1
|
Mann P, Fairclough SM, Bourke S, Burkitt Gray M, Urbano L, Morgan DJ, Dailey LA, Thanou M, Long NJ, Green MA. Interface Engineering of Water-Dispersible Near-Infrared-Emitting CuInZnS/ZnSe/ZnS Quantum Dots. CRYSTAL GROWTH & DESIGN 2024; 24:6275-6283. [PMID: 39131444 PMCID: PMC11311135 DOI: 10.1021/acs.cgd.4c00528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 08/13/2024]
Abstract
We report the synthesis of near-infrared (IR)-emitting core/shell/shell quantum dots of CuInZnS/ZnSe/ZnS and their phase transfer to water. The intermediate ZnSe shell was added to inhibit the migration of ions from the standard ZnS shell into the emitting core, which often leads to a blue shift in the emission profile. By engineering the interface between the core and terminal shell layer, the optical properties can be controlled, and emission was maintained in the near-IR region, making the materials attractive for biological applications. In addition, the hydrodynamic diameter of the particle was controlled using amphiphilic polymers.
Collapse
Affiliation(s)
- Patrick Mann
- Department
of Physics, King’s College London, The Strand, London WC2R 2LS, U.K.
| | - Simon M. Fairclough
- Department
of Physics, King’s College London, The Strand, London WC2R 2LS, U.K.
| | - Struan Bourke
- Department
of Physics, King’s College London, The Strand, London WC2R 2LS, U.K.
| | - Mary Burkitt Gray
- Department
of Physics, King’s College London, The Strand, London WC2R 2LS, U.K.
| | - Laura Urbano
- Centre
for Topical Drug Delivery and Toxicology, School of Life and Medical
Sciences, University of Hertfordshire, Hatfield AL10 9AB, U.K.
| | - David J. Morgan
- School
of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K.
| | - Lea Ann Dailey
- Department
of Pharmaceutical Sciences, University of
Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - Maya Thanou
- Institute
of Pharmaceutical Science, King’s
College London, 150 Stamford
Street, London SE1 9NH, U.K.
| | - Nicholas J. Long
- Department
of Chemistry, Imperial College London, Molecular
Sciences Research Hub, White City Campus, London W12 0BZ, U.K.
| | - Mark A. Green
- Department
of Physics, King’s College London, The Strand, London WC2R 2LS, U.K.
| |
Collapse
|
2
|
Dai Q, Du Z, Jing L, Zhang R, Tang W. Enzyme-Responsive Modular Peptides Enhance Tumor Penetration of Quantum Dots via Charge Reversal Strategy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:6208-6220. [PMID: 38279946 DOI: 10.1021/acsami.3c11500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2024]
Abstract
Quantum dots (QDs) are colloidal semiconductor nanoparticles acting as fluorescent probes for detection, disease diagnosis, and photothermal and photodynamic therapy. However, their performance in cancer treatment is limited by inadequate tumor accumulation and penetration due to the larger size of nanoparticles compared to small molecules. To address this challenge, charge reversal nanoparticles offer an effective strategy to prolong blood circulation time and achieve enhanced endocytosis and tumor penetration. In this study, we leveraged the overexpressed γ-glutamyl transpeptidase (GGT) in many human tumors and developed a library of modular peptides to serve as water-soluble surface ligands of QDs. We successfully transferred the QDs from the organic phase to the aqueous phase within 5 min. And through systematic tuning of the peptide sequence, we optimized the fluorescent stability of QDs and their charge reversal behavior in response to GGT. The resulting optimal peptide stabilized QDs in aqueous solution with a high fluorescent retention rate of 93% after three months and realized the surface charge reversal of QDs triggered by GGT in vitro. The binding between the peptide and QD surface was investigated by using saturation transfer differential nuclear magnetic resonance (STD NMR). Thanks to its charge reversal ability, the GGT-responsive QDs exhibited enhanced cellular uptake in GGT-expressing cancer cells and deeper penetration in the 3D multicellular spheroids. This enzyme-responsive modular peptide can lead to specific tumor targeting and deeper tumor penetration, holding great promise to enhance the treatment efficacy of QD-based theranostics.
Collapse
Affiliation(s)
- Qiuju Dai
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Zhen Du
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Lihong Jing
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Bei Yi Jie 2, Zhong Guan Cun, Beijing 100190, China
| | - Rongchun Zhang
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Wen Tang
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
3
|
Korepanov O, Kozodaev D, Aleksandrova O, Bugrov A, Firsov D, Kirilenko D, Mazing D, Moshnikov V, Shomakhov Z. Temperature- and Size-Dependent Photoluminescence of CuInS 2 Quantum Dots. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2892. [PMID: 37947736 PMCID: PMC10650527 DOI: 10.3390/nano13212892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/29/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023]
Abstract
We present the results of a temperature-dependent photoluminescence (PL) spectroscopy study on CuInS2 quantum dots (QDs). In order to elucidate the influence of QD size on PL temperature dependence, size-selective precipitation was used to obtain several nanoparticle fractions. Additionally, the nanoparticles' morphology and chemical composition were studied using transmission electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. The obtained QDs showed luminescence in the visible-near infrared range. The PL energy, linewidth, and intensity were studied within an 11-300 K interval. For all fractions, a temperature decrease led to a shift in the emission maximum to higher energies and pronounced growth of the PL intensity down to 75-100 K. It was found that for large particle fractions, the PL intensity started to decrease, with temperature decreasing below 75 K, while the PL intensity of small nanoparticles remained stable.
Collapse
Affiliation(s)
- Oleg Korepanov
- Micro- and Nanoelectronics Department, Saint Petersburg Electrotechnical University “LETI”, 197022 Saint Petersburg, Russia; (D.K.); (O.A.); (D.F.); (D.M.); (V.M.)
| | - Dmitriy Kozodaev
- Micro- and Nanoelectronics Department, Saint Petersburg Electrotechnical University “LETI”, 197022 Saint Petersburg, Russia; (D.K.); (O.A.); (D.F.); (D.M.); (V.M.)
- NT-MDT BV, 7335 Apeldoorn, The Netherlands
| | - Olga Aleksandrova
- Micro- and Nanoelectronics Department, Saint Petersburg Electrotechnical University “LETI”, 197022 Saint Petersburg, Russia; (D.K.); (O.A.); (D.F.); (D.M.); (V.M.)
| | - Alexander Bugrov
- Department of Physical Chemistry, Saint Petersburg Electrotechnical University “LETI”, 197022 Saint Petersburg, Russia;
| | - Dmitrii Firsov
- Micro- and Nanoelectronics Department, Saint Petersburg Electrotechnical University “LETI”, 197022 Saint Petersburg, Russia; (D.K.); (O.A.); (D.F.); (D.M.); (V.M.)
| | | | - Dmitriy Mazing
- Micro- and Nanoelectronics Department, Saint Petersburg Electrotechnical University “LETI”, 197022 Saint Petersburg, Russia; (D.K.); (O.A.); (D.F.); (D.M.); (V.M.)
| | - Vyacheslav Moshnikov
- Micro- and Nanoelectronics Department, Saint Petersburg Electrotechnical University “LETI”, 197022 Saint Petersburg, Russia; (D.K.); (O.A.); (D.F.); (D.M.); (V.M.)
| | - Zamir Shomakhov
- Institute of Informatics, Electronics and Robotics, Kabardino-Balkarian State University, n.a. Kh.M. Berbekov, 360004 Nalchik, Russia;
| |
Collapse
|
4
|
Wang X, Wu T. An update on the biological effects of quantum dots: From environmental fate to risk assessment based on multiple biological models. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:163166. [PMID: 37011691 DOI: 10.1016/j.scitotenv.2023.163166] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/12/2023] [Accepted: 03/26/2023] [Indexed: 05/17/2023]
Abstract
Quantum dots (QDs) are zero-dimension nanomaterials with excellent physical and chemical properties, which have been widely used in environmental science and biomedicine. Therefore, QDs are potential to cause toxicity to the environment and enter organisms through migration and bioenrichment effects. This review aims to provide a comprehensive and systematic analysis on the adverse effects of QDs in different organisms based on recently available data. Following PRISMA guidelines, this study searched PubMed database according to the pre-set keywords, and included 206 studies according to the inclusion and elimination criteria. CiteSpace software was firstly used to analyze the keywords of included literatures, search for breaking points of former studies, and summarize the classification, characterization and dosage of QDs. The environment fate of QDs in the ecosystems were then analyzed, followed with comprehensively summarized toxicity outcomes at individual, system, cell, subcellular and molecular levels. After migration and degradation in the environment, aquatic plants, bacteria, fungi as well as invertebrates and vertebrates have been found to be suffered from toxic effects caused by QDs. Aside from systemic effects, toxicity of intrinsic QDs targeting to specific organs, including respiratory system, cardiovascular system, hepatorenal system, nervous system and immune system were confirmed in multiple animal models. Moreover, QDs could be taken up by cells and disturb the organelles, which resulted in cellular inflammation and cell death, including autophagy, apoptosis, necrosis, pyroptosis and ferroptosis. Recently, several innovative technologies, like organoids have been applied in the risk assessment of QDs to promote the surgical interventions of preventing QDs' toxicity. This review not only aimed at updating the research progress on the biological effects of QDs from environmental fate to risk assessment, but also overcame the limitations of available reviews on basic toxicity of nanomaterials by interdisciplinarity and provided new insights for better applications of QDs.
Collapse
Affiliation(s)
- Xinyu Wang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, Nanjing 210009, PR China; School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Tianshu Wu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, Nanjing 210009, PR China; School of Public Health, Southeast University, Nanjing 210009, PR China.
| |
Collapse
|
5
|
Sobhanan J, Rival JV, Anas A, Sidharth Shibu E, Takano Y, Biju V. Luminescent Quantum Dots: Synthesis, Optical Properties, Bioimaging and Toxicity. Adv Drug Deliv Rev 2023; 197:114830. [PMID: 37086917 DOI: 10.1016/j.addr.2023.114830] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/26/2023] [Accepted: 04/14/2023] [Indexed: 04/24/2023]
Abstract
Luminescent nanomaterials such as semiconductor nanocrystals (NCs) and quantum dots (QDs) attract much attention to optical detectors, LEDs, photovoltaics, displays, biosensing, and bioimaging. These materials include metal chalcogenide QDs and metal halide perovskite NCs. Since the introduction of cadmium chalcogenide QDs to biolabeling and bioimaging, various metal nanoparticles (NPs), atomically precise metal nanoclusters, carbon QDs, graphene QDs, silicon QDs, and other chalcogenide QDs have been infiltrating the nano-bio interface as imaging and therapeutic agents. Nanobioconjugates prepared from luminescent QDs form a new class of imaging probes for cellular and in vivo imaging with single-molecule, super-resolution, and 3D resolutions. Surface modified and bioconjugated core-only and core-shell QDs of metal chalcogenides (MX; M = Cd/Pb/Hg/Ag, and X = S/Se/Te,), binary metal chalcogenides (MInX2; M = Cu/Ag, and X = S/Se/Te), indium compounds (InAs and InP), metal NPs (Ag, Au, and Pt), pure or mixed precision nanoclusters (Ag, Au, Pt), carbon nanomaterials (graphene QDs, graphene nanosheets, carbon NPs, and nanodiamond), silica NPs, silicon QDs, etc. have become prevalent in biosensing, bioimaging, and phototherapy. While heavy metal-based QDs are limited to in vitro bioanalysis or clinical testing due to their potential metal ion-induced toxicity, carbon (nanodiamond and graphene) and silicon QDs, gold and silica nanoparticles, and metal nanoclusters continue their in vivo voyage towards clinical imaging and therapeutic applications. This review summarizes the synthesis, chemical modifications, optical properties, and bioimaging applications of semiconductor QDs with particular references to metal chalcogenide QDs and bimetallic chalcogenide QDs. Also, this review highlights the toxicity and pharmacokinetics of QD bioconjugates.
Collapse
Affiliation(s)
- Jeladhara Sobhanan
- Graduate School of Environmental Science, Hokkaido University, N10 W5, Sapporo, Hokkaido 060-0810, Japan; Center for Adapting Flaws into Features, Department of Chemistry, Rice University, 6100 Main St., Houston, TX 77005, USA
| | - Jose V Rival
- Smart Materials Lab, Department of Nanoscience and Technology, University of Calicut, Kerala, India
| | - Abdulaziz Anas
- CSIR-National Institute of Oceanography, Regional Centre Kochi, Kerala 682 018, India.
| | | | - Yuta Takano
- Graduate School of Environmental Science, Hokkaido University, N10 W5, Sapporo, Hokkaido 060-0810, Japan; Research Institute for Electronic Science, Hokkaido University, Sapporo 001-0020, Japan
| | - Vasudevanpillai Biju
- Graduate School of Environmental Science, Hokkaido University, N10 W5, Sapporo, Hokkaido 060-0810, Japan; Research Institute for Electronic Science, Hokkaido University, Sapporo 001-0020, Japan.
| |
Collapse
|
6
|
Jin Q, Zhang X, Zhang L, Li J, Lv Y, Li N, Wang L, Wu R, Li LS. Fabrication of CuInZnS/ZnS Quantum Dot Microbeads by a Two-Step Approach of Emulsification-Solvent Evaporation and Surfactant Substitution and Its Application for Quantitative Detection. Inorg Chem 2023; 62:3474-3484. [PMID: 36789761 DOI: 10.1021/acs.inorgchem.2c03783] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
CuInS2 quantum dots (CIS QDs) are considered to be promising alternatives for Cd-based QDs in the fields of biology and medicine. However, high-quality hydrophobic CIS QDs are difficult to be transferred to water due to their 1-dodecylmercaptan (DDT) ligands. Therefore, the fluorescence and stability of the prepared aqueous CIS QDs is not enough to meet the requirement for sensitive detection. Here, as large as 13 nm CuInZnS/ZnS QDs with DDT ligands were first synthesized, and then, CuInZnS/ZnS microbeads (QBs) containing thousands of QDs were successfully fabricated by a two-step approach of emulsion-solvent evaporation and surfactant substitution. Through emulsion-solvent evaporation, the CuInZnS/ZnS QDs formed microbeads in the microemulsion with dodecyl trimethylammonium bromide (DTAB), and the Förster resonance energy transfer (FRET) has been effectively overcome. Then, CO-520 was introduced to substitute DTAB to improve the stability and water solubility. Lastly, the microbeads were coated with a SiO2 shell and carboxylated. Subsequently, the constructed QBs (∼210 nm) were used as labels in a fluorescence immunosorbent assay (FLISA) for quantitative detection of heart type fatty acid binding protein (H-FABP), and the limit of detection was 0.48 ng mL-1, which indicated a greatly improved detection sensitivity compared to that of the Cd-free QDs. The highly fluorescent and stable CuInZnS/ZnS QBs will have great application prospects in many biological fields.
Collapse
Affiliation(s)
- Qiaoli Jin
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials Science, and National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, Henan University, Kaifeng 475004, China
| | - Xuhui Zhang
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials Science, and National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, Henan University, Kaifeng 475004, China
| | - Lifang Zhang
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials Science, and National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, Henan University, Kaifeng 475004, China
| | - Jinjie Li
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials Science, and National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, Henan University, Kaifeng 475004, China
| | - Yanbing Lv
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials Science, and National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, Henan University, Kaifeng 475004, China
| | - Ning Li
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials Science, and National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, Henan University, Kaifeng 475004, China
| | - Lei Wang
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials Science, and National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, Henan University, Kaifeng 475004, China
| | - Ruili Wu
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials Science, and National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, Henan University, Kaifeng 475004, China
| | - Lin Song Li
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials Science, and National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, Henan University, Kaifeng 475004, China
| |
Collapse
|
7
|
Torimoto T, Kameyama T, Uematsu T, Kuwabata S. Controlling Optical Properties and Electronic Energy Structure of I-III-VI Semiconductor Quantum Dots for Improving Their Photofunctions. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C: PHOTOCHEMISTRY REVIEWS 2022. [DOI: 10.1016/j.jphotochemrev.2022.100569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
8
|
Goryacheva OA, Wegner KD, Sobolev AM, Häusler I, Gaponik N, Goryacheva IY, Resch-Genger U. Influence of particle architecture on the photoluminescence properties of silica-coated CdSe core/shell quantum dots. Anal Bioanal Chem 2022; 414:4427-4439. [PMID: 35303136 DOI: 10.1007/s00216-022-04005-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 12/25/2022]
Abstract
Light-emitting nanoparticles like semiconductor nanocrystals (termed quantum dots, QDs) are promising candidates for biosensing and bioimaging applications based on their bright and stable photoluminescent properties. As high-quality QDs are often synthesized in organic solvents, strategies needed to be developed to render them water-dispersible without affecting their optical properties and prevent changes in postmodification steps like the biofunctionalization with antibodies or DNA. Despite a large number of studies on suitable surface modification procedures, the preparation of water-soluble QDs for nanobiotechnology applications still presents a challenge. To highlight the advantages of surface silanization, we systematically explored the influence of the core/multishell architecture of CdSe/CdS/ZnS QDs and the silanization conditions on the optical properties of the resulting silanized QDs. Our results show that the optical properties of silica-coated CdSe/CdS/ZnS QDs are best preserved in the presence of a thick CdS (6 monolayers (ML)) intermediate shell, providing a high photoluminescence quantum yield (PL QY), and a relatively thick ZnS (4.5 ML) external shell, effectively shielding the QDs from the chemical changes during silica coating. In addition to the QD core/shell architecture, other critical parameters of the silica-coating process, that can have an influence on the optical properties of the QD, include the choice of the surfactant and its concentration used for silica coating. The highest PL QY of about 46% was obtained by a microemulsion silica-coating procedure with the surfactant Brij L4, making these water-dispersible QDs to well-suited optical reporters in future applications like fluorescence immunoassays, biomedicine, and bioimaging.
Collapse
Affiliation(s)
- Olga A Goryacheva
- Department of General and Inorganic Chemistry, Chemistry Institute, Saratov State University, Astrakhanskaya 83, 410012, Saratov, Russia. .,Physical Chemistry, Technische Universität Dresden, Zellescher Weg 19, 01062, Dresden, Germany.
| | - K David Wegner
- Division Biophotonics, Federal Institute for Materials Research and Testing (BAM), Richard-Willstätter-Straße 11, 12489, Berlin, Germany
| | - Aleksandr M Sobolev
- Department of General and Inorganic Chemistry, Chemistry Institute, Saratov State University, Astrakhanskaya 83, 410012, Saratov, Russia.,Division Biophotonics, Federal Institute for Materials Research and Testing (BAM), Richard-Willstätter-Straße 11, 12489, Berlin, Germany
| | - Ines Häusler
- AG Strukturforschung/Elektronenmikroskopie, Institut Für Physik, Humboldt-Universität Zu Berlin, Newtonstraße 15, 12489, Berlin, Germany
| | - Nikolai Gaponik
- Physical Chemistry, Technische Universität Dresden, Zellescher Weg 19, 01062, Dresden, Germany
| | - Irina Y Goryacheva
- Department of General and Inorganic Chemistry, Chemistry Institute, Saratov State University, Astrakhanskaya 83, 410012, Saratov, Russia
| | - Ute Resch-Genger
- Division Biophotonics, Federal Institute for Materials Research and Testing (BAM), Richard-Willstätter-Straße 11, 12489, Berlin, Germany.
| |
Collapse
|
9
|
M. Aguilar N, Perez-Aguilar JM, González-Coronel VJ, Soriano Moro JG, Sanchez-Gaytan BL. Polymers as Versatile Players in the Stabilization, Capping, and Design of Inorganic Nanostructures. ACS OMEGA 2021; 6:35196-35203. [PMID: 34984252 PMCID: PMC8717372 DOI: 10.1021/acsomega.1c05420] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/19/2021] [Indexed: 05/14/2023]
Abstract
The integration of simple components to generate sophisticated hybrid materials with fine-tuned properties represents a significant scientific challenge. Herein, we present recent advances in the use of polymers to control the synthesis and properties of three of the most relevant inorganic nanoparticles, namely, quantum dots (QDs), magnetic nanoparticles (MNPs), and noble metal nanoparticles (NMNPs). We show relevant examples of how polymeric structures synthesized by techniques such as ATRP, RAFT, and living cationic polymerization are used to aid in the synthesis and stabilization of the nanostructures to generate nanocomposites with outstanding capabilities. Special emphasis is placed on describing how some of the exceptional physicochemical properties of polymers are used as nanoreactors to facilitate the synthesis of the nanostructure by providing an adequate chemical environment. Additionally, we also describe how polymers are utilized to protect the integrity of the nanostructure from chemical degradation. The integration of polymeric structures and the nanostructures has a strong impact on the dispersion and morphology of the latter and, consequently, endow them with novel and promising features. The advances described here, particularly the use of polymers to modulate and provide new properties to nanoparticles, exemplify the great versatility of polymers and how these may expand the capabilities of inorganic nanostructures that can be used to generate novel and sophisticated hybrid materials.
Collapse
Affiliation(s)
- Nery M. Aguilar
- Chemistry
Center, Science Institute, Meritorious Autonomous
University of Puebla (BUAP), University City, Puebla 72570, Mexico
| | - Jose Manuel Perez-Aguilar
- School
of Chemical Sciences, Meritorious Autonomous
University of Puebla (BUAP), University City, Puebla 72570, Mexico
| | - Valeria J. González-Coronel
- School
of Chemical Engineering, Meritorious Autonomous
University of Puebla (BUAP), University City, Puebla 72570, Mexico
| | - Jesus Guillermo Soriano Moro
- Chemistry
Center, Science Institute, Meritorious Autonomous
University of Puebla (BUAP), University City, Puebla 72570, Mexico
| | - Brenda L. Sanchez-Gaytan
- Chemistry
Center, Science Institute, Meritorious Autonomous
University of Puebla (BUAP), University City, Puebla 72570, Mexico
| |
Collapse
|
10
|
Xue D, Zou W, Liu D, Li L, Chen T, Yang Z, Chen Y, Wang X, Lu W, Lin G. Cytotoxicity and transcriptome changes triggered by CuInS 2/ZnS quantum dots in human glial cells. Neurotoxicology 2021; 88:134-143. [PMID: 34785253 DOI: 10.1016/j.neuro.2021.11.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 11/03/2021] [Accepted: 11/12/2021] [Indexed: 01/27/2023]
Abstract
As a newly developed cadmium-free quantum dot (QD), CuInS2/ZnS has great application potential in many fields, but its biological safety has not been fully understood. In this study, the in vitro toxicity of CuInS2/ZnS QDs on U87 human glioma cell line was explored. The cells were treated with different concentrations of QDs (12.5, 25, 50 and 100 μg/mL), and the uptake of QDs by the U87 cells was detected by fluorescence imaging and flow cytometry. The cell viability was observed by MTT assay, and the gene expression profile was analyzed by transcriptome sequencing. These results showed that QDs could enter the cells and mainly located in the cytoplasm. The uptake rate was over 90 % when the concentration of QDs reached 25 μg/mL. The cell viability (50 and 100 μg/mL) increased at 24 h (P < 0.05), but no significant difference after 48 h and 72 h treatment. The results of differential transcription showed that coding RNA accounted for the largest proportion (62.15 %), followed by long non-coding RNA (18.65 %). Total 220 genes were up-regulated and 1515 genes were down-regulated, and significantly altered gene functions included nucleosome, chromosome-DNA binding, and chromosome assembly. In conclusion, CuInS2/ZnS QDs could enter U87 cells, did not reduce the cell viability, but would obviously alter the gene expression profile. These findings provide valuable information for a proper understanding of the toxicity risk of CuInS2/ZnS QD and promote the rational utilization of QDs in the future.
Collapse
Affiliation(s)
- Dahui Xue
- School of Public Health, Health Science Center, Shenzhen University, Shenzhen, China; School of Basic Medical Sciences, Health Science Center, Shenzhen University, Shenzhen, China
| | - Wenyi Zou
- School of Basic Medical Sciences, Health Science Center, Shenzhen University, Shenzhen, China
| | - Dongmeng Liu
- School of Public Health, Health Science Center, Shenzhen University, Shenzhen, China; School of Basic Medical Sciences, Health Science Center, Shenzhen University, Shenzhen, China
| | - Li Li
- School of Public Health, Health Science Center, Shenzhen University, Shenzhen, China; School of Basic Medical Sciences, Health Science Center, Shenzhen University, Shenzhen, China
| | - Tingting Chen
- School of Basic Medical Sciences, Health Science Center, Shenzhen University, Shenzhen, China
| | - Zhiwen Yang
- School of Basic Medical Sciences, Health Science Center, Shenzhen University, Shenzhen, China
| | - Yajing Chen
- School of Basic Medical Sciences, Health Science Center, Shenzhen University, Shenzhen, China
| | - Xiaomei Wang
- School of Basic Medical Sciences, Health Science Center, Shenzhen University, Shenzhen, China
| | - Wencan Lu
- Department of Spine Surgery, Shenzhen University General Hospital, Shenzhen, 518060, China.
| | - Guimiao Lin
- School of Public Health, Health Science Center, Shenzhen University, Shenzhen, China; School of Basic Medical Sciences, Health Science Center, Shenzhen University, Shenzhen, China.
| |
Collapse
|
11
|
Biomimetic synthesis of CuInS2 nanoparticles: Characterization, cytotoxicity, and application in quantum dots sensitized solar cells. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103176] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
12
|
Ahmad A, Ansari MM, Verma RK, Khan R. Aminocellulose-Grafted Polymeric Nanoparticles for Selective Targeting of CHEK2-Deficient Colorectal Cancer. ACS APPLIED BIO MATERIALS 2021; 4:5324-5335. [PMID: 35007013 DOI: 10.1021/acsabm.1c00437] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
We report the formulation of aminocellulose-grafted polymeric nanoparticles containing LCS-1 for synthetic lethal targeting of checkpoint kinase 2 (CHEK2)-deficient HCT116 colon cancer (CRC) cells to surpass the limitations associated with the solubility of LCS-1 (a superoxide dismutase inhibitor). Aminocellulose (AC), a highly biocompatible and biodegradable hydrophilic polymer, was grafted over polycaprolactone (PCL), and a nanoprecipitation method was employed for formulating nanoparticles containing LCS-1. In this study, we exploited the synthetic lethal interaction between SOD1 and CHEK2 for the specific inhibition of CHEK2-deficient HCT116 CRC cells using LCS-1-loaded PCL-AC NPs. Furthermore, the effects of formation of protein corona on PCL-AC nanoparticles were also assessed in terms of size, cellular uptake, and cell viability. LCS-1-loaded NPs were evaluated for their size, zeta potential, and polydispersity index using a zetasizer, and their morphological characteristics were assessed by transmission electron microscopy, scanning electron microscopy, and atomic force microscopy analyses. Cellular internalization using confocal microscopy exhibited that nanoparticles were uptaken by HCT116 cells. Also, nanoparticles were cytocompatible as they did not induce cytotoxicity in hTERT and HEK-293 cells. The LCS-1-loaded PCL-AC NPs were quite hemocompatible and were 240 times more selective in killing CHEK2-deficient cells as compared to CHEK2-proficient CRC cells. Moreover, PCL-AC NPs exhibited that the protein corona-coated nanoparticles were incubated in the human and fetal bovine sera as visualized by SDS-PAGE. A slight increment in hydrodynamic diameter was observed for corona-coated PCL-AC nanoparticles, and size increment was further confirmed by TEM. Corona-coated PCL-AC NPs also exhibited cellular uptake as demonstrated by flow cytometric analysis and did not cause cytotoxic effects on hTERT cells. The nanoformulation was developed to enhance therapeutic potential of the drug LCS-1 for enhanced lethality of colorectal cancer cells with CHEK2 deficiency.
Collapse
Affiliation(s)
- Anas Ahmad
- Institute of Nano Science and Technology, Sector-81, Knowledge City, Sahibzada Ajit Singh Nagar, Punjab 140306, India.,Department of Pharmacology, Chandigarh College of Pharmacy, Sector 112, Sahibzada Ajit Singh Nagar, Punjab 140307, India
| | - Md Meraj Ansari
- Institute of Nano Science and Technology, Sector-81, Knowledge City, Sahibzada Ajit Singh Nagar, Punjab 140306, India
| | - Rahul Kumar Verma
- Institute of Nano Science and Technology, Sector-81, Knowledge City, Sahibzada Ajit Singh Nagar, Punjab 140306, India
| | - Rehan Khan
- Institute of Nano Science and Technology, Sector-81, Knowledge City, Sahibzada Ajit Singh Nagar, Punjab 140306, India
| |
Collapse
|
13
|
Abramova AM, Goryacheva OA, Drozd DD, Novikova AS, Ponomareva TS, Strokin PD, Goryacheva IY. Luminescence Semiconductor Quantum Dots in Chemical Analysis. JOURNAL OF ANALYTICAL CHEMISTRY 2021. [DOI: 10.1134/s1061934821030023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
14
|
Kokorina AA, Ponomaryova TS, Goryacheva IY. Photoluminescence-based immunochemical methods for determination of C-reactive protein and procalcitonin. Talanta 2021; 224:121837. [PMID: 33379055 DOI: 10.1016/j.talanta.2020.121837] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/26/2020] [Accepted: 10/28/2020] [Indexed: 12/16/2022]
Abstract
Modern, sensitive, rapid, and selective analytical methods for the detection of inflammatory markers are a crucial tool for the assessment of inflammation state, efficacy of medical intervention, and the prediction of future diseases. Their development requires understanding of current state for point-of-care testing of inflammatory markers and identification of their crucial drawbacks. This review summarizes the progress in the application of luminescent labels for immunoassays. The luminescent labels became more popular in the latest decade due to their high sensitivity, selectivity, and robustness. This review presents a constructive analysis of different luminescent labels such as fluorescent organic dyes, quantum dots, long-lived emissive nanoparticles, and up-converting nanocrystals, as well as a range of the strategies for inflammatory markers determination. The advantages and disadvantages of all classes of luminescent labels are demonstrated, and the strategies of labels modification for their improvement are discussed. The current approaches for the creation of luminescent probes and robust assays are also highlighted.
Collapse
Affiliation(s)
- Alina A Kokorina
- Saratov State University, Astrakhanskaya Street 83, 410012, Saratov, Russia.
| | | | | |
Collapse
|
15
|
Shi T, Zhao C, Yin C, Yin H, Song C, Qin L, Wang Z, Shao H, Yu K. Incorporation ZnS quantum dots into carbon nanotubes for high-performance lithium-sulfur batteries. NANOTECHNOLOGY 2020; 31:495406. [PMID: 32990275 DOI: 10.1088/1361-6528/abb490] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Constructing sulfur hosts with high electronic conductivity, large void space, strong chemisorption, and rapid redox kinetics is critically important for their practical applications in lithium-sulfur batteries (LSBs). Herein, by coupling ZnS quantum dots (QDs) with carbon nanotubes (CNTs), one multifunctional sulfur host CNT/ZnS-QDs is designed via a facile one-step hydrothermal method. SEM and TEM analyses reveal that small ZnS-QDs (<5 nm) are uniformly anchored on the CNT surface as well as encapsulated into CNT channels. This special architecture ensures sulfur direct contacting with highly conductive CNTs; meanwhile, the catalytic effect of anchored ZnS-QDs improves the chemisorption and confinement to polysulfides. Benefiting from these merits, when used as sulfur hosts, this special architecture manifests a high specific capacity, superior rate capability, and long-term cycling stability. The ZnS-QDs dependent electrochemical performance is also evaluated by adjusting the mass ratio of ZnS-QDs, and the host of CNT/ZnS-QDs 27% owns the optimal cell performance. The specific capacity decreases from 1051 mAh g-1 at 0.2 C to 544 mAh g-1 at 2.0 C, showing rate capability much higher than CNT/S and other CNT/ZnS-QDs/S samples. After 150 cycles, the cyclic capacity at 0.5 C exhibits a slow reduction from 1051 mAh g-1 to 771 mAh g-1, showing a high retention of 73.4% with a coulombic efficiency of over 99%. The electrochemical impedance spectroscopy analyses demonstrate that this special architecture juggles high conductivity and excellent confinement of polysulfides, which can significantly suppress the notorious shuttle effect and accelerate the redox kinetics. The strategy in this study provides a feasible approach to design efficient sulfur hosts for realizing practically usable LSBs.
Collapse
Affiliation(s)
- Tianyu Shi
- School of Information Science and Technology, Nantong University, Nantong 226019, People's Republic of China
| | - Chenyuan Zhao
- School of Information Science and Technology, Nantong University, Nantong 226019, People's Republic of China
| | - Chuan Yin
- School of Information Science and Technology, Nantong University, Nantong 226019, People's Republic of China
| | - Haihong Yin
- School of Information Science and Technology, Nantong University, Nantong 226019, People's Republic of China
| | | | - Lin Qin
- School of Information Science and Technology, Nantong University, Nantong 226019, People's Republic of China
| | - Zhiliang Wang
- School of Information Science and Technology, Nantong University, Nantong 226019, People's Republic of China
| | - Haibao Shao
- School of Information Science and Technology, Nantong University, Nantong 226019, People's Republic of China
| | - Ke Yu
- Key Laboratory of Polar Materials and Devices, Department of Optoelectronics, East China Normal University, Shanghai 200241, People's Republic of China
| |
Collapse
|
16
|
Nikazar S, Sivasankarapillai VS, Rahdar A, Gasmi S, Anumol PS, Shanavas MS. Revisiting the cytotoxicity of quantum dots: an in-depth overview. Biophys Rev 2020; 12:703-718. [PMID: 32140918 PMCID: PMC7311601 DOI: 10.1007/s12551-020-00653-0] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 02/17/2020] [Indexed: 12/19/2022] Open
Abstract
Recently, medical research has been shifting its focus to nanomedicine and nanotherapeutics in the pursuit of drug development research. Quantum dots (QDs) are a critical class of nanomaterials due to their unique properties, which include optical, electronic, and engineered biocompatibility in physiological environments. These properties have made QDs an attractive biomedical resource such that they have found application as both in vitro labeling and in vivo theranostic (therapy-diagnostic) agents. Considerable research has been conducted exploring the suitability of QDs in theranostic applications, but the cytotoxicity of QDs remains an obstacle. Several types of QDs have been investigated over the past decades, which may be suitable for use in biomedical applications if the barrier of cytotoxicity can be resolved. This review attempts to report and analyze the cytotoxicity of the major QDs along with relevant related aspects.
Collapse
Affiliation(s)
- Sohrab Nikazar
- Chemical Engineering Faculty, Engineering College, University of Tehran, P.O. Box 14155-6455, Tehran, Iran
| | | | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol, Iran.
| | - Salim Gasmi
- Cellular and Applied Toxicology, Larbi Tebessi University, Tebessa, Algeria
| | - P S Anumol
- Department of Biochemistry, University of Kerala, Kariavattom, Thiruvananthapuram, Kerala, 695581, India
| | | |
Collapse
|
17
|
Kays JC, Saeboe AM, Toufanian R, Kurant DE, Dennis AM. Shell-Free Copper Indium Sulfide Quantum Dots Induce Toxicity in Vitro and in Vivo. NANO LETTERS 2020; 20:1980-1991. [PMID: 31999467 PMCID: PMC7210713 DOI: 10.1021/acs.nanolett.9b05259] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Semiconductor quantum dots (QDs) are attractive fluorescent contrast agents for in vivo imaging due to their superior photophysical properties, but traditional QDs comprise toxic materials such as cadmium or lead. Copper indium sulfide (CuInS2, CIS) QDs have been posited as a nontoxic and potentially clinically translatable alternative; however, previous in vivo studies utilized particles with a passivating zinc sulfide (ZnS) shell, limiting direct evidence of the biocompatibility of the underlying CIS. For the first time, we assess the biodistribution and toxicity of unshelled CIS and partially zinc-alloyed CISZ QDs in a murine model. We show that bare CIS QDs breakdown quickly, inducing significant toxicity as seen in organ weight, blood chemistry, and histology. CISZ demonstrates significant, but lower, toxicity compared to bare CIS, while our measurements of core/shell CIS/ZnS are consistent with literature reports of general biocompatibility. In vitro cytotoxicity is dose-dependent on the amount of metal released due to particle degradation, linking degradation to toxicity. These results challenge the assumption that removing heavy metals necessarily reduces toxicity: indeed, we find comparable in vitro cytotoxicity between CIS and CdSe QDs, while CIS caused severe toxicity in vivo compared to CdSe. In addition to highlighting the complexity of nanotoxicity and the differences between the in vitro and in vivo outcomes, these unexpected results serve as a reminder of the importance of assessing the biocompatibility of core QDs absent the protective ZnS shell when making specific claims of compositional biocompatibility.
Collapse
Affiliation(s)
- Joshua C. Kays
- Department of Biomedical Engineering, Boston University, Boston MA 02215
| | - Alexander M. Saeboe
- Division of Materials Science & Engineering, Boston University, Boston MA 02215
| | - Reyhaneh Toufanian
- Division of Materials Science & Engineering, Boston University, Boston MA 02215
| | | | - Allison M. Dennis
- Department of Biomedical Engineering, Boston University, Boston MA 02215
- Division of Materials Science & Engineering, Boston University, Boston MA 02215
| |
Collapse
|
18
|
Chen T, Li L, Lin X, Yang Z, Zou W, Chen Y, Xu J, Liu D, Wang X, Lin G. In vitro and in vivo immunotoxicity of PEGylated Cd-free CuInS2/ZnS quantum dots. Nanotoxicology 2020; 14:372-387. [DOI: 10.1080/17435390.2019.1708495] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Tingting Chen
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen, China
| | - Li Li
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen, China
| | - Xiaotan Lin
- Department of Family Planning, Second Clinical Medical College of Jinan University; Shenzhen People’s Hospital, Shenzhen, China
| | - Zhiwen Yang
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen, China
| | - Wenyi Zou
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen, China
| | - Yajing Chen
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen, China
| | - Jiangyao Xu
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen, China
| | - Dongmeng Liu
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen, China
| | - Xiaomei Wang
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen, China
| | - Guimiao Lin
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen, China
| |
Collapse
|
19
|
Ahmad A, Gupta A, Ansari MM, Vyawahare A, Jayamurugan G, Khan R. Hyperbranched Polymer-Functionalized Magnetic Nanoparticle-Mediated Hyperthermia and Niclosamide Bimodal Therapy of Colorectal Cancer Cells. ACS Biomater Sci Eng 2019; 6:1102-1111. [DOI: 10.1021/acsbiomaterials.9b01947] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Anas Ahmad
- Institute of Nano Science and Technology, Habitat Centre, Phase-10, Sector 64, Mohali, Punjab 160062, India
| | - Anuradha Gupta
- Institute of Nano Science and Technology, Habitat Centre, Phase-10, Sector 64, Mohali, Punjab 160062, India
| | - Md. Meraj Ansari
- Institute of Nano Science and Technology, Habitat Centre, Phase-10, Sector 64, Mohali, Punjab 160062, India
| | - Akshay Vyawahare
- Institute of Nano Science and Technology, Habitat Centre, Phase-10, Sector 64, Mohali, Punjab 160062, India
| | - Govindasamy Jayamurugan
- Institute of Nano Science and Technology, Habitat Centre, Phase-10, Sector 64, Mohali, Punjab 160062, India
| | - Rehan Khan
- Institute of Nano Science and Technology, Habitat Centre, Phase-10, Sector 64, Mohali, Punjab 160062, India
| |
Collapse
|
20
|
Bai X, Purcell-Milton F, Gun'ko YK. Optical Properties, Synthesis, and Potential Applications of Cu-Based Ternary or Quaternary Anisotropic Quantum Dots, Polytypic Nanocrystals, and Core/Shell Heterostructures. NANOMATERIALS 2019; 9:nano9010085. [PMID: 30634642 PMCID: PMC6359286 DOI: 10.3390/nano9010085] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 12/28/2018] [Accepted: 12/31/2018] [Indexed: 12/29/2022]
Abstract
This review summaries the optical properties, recent progress in synthesis, and a range of applications of luminescent Cu-based ternary or quaternary quantum dots (QDs). We first present the unique optical properties of the Cu-based multicomponent QDs, regarding their emission mechanism, high photoluminescent quantum yields (PLQYs), size-dependent bandgap, composition-dependent bandgap, broad emission range, large Stokes’ shift, and long photoluminescent (PL) lifetimes. Huge progress has taken place in this area over the past years, via detailed experimenting and modelling, giving a much more complete understanding of these nanomaterials and enabling the means to control and therefore take full advantage of their important properties. We then fully explore the techniques to prepare the various types of Cu-based ternary or quaternary QDs (including anisotropic nanocrystals (NCs), polytypic NCs, and spherical, nanorod and tetrapod core/shell heterostructures) are introduced in subsequent sections. To date, various strategies have been employed to understand and control the QDs distinct and new morphologies, with the recent development of Cu-based nanorod and tetrapod structure synthesis highlighted. Next, we summarize a series of applications of these luminescent Cu-based anisotropic and core/shell heterostructures, covering luminescent solar concentrators (LSCs), bioimaging and light emitting diodes (LEDs). Finally, we provide perspectives on the overall current status, challenges, and future directions in this field. The confluence of advances in the synthesis, properties, and applications of these Cu-based QDs presents an important opportunity to a wide-range of fields and this piece gives the reader the knowledge to grasp these exciting developments.
Collapse
Affiliation(s)
- Xue Bai
- School of Chemistry and CRANN Institute, Trinity College Dublin, Dublin 2, Dublin, Ireland.
| | - Finn Purcell-Milton
- School of Chemistry and CRANN Institute, Trinity College Dublin, Dublin 2, Dublin, Ireland.
| | - Yuri K Gun'ko
- School of Chemistry and CRANN Institute, Trinity College Dublin, Dublin 2, Dublin, Ireland.
| |
Collapse
|
21
|
Yao J, Li P, Li L, Yang M. Biochemistry and biomedicine of quantum dots: from biodetection to bioimaging, drug discovery, diagnostics, and therapy. Acta Biomater 2018; 74:36-55. [PMID: 29734008 DOI: 10.1016/j.actbio.2018.05.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/19/2018] [Accepted: 05/02/2018] [Indexed: 12/30/2022]
Abstract
According to recent research, nanotechnology based on quantum dots (QDs) has been widely applied in the field of bioimaging, drug delivery, and drug analysis. Therefore, it has become one of the major forces driving basic and applied research. The application of nanotechnology in bioimaging has been of concern. Through in vitro labeling, it was found that luminescent QDs possess many properties such as narrow emission, broad UV excitation, bright fluorescence, and high photostability. The QDs also show great potential in whole-body imaging. The QDs can be combined with biomolecules, and hence, they can be used for targeted drug delivery and diagnosis. The characteristics of QDs make them useful for application in pharmacy and pharmacology. This review focuses on various applications of QDs, especially in imaging, drug delivery, pharmaceutical analysis, photothermal therapy, biochips, and targeted surgery. Finally, conclusions are made by providing some critical challenges and a perspective of how this field can be expected to develop in the future. STATEMENT OF SIGNIFICANCE Quantum dots (QDs) is an emerging field of interdisciplinary subject that involves physics, chemistry, materialogy, biology, medicine, and so on. In addition, nanotechnology based on QDs has been applied in depth in biochemistry and biomedicine. Some forward-looking fields emphatically reflected in some extremely vital areas that possess inspiring potential applicable prospects, such as immunoassay, DNA analysis, biological monitoring, drug discovery, in vitro labelling, in vivo imaging, and tumor target are closely connected to human life and health and has been the top and forefront in science and technology to date. Furthermore, this review has not only involved the traditional biochemical detection but also particularly emphasized its potential applications in life science and biomedicine.
Collapse
|
22
|
Ma H, Qin Y, Yang Z, Yang M, Ma Y, Yin P, Yang Y, Wang T, Lei Z, Yao X. Positively Charged Hyperbranched Polymers with Tunable Fluorescence and Cell Imaging Application. ACS APPLIED MATERIALS & INTERFACES 2018; 10:20064-20072. [PMID: 29693378 DOI: 10.1021/acsami.8b05073] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Fluorescence-tunable materials are becoming increasingly attractive because of their potential applications in optics, electronics, and biomedical technology. Herein, a multicolor molecular pixel system is realized using a simple copolymerization method. Bleeding of two complementary colors from blue and yellow fluorescence segments reproduced serious multicolor fluorescence materials. Interestingly, the emission colors of the polymers can be fine-tuned in the solid state, solution phase, and in hydrogel state. More importantly, the positive fluorescent polymers exhibited cell-membrane permeable ability and were found to accumulate on the cell nucleus, exhibiting remarkable selectivity to give bright fluorescence. The DNA/RNA selectivity experiments in vitro and in vivo verified that [tris(4-(pyridin-4-yl)phenyl)amine]-[1,8-dibromooctane] has prominent selectivity to DNA over RNA inside cells.
Collapse
Affiliation(s)
- Hengchang Ma
- Key Laboratory of Polymer Materials of Gansu Province, Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering , Northwest Normal University , Lanzhou 730070 , PR China
| | - Yanfang Qin
- Key Laboratory of Polymer Materials of Gansu Province, Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering , Northwest Normal University , Lanzhou 730070 , PR China
| | - Zengming Yang
- Key Laboratory of Polymer Materials of Gansu Province, Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering , Northwest Normal University , Lanzhou 730070 , PR China
| | - Manyi Yang
- Key Laboratory of Polymer Materials of Gansu Province, Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering , Northwest Normal University , Lanzhou 730070 , PR China
| | - Yucheng Ma
- Key Laboratory of Polymer Materials of Gansu Province, Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering , Northwest Normal University , Lanzhou 730070 , PR China
| | - Pei Yin
- Key Laboratory of Polymer Materials of Gansu Province, Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering , Northwest Normal University , Lanzhou 730070 , PR China
| | - Yuan Yang
- Key Laboratory of Polymer Materials of Gansu Province, Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering , Northwest Normal University , Lanzhou 730070 , PR China
| | - Tao Wang
- Key Laboratory of Polymer Materials of Gansu Province, Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering , Northwest Normal University , Lanzhou 730070 , PR China
| | - Ziqiang Lei
- Key Laboratory of Polymer Materials of Gansu Province, Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering , Northwest Normal University , Lanzhou 730070 , PR China
| | - Xiaoqiang Yao
- Key Laboratory of Polymer Materials of Gansu Province, Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering , Northwest Normal University , Lanzhou 730070 , PR China
| |
Collapse
|
23
|
Liu X, Zhao G, Chen Z, Panhwar F, He X. Dual Suppression Effect of Magnetic Induction Heating and Microencapsulation on Ice Crystallization Enables Low-Cryoprotectant Vitrification of Stem Cell-Alginate Hydrogel Constructs. ACS APPLIED MATERIALS & INTERFACES 2018; 10:16822-16835. [PMID: 29688697 PMCID: PMC6054798 DOI: 10.1021/acsami.8b04496] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Stem cells microencapsulated in hydrogel as stem cell-hydrogel constructs have wide applications in the burgeoning cell-based medicine. Due to their short shelf life at ambient temperature, long-term storage or banking of the constructs is essential to the "off-the-shelf" ready availability needed for their widespread applications. As a high-efficiency, easy-to-operate, low-toxicity, and low-cost method for long-term storage of the constructs, low-cryoprotectant (CPA) vitrification has attracted tremendous attention recently. However, we found many cells in the stem cell-alginate constructs (∼500 μm in diameter) could not attach to the substrate post low-CPA vitrification with ∼2 M penetrating CPAs. To address this problem, we introduced nanowarming via magnetic induction heating (MIH) of Fe3O4 nanoparticles to minimize recrystallization and devitrification during the warming step of the low-CPA vitrification procedure. Our results indicate that high-quality stem cell-alginate hydrogel constructs with an intact microstructure, high immediate cell survival (>80%), and greatly improved attachment efficiency (by nearly three times, 68% versus 24%) of the encapsulated cells could be obtained post-cryopreservation with nanowarming. Moreover, the cells encapsulated in the cell-hydrogel constructs post-cryopreservation maintained normal proliferation under 3D culture and retained intact biological function of multilineage differentiation. This novel low-CPA vitrification approach for cell cryopreservation enabled by the combined use of alginate hydrogel microencapsulation and Fe3O4 nanoparticles-mediated nanowarming may be valuable in facilitating the widespread application of stem cells in the clinic.
Collapse
Affiliation(s)
- Xiaoli Liu
- Department of Electronic Science and Technology, University of Science and Technology of China, Hefei 230027, Anhui, China
| | - Gang Zhao
- Department of Electronic Science and Technology, University of Science and Technology of China, Hefei 230027, Anhui, China
| | - Zhongrong Chen
- Department of Electronic Science and Technology, University of Science and Technology of China, Hefei 230027, Anhui, China
| | - Fazil Panhwar
- Department of Electronic Science and Technology, University of Science and Technology of China, Hefei 230027, Anhui, China
| | - Xiaoming He
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
24
|
Zhao H, Cao G, Chen H, Li H, Zhou J. Evaluation of hemocompatibility and hemostasis of a bioflocculant. Colloids Surf B Biointerfaces 2017; 159:712-719. [DOI: 10.1016/j.colsurfb.2017.08.054] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 08/24/2017] [Accepted: 08/27/2017] [Indexed: 11/26/2022]
|
25
|
Tsolekile N, Parani S, Matoetoe MC, Songca SP, Oluwafemi OS. Evolution of ternary I–III–VI QDs: Synthesis, characterization and application. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.nanoso.2017.08.012] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
26
|
Guo C, Sun L, Cai H, Duan Z, Zhang S, Gong Q, Luo K, Gu Z. Gadolinium-Labeled Biodegradable Dendron-Hyaluronic Acid Hybrid and Its Subsequent Application as a Safe and Efficient Magnetic Resonance Imaging Contrast Agent. ACS APPLIED MATERIALS & INTERFACES 2017; 9:23508-23519. [PMID: 28656751 DOI: 10.1021/acsami.7b06496] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Novel magnetic resonance imaging (MRI) contrast agents with high sensitivity and good biocompatibility are required for the diagnosis of cancer. Herein, we prepared and characterized the gadolinium [Gd(III)]-labeled peptide dendron-hyaluronic acid (HA) conjugate-based hybrid (dendronized-HA-DOTA-Gd) by combining the advantages of HA and the peptide dendron. The dendronized-HA-DOTA-Gd hybrid with 3.8% Gd(III) as weight percentage showed a negative zeta potential (-35 mV). The in vitro degradation results indicated that the dendronized-HA-DOTA-Gd hybrid degraded into products with low molecular weights in the presence of hyaluronidase. The dendronized-HA-DOTA-Gd hybrid showed a 3-fold increase in longitudinal relaxivity and much higher in vivo signal enhancement in 4T1 breast tumors of mice compared with clinical Magnevist (Gd-DTPA). The dendronized-HA-DOTA-Gd hybrid had a higher accumulation in tumors than Gd-DTPA; it was 2-3-fold after administration. Meanwhile, the polymeric hybrid resulted in low Gd(III) residue in the body compared with that of Gd-DTPA. The systematic biosafety evaluations, including blood compatibility and toxicity assessments, suggested that the dendronized-HA-DOTA-Gd hybrid exhibited good biocompatibility. Thus, the gadolinium-labeled and dendronized HA hybrid shows promise as a safe and efficient macromolecular MRI contrast agent based on high sensitivity, low residue content in the body, and good biosafety.
Collapse
Affiliation(s)
- Chunhua Guo
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Sichuan University , Chengdu, Sichuan 610041, China.,National Engineering Research Center for Biomaterials, Sichuan University , Chengdu 610064, China
| | - Ling Sun
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Sichuan University , Chengdu, Sichuan 610041, China
| | - Hao Cai
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Sichuan University , Chengdu, Sichuan 610041, China.,National Engineering Research Center for Biomaterials, Sichuan University , Chengdu 610064, China
| | - Zhenyu Duan
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Sichuan University , Chengdu, Sichuan 610041, China.,National Engineering Research Center for Biomaterials, Sichuan University , Chengdu 610064, China
| | - Shiyong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University , Chengdu 610064, China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Sichuan University , Chengdu, Sichuan 610041, China
| | - Kui Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Sichuan University , Chengdu, Sichuan 610041, China
| | - Zhongwei Gu
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Sichuan University , Chengdu, Sichuan 610041, China.,National Engineering Research Center for Biomaterials, Sichuan University , Chengdu 610064, China
| |
Collapse
|
27
|
Xia C, Meeldijk JD, Gerritsen HC, de Mello Donega C. Highly Luminescent Water-Dispersible NIR-Emitting Wurtzite CuInS 2/ZnS Core/Shell Colloidal Quantum Dots. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2017; 29:4940-4951. [PMID: 28638177 PMCID: PMC5473174 DOI: 10.1021/acs.chemmater.7b01258] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 05/16/2017] [Indexed: 05/19/2023]
Abstract
Copper indium sulfide (CIS) quantum dots (QDs) are attractive as labels for biomedical imaging, since they have large absorption coefficients across a broad spectral range, size- and composition-tunable photoluminescence from the visible to the near-infrared, and low toxicity. However, the application of NIR-emitting CIS QDs is still hindered by large size and shape dispersions and low photoluminescence quantum yields (PLQYs). In this work, we develop an efficient pathway to synthesize highly luminescent NIR-emitting wurtzite CIS/ZnS QDs, starting from template Cu2-x S nanocrystals (NCs), which are converted by topotactic partial Cu+ for In3+ exchange into CIS NCs. These NCs are subsequently used as cores for the overgrowth of ZnS shells (≤1 nm thick). The CIS/ZnS core/shell QDs exhibit PL tunability from the first to the second NIR window (750-1100 nm), with PLQYs ranging from 75% (at 820 nm) to 25% (at 1050 nm), and can be readily transferred to water upon exchange of the native ligands for mercaptoundecanoic acid. The resulting water-dispersible CIS/ZnS QDs possess good colloidal stability over at least 6 months and PLQYs ranging from 39% (at 820 nm) to 6% (at 1050 nm). These PLQYs are superior to those of commonly available water-soluble NIR-fluorophores (dyes and QDs), making the hydrophilic CIS/ZnS QDs developed in this work promising candidates for further application as NIR emitters in bioimaging. The hydrophobic CIS/ZnS QDs obtained immediately after the ZnS shelling are also attractive as fluorophores in luminescent solar concentrators.
Collapse
Affiliation(s)
- Chenghui Xia
- Condensed
Matter and Interfaces, Debye Institute for Nanomaterials Science, Utrecht University, P.O.
Box 80000, 3508 TA Utrecht, The Netherlands
- Molecular
Biophysics, Debye Institute for Nanomaterials Science, Utrecht University, 3508 TA Utrecht, Netherlands
| | - Johannes D. Meeldijk
- Electron
Microscopy Utrecht, Debye Institute for Nanomaterials Science, Utrecht University, 3584 CH Utrecht, Netherlands
| | - Hans C. Gerritsen
- Molecular
Biophysics, Debye Institute for Nanomaterials Science, Utrecht University, 3508 TA Utrecht, Netherlands
| | - Celso de Mello Donega
- Condensed
Matter and Interfaces, Debye Institute for Nanomaterials Science, Utrecht University, P.O.
Box 80000, 3508 TA Utrecht, The Netherlands
- E-mail:
| |
Collapse
|
28
|
Abstract
Nanotoxicity of nanomaterials is an important issue in view of their potential applications in systemic circulation and wound healing dressing. This account specifically deals with several characteristic features of different nanomaterials which induce hemolysis and how to make them hemocompatible. The shape, size, and surface functionalities of naked metallic as well as nonmetallic nanoparticles surfaces are responsible for the hemolysis. An appropriate coating of biocompatible molecules dramatically reduces hemolysis and promotes their ability as safe drug delivery vehicles. The use of coated nanomaterials in wound healing dressing opens several new strategies for rapid wound healing processes. Properly designed nanomaterials should be selected to minimize the nanotoxicity in the wound healing process. Future directions need new synthetic methods for engineered nanomaterials for their best use in nanomedicine and nanobiotechnology.
Collapse
Affiliation(s)
- Mandeep Singh Bakshi
- Department of Natural and Applied Sciences, University of Wisconsin-Green Bay , 2420 Nicolet Drive, Green Bay, Wisconsin 54311-7001, United States
| |
Collapse
|
29
|
Yukawa H, Baba Y. In Vivo Fluorescence Imaging and the Diagnosis of Stem Cells Using Quantum Dots for Regenerative Medicine. Anal Chem 2017; 89:2671-2681. [PMID: 28194939 DOI: 10.1021/acs.analchem.6b04763] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Hiroshi Yukawa
- Department of Applied Chemistry, Graduate School of Engineering, Nagoya University , Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan.,ImPACT Research Center for Advanced Nanobiodevices, Nagoya University , Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Yoshinobu Baba
- Department of Applied Chemistry, Graduate School of Engineering, Nagoya University , Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan.,ImPACT Research Center for Advanced Nanobiodevices, Nagoya University , Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan.,Institute of Innovation for Future Society, Nagoya University , Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan.,Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST) , 2217-14, Hayashi-cho, Takamatsu 761-0395, Japan.,College of Pharmacy, Kaohsiung Medical University , Shin-Chuan 1 st Rd., Kaohsiung, 807, Taiwan, R.O.C
| |
Collapse
|
30
|
Ogihara Y, Yukawa H, Kameyama T, Nishi H, Onoshima D, Ishikawa T, Torimoto T, Baba Y. Labeling and in vivo visualization of transplanted adipose tissue-derived stem cells with safe cadmium-free aqueous ZnS coating of ZnS-AgInS 2 nanoparticles. Sci Rep 2017; 7:40047. [PMID: 28059135 PMCID: PMC5216330 DOI: 10.1038/srep40047] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 11/30/2016] [Indexed: 01/19/2023] Open
Abstract
The facile synthesis of ZnS-AgInS2 (ZAIS) as cadmium-free QDs and their application, mainly in solar cells, has been reported by our groups. In the present study, we investigated the safety and the usefulness for labeling and in vivo imaging of a newly synthesized aqueous ZnS-coated ZAIS (ZnS-ZAIS) carboxylated nanoparticles (ZZC) to stem cells. ZZC shows the strong fluorescence in aqueous solutions such as PBS and cell culture medium, and a complex of ZZC and octa-arginine (R8) peptides (R8-ZZC) can achieve the highly efficient labeling of adipose tissue-derived stem cells (ASCs). The cytotoxicity of R8-ZZC to ASCs was found to be extremely low in comparison to that of CdSe-based QDs, and R8-ZZC was confirmed to have no influence on the proliferation rate or the differentiation ability of ASCs. Moreover, R8-ZZC was not found to induce the production of major inflammatory cytokines (TNF-α, IFN-γ, IL-12p70, IL-6 and MCP-1) in ASCs. Transplanted R8-ZZC-labeled ASCs could be quantitatively detected in the lungs and liver mainly using an in vivo imaging system. In addition, high-speed multiphoton confocal laser microscopy revealed the presence of aggregates of transplanted ASCs at many sites in the lungs, whereas individual ASCs were found to have accumulated in the liver.
Collapse
Affiliation(s)
- Yusuke Ogihara
- Department of Applied Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Hiroshi Yukawa
- Department of Applied Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan.,ImPACT Research Center for Advanced Nanobiodevices, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Tatsuya Kameyama
- Department of Crystalline Materials Science, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Hiroyasu Nishi
- Department of Crystalline Materials Science, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Daisuke Onoshima
- ImPACT Research Center for Advanced Nanobiodevices, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan.,Institute of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Tetsuya Ishikawa
- Department of Medical Technology, Nagoya University, Graduate School of Medicine, Daikominami, Higashi-ku, Nagoya 461-8673, Japan
| | - Tsukasa Torimoto
- Department of Crystalline Materials Science, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Yoshinobu Baba
- Department of Applied Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan.,ImPACT Research Center for Advanced Nanobiodevices, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan.,Institute of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan.,Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2217-14, Hayashi-cho, Takamatsu 761-0395, Japan
| |
Collapse
|
31
|
Girma WM, Fahmi MZ, Permadi A, Abate MA, Chang JY. Synthetic strategies and biomedical applications of I–III–VI ternary quantum dots. J Mater Chem B 2017; 5:6193-6216. [DOI: 10.1039/c7tb01156c] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
In this review, we discuss recent advances of I–III–VI QDs with a major focus on synthesis and biomedical applications; advantages include low toxicity and fluorescent tuning in the biological window.
Collapse
Affiliation(s)
- Wubshet Mekonnen Girma
- Department of Chemical Engineering
- National Taiwan University of Science and Technology
- Taipei
- Republic of China
| | | | - Adi Permadi
- Department of Chemical Engineering
- National Taiwan University of Science and Technology
- Taipei
- Republic of China
| | - Mulu Alemayehu Abate
- Department of Chemical Engineering
- National Taiwan University of Science and Technology
- Taipei
- Republic of China
| | - Jia-Yaw Chang
- Department of Chemical Engineering
- National Taiwan University of Science and Technology
- Taipei
- Republic of China
| |
Collapse
|