1
|
Raicopol M, Pilan L. The Role of Aryldiazonium Chemistry in Designing Electrochemical Aptasensors for the Detection of Food Contaminants. MATERIALS 2021; 14:ma14143857. [PMID: 34300776 PMCID: PMC8303706 DOI: 10.3390/ma14143857] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/04/2021] [Accepted: 07/06/2021] [Indexed: 01/19/2023]
Abstract
Food safety monitoring assays based on synthetic recognition structures such as aptamers are receiving considerable attention due to their remarkable advantages in terms of their ability to bind to a wide range of target analytes, strong binding affinity, facile manufacturing, and cost-effectiveness. Although aptasensors for food monitoring are still in the development stage, the use of an electrochemical detection route, combined with the wide range of materials available as transducers and the proper immobilization strategy of the aptamer at the transducer surface, can lead to powerful analytical tools. In such a context, employing aryldiazonium salts for the surface derivatization of transducer electrodes serves as a simple, versatile and robust strategy to fine-tune the interface properties and to facilitate the convenient anchoring and stability of the aptamer. By summarizing the most important results disclosed in the last years, this article provides a comprehensive review that emphasizes the contribution of aryldiazonium chemistry in developing electrochemical aptasensors for food safety monitoring.
Collapse
Affiliation(s)
- Matei Raicopol
- Costin Nenitzescu, Department of Organic Chemistry, Faculty of Applied Chemistry and Material Science, University Politehnica of Bucharest, 1-7 Gheorghe Polizu, 011061 Bucharest, Romania;
| | - Luisa Pilan
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Applied Chemistry and Material Science, University Politehnica of Bucharest, 1-7 Gheorghe Polizu, 011061 Bucharest, Romania
- Correspondence: ; Tel.: +40-21-402-3977
| |
Collapse
|
2
|
Barani M, Rahdar A, Sargazi S, Amiri MS, Sharma PK, Bhalla N. Nanotechnology for inflammatory bowel disease management: Detection, imaging and treatment. SENSING AND BIO-SENSING RESEARCH 2021. [DOI: 10.1016/j.sbsr.2021.100417] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
3
|
Pilan L. Tailoring the performance of electrochemical biosensors based on carbon nanomaterials via aryldiazonium electrografting. Bioelectrochemistry 2020; 138:107697. [PMID: 33486222 DOI: 10.1016/j.bioelechem.2020.107697] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/26/2020] [Accepted: 10/30/2020] [Indexed: 02/06/2023]
Abstract
Carbon nanomaterials (CNs) offer some of the most valuable properties for electrochemical biosensing applications, such as good electrical conductivity, wide electrochemical stability, high specific surface area, and biocompatibility. Regardless the envisioned sensing application, endowing CNs with specific functions through controlled chemical functionalization is fundamental for promoting the specific binding of the analyte. As a versatile and straightforward method of surface functionalization, aryldiazonium chemistry have been successfully used to accommodate in a stable and reproducible way different functionalities, while the electrochemical route has become the favourite choice since the deposition conditions can be readily controlled and adapted to the substrate. In particular, the modification of CNs by electrochemical reduction of aryl diazonium salts is established as a powerful tool which allows tailoring the chemical and electronic properties of the sensing platform. By outlining the stimulating results disclosed in the last years, this article provides not only a comprehensively review, but also a rational assessment on contribution of aryldiazonium electrografting in developing CNs-based electrochemical biosensors. Furthermore, some of the emerging challenges to be surpassed to effectively implement this methodology for in vivo and point of care analysis are also highlighted.
Collapse
Affiliation(s)
- Luisa Pilan
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, University Politehnica of Bucharest, Gh Polizu 1-7, 011061 Bucharest, Romania.
| |
Collapse
|
4
|
Electrochemical synthesis of polyaniline nanocomposite based on modified gold nanoparticles and its application for electrochemical aptasensor. J Solid State Electrochem 2020. [DOI: 10.1007/s10008-020-04761-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
5
|
Soltani R, Guo S, Bianco A, Ménard‐Moyon C. Carbon Nanomaterials Applied for the Treatment of Inflammatory Diseases: Preclinical Evidence. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Rym Soltani
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572 University of Strasbourg, ISIS Strasbourg 67000 France
| | - Shi Guo
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572 University of Strasbourg, ISIS Strasbourg 67000 France
| | - Alberto Bianco
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572 University of Strasbourg, ISIS Strasbourg 67000 France
| | - Cécilia Ménard‐Moyon
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572 University of Strasbourg, ISIS Strasbourg 67000 France
| |
Collapse
|
6
|
Rozenfeld S, Teller H, Schechter M, Farber R, Krichevski O, Schechter A, Cahan R. Exfoliated molybdenum di-sulfide (MoS2) electrode for hydrogen production in microbial electrolysis cell. Bioelectrochemistry 2018; 123:201-210. [DOI: 10.1016/j.bioelechem.2018.05.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 05/07/2018] [Accepted: 05/08/2018] [Indexed: 10/16/2022]
|
7
|
One-pot synthesis of dopamine-conjugated hyaluronic acid/polydopamine nanocomplexes to control protein drug release. Int J Pharm 2018. [DOI: 10.1016/j.ijpharm.2018.03.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
8
|
Du FK, Zhang H, Tan XC, Yan J, Liu M, Chen X, Wu YY, Feng DF, Chen QY, Cen JM, Liu SG, Qiu YQ, Han HY. Ru(bpy) 32+-Silica@Poly-L-lysine-Au as labels for electrochemiluminescence lysozyme aptasensor based on 3D graphene. Biosens Bioelectron 2018; 106:50-56. [PMID: 29414088 DOI: 10.1016/j.bios.2018.01.059] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 01/21/2018] [Accepted: 01/26/2018] [Indexed: 12/11/2022]
Abstract
In this work, the feasibility of a novel sensitive electrochemiluminescence aptasensor for the detection of lysozyme using Ru(bpy)32+-Silica@Poly-L-lysine-Au (RuSiNPs@PLL-Au) nanocomposites labeling as an indicator was demonstrated. The substrate electrode of the aptasensor was prepared by depositing gold nanoparticles (AuNPs) on 3D graphene-modified electrode. The lysozyme binding aptamer (LBA) was attached to the 3D graphene/AuNPs electrode through gold-thiol affinity, hybridized with a complementary single-strand DNA (CDNA) of the lysozyme aptamer labeled by RuSiNPs@PLL-Au as an electrochemiluminescence intensity amplifier. Thanks to the synergistic amplification of the 3D graphene, the AuNPs and RuSiNPs@PLL-Au NPs linked to Ru(bpy)32+-ECL further enhanced the ECL intensity of the aptasensor. In presence of lysozyme, the CDNA segment of the self-assembled duplex was displaced by the lysozyme, resulting in decreased electrochemiluminescence signal. Under the optimized conditions, the decrease in electrochemiluminescence intensity varied proportionally with the logarithmic concentration of the lysozyme from 2.25 × 10-12 to 5.0 × 10-8 mol L-1, and the detection limit was estimated to 7.5 × 10-13 mol L-1. The aptasensor was further tested in real samples and found reliable for the detection of lysozyme, thus holding great potential application in food safety researches and bioassay analysis.
Collapse
Affiliation(s)
- Fang-Kai Du
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Guangxi Colleges and Universities for food safety and pharmaceutical analytical chemistry, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530008, PR China
| | - Hui Zhang
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Guangxi Colleges and Universities for food safety and pharmaceutical analytical chemistry, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530008, PR China
| | - Xue-Cai Tan
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Guangxi Colleges and Universities for food safety and pharmaceutical analytical chemistry, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530008, PR China.
| | - Jun Yan
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Guangxi Colleges and Universities for food safety and pharmaceutical analytical chemistry, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530008, PR China
| | - Min Liu
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Guangxi Colleges and Universities for food safety and pharmaceutical analytical chemistry, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530008, PR China
| | - Xiao Chen
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Guangxi Colleges and Universities for food safety and pharmaceutical analytical chemistry, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530008, PR China
| | - Ye-Yu Wu
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Guangxi Colleges and Universities for food safety and pharmaceutical analytical chemistry, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530008, PR China
| | - De-Fen Feng
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Guangxi Colleges and Universities for food safety and pharmaceutical analytical chemistry, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530008, PR China
| | - Quan-You Chen
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Guangxi Colleges and Universities for food safety and pharmaceutical analytical chemistry, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530008, PR China
| | - Jian-Mei Cen
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Guangxi Colleges and Universities for food safety and pharmaceutical analytical chemistry, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530008, PR China
| | - Shao-Gang Liu
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Guangxi Colleges and Universities for food safety and pharmaceutical analytical chemistry, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530008, PR China
| | - Yu-Qin Qiu
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Guangxi Colleges and Universities for food safety and pharmaceutical analytical chemistry, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530008, PR China
| | - He-You Han
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Guangxi Colleges and Universities for food safety and pharmaceutical analytical chemistry, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530008, PR China; State Key Laboratory of Agricultural Microbiology, College of Science, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| |
Collapse
|
9
|
Dinca V, Zaharie-Butucel D, Stanica L, Brajnicov S, Marascu V, Bonciu A, Cristocea A, Gaman L, Gheorghiu M, Astilean S, Vasilescu A. Functional Micrococcus lysodeikticus layers deposited by laser technique for the optical sensing of lysozyme. Colloids Surf B Biointerfaces 2017; 162:98-107. [PMID: 29190474 DOI: 10.1016/j.colsurfb.2017.11.058] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 11/13/2017] [Accepted: 11/22/2017] [Indexed: 12/17/2022]
Abstract
Whole cell optical biosensors, made by immobilizing whole algal, bacterial or mammalian cells on various supports have found applications in several fields, from ecology and ecotoxicity testing to biopharmaceutical production or medical diagnostics. We hereby report the deposition of functional bacterial layers of Micrococcus lysodeikticus (ML) via Matrix-Assisted Pulsed Laser Evaporation (MAPLE) on poly(diallyldimethylamonium) (PDDA)-coated-glass slides and their application as an optical biosensor for the detection of lysozyme in serum. Lysozyme is an enzyme upregulated in inflammatory diseases and ML is an enzymatic substrate for this enzyme. The MAPLE-deposited bacterial interfaces were characterised by Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), Fourier-Transformed Infrared Spectroscopy (FTIR), Raman and optical microscopy and were compared with control interfaces deposited via layer-by-layer on the same substrate. After MAPLE deposition and coating with graphene oxide (GO), ML-modified interfaces retained their functionality and sensitivity to lysozyme's lytic action. The optical biosensor detected lysozyme in undiluted serum in the clinically relevant range up to 10μgmL-1, in a fast and simple manner.
Collapse
Affiliation(s)
- Valentina Dinca
- National Institute for Laser, Plasma and Radiation Physics (INFLPR), 409 Atomistilor, 077125, Magurele, Romania
| | - Diana Zaharie-Butucel
- Nanobiophotonics Center, Interdisciplinary Research Institute in Bio-Nano-Sciences, 42 Treboniu Laurian, Cluj-Napoca, Romania
| | - Luciana Stanica
- International Centre of Biodynamics, 1B Intrarea Portocalelor, 060101, Bucharest, Romania
| | - Simona Brajnicov
- National Institute for Laser, Plasma and Radiation Physics (INFLPR), 409 Atomistilor, 077125, Magurele, Romania; University of Craiova, Faculty of Mathematics and Natural Science, 13 Alexandru Ioan Cuza, 200585, Craiova, Romania
| | - Valentina Marascu
- National Institute for Laser, Plasma and Radiation Physics (INFLPR), 409 Atomistilor, 077125, Magurele, Romania; University of Bucharest, Faculty of Physics, 405 Atomistilor, 077125, Magurele, Romania
| | - Anca Bonciu
- National Institute for Laser, Plasma and Radiation Physics (INFLPR), 409 Atomistilor, 077125, Magurele, Romania; University of Bucharest, Faculty of Physics, 405 Atomistilor, 077125, Magurele, Romania
| | - Andra Cristocea
- Fundeni Clinical Institute, Department of Gastroenterology and Hepatology, 258 Sos. Fundeni, Bucharest, Romania
| | - Laura Gaman
- "Carol Davila" University of Medicine and Pharmacy, Faculty of Medicine, Department of Biochemistry, 8 B-dul Eroilor Sanitari, 76241, Bucharest, Romania
| | - Mihaela Gheorghiu
- International Centre of Biodynamics, 1B Intrarea Portocalelor, 060101, Bucharest, Romania
| | - Simion Astilean
- Nanobiophotonics Center, Interdisciplinary Research Institute in Bio-Nano-Sciences, 42 Treboniu Laurian, Cluj-Napoca, Romania
| | - Alina Vasilescu
- International Centre of Biodynamics, 1B Intrarea Portocalelor, 060101, Bucharest, Romania.
| |
Collapse
|
10
|
Vasilescu A, Hayat A, Gáspár S, Marty JL. Advantages of Carbon Nanomaterials in Electrochemical Aptasensors for Food Analysis. ELECTROANAL 2017. [DOI: 10.1002/elan.201700578] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Alina Vasilescu
- International Centre of Biodynamics, 1B Intrarea Portocalelor, sector 6; 060101 Bucharest Romania
| | - Akhtar Hayat
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM) COMSATS Institute of Information Technology (CIIT); 54000 Lahore Pakistan
| | - Szilveszter Gáspár
- International Centre of Biodynamics, 1B Intrarea Portocalelor, sector 6; 060101 Bucharest Romania
| | - Jean-Louis Marty
- BAE Laboratory; Université de Perpignan Via Domitia; 52 Avenue Paul Alduy 66860 Perpignan France
| |
Collapse
|
11
|
Wang Q, Vasilescu A, Wang Q, Coffinier Y, Li M, Boukherroub R, Szunerits S. Electrophoretic Approach for the Simultaneous Deposition and Functionalization of Reduced Graphene Oxide Nanosheets with Diazonium Compounds: Application for Lysozyme Sensing in Serum. ACS APPLIED MATERIALS & INTERFACES 2017; 9:12823-12831. [PMID: 28323404 DOI: 10.1021/acsami.6b15955] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Electrophoretic deposition (EPD) of reduced graphene oxide nanosheets (rGO) offers several advantages over other surface coating approaches, including process simplicity, uniformity of the deposited films, and good control of the film thickness. The EPD conditions might also be of interest for the reduction of diazonium salts, which upon the release of N2 molecules and generation of radicals, can form covalent bonds with the sp2 hybridized carbon lattice atoms of rGO films. In this work, we report on the coating of gold electrodes in one step with rGO/polyethylenimine (PEI) thin films and their simultaneous modification using different phenyl (Ph) diazonium salt precursors bearing various functionalities such as -B(OH)2, -COOH, and -C≡CH. We show further the interest of such interfaces for designing highly sensitive sensing platforms. Azide-terminated lysozyme aptamers were clicked onto the rGO/PEI/Ph-alkynyl matrix and used for the sensing of lysozyme levels in patients suffering from inflammatory bowel disease (IBD), where lysozyme levels are up-regulated. The approach attained the required demand for the determination of lysozyme level in patients suffering from IBD with a 200 fM detection limit and a linear range up to 20 pM without signal amplification.
Collapse
Affiliation(s)
- Qian Wang
- Univ. Lille, CNRS, Centrale Lille, ISEN, Univ. Valenciennes, UMR 8520-IEMN , F-59000 Lille, France
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University , Jinan 250061, China
| | - Alina Vasilescu
- International Center of Biodynamics , 1B Intrarea Portocalelor, Sector 6, 060101, Bucharest, Romania
| | - Qi Wang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University , Jinan 250061, China
| | - Yannick Coffinier
- Univ. Lille, CNRS, Centrale Lille, ISEN, Univ. Valenciennes, UMR 8520-IEMN , F-59000 Lille, France
| | - Musen Li
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University , Jinan 250061, China
| | - Rabah Boukherroub
- Univ. Lille, CNRS, Centrale Lille, ISEN, Univ. Valenciennes, UMR 8520-IEMN , F-59000 Lille, France
| | - Sabine Szunerits
- Univ. Lille, CNRS, Centrale Lille, ISEN, Univ. Valenciennes, UMR 8520-IEMN , F-59000 Lille, France
| |
Collapse
|
12
|
Yüce M, Kurt H. How to make nanobiosensors: surface modification and characterisation of nanomaterials for biosensing applications. RSC Adv 2017. [DOI: 10.1039/c7ra10479k] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
This report aims to provide the audience with a guideline for construction and characterisation of nanobiosensors that are based on widely used affinity probes including antibodies and aptamers.
Collapse
Affiliation(s)
- Meral Yüce
- Sabanci University
- Nanotechnology Research and Application Centre
- Istanbul
- Turkey
| | - Hasan Kurt
- Istanbul Medipol University
- School of Engineering and Natural Sciences
- Istanbul
- Turkey
| |
Collapse
|
13
|
|