnagar-364002
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Bishwajit Ganguly
- Analytical Division and Centralized Instrument Facility
- CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI)
- Bhavnagar-364002
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Parimal Paul
- Analytical Division and Centralized Instrument Facility
- CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI)
- Bhavnagar-364002
- India
- Academy of Scientific and Innovative Research (AcSIR)
| |
Collapse
|
12
|
Xie DH, Wang XJ, Sun C, Han J. Calix[4]arene based 1,3,4-oxadiazole as a fluorescent chemosensor for copper(II) ion detection. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.11.051] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|