1
|
Liu Q, Xue Y, Guo J, Tao L, Zhu Y. Citrate: a key signalling molecule and therapeutic target for bone remodeling disorder. Front Endocrinol (Lausanne) 2025; 15:1512398. [PMID: 39886032 PMCID: PMC11779597 DOI: 10.3389/fendo.2024.1512398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 12/20/2024] [Indexed: 02/01/2025] Open
Abstract
Bone remodeling is a continuous cyclic process that maintains and regulates bone structure and strength. The disturbance of bone remodeling leads to a series of bone metabolic diseases. Recent studies have shown that citrate, an intermediate metabolite of the tricarboxylic acid (TCA) cycle, plays an important role in bone remodeling. But the exact mechanism is still unclear. In this study, we focused on the systemic regulatory mechanism of citrate on bone remodeling, and found that citrate is involved in bone remodeling in multiple ways. The participation of citrate in oxidative phosphorylation (OXPHOS) facilitates the generation of ATP, thereby providing substantial energy for bone formation and resorption. Osteoclast-mediated bone resorption releases citrate from bone mineral salts, which is subsequently released as an energy source to activate the osteogenic differentiation of stem cells. Finally, the differentiated osteoblasts secrete into the bone matrix and participate in bone mineral salts formation. As a substrate of histone acetylation, citrate regulates the expression of genes related to bone formation and bone reabsorption. Citrate is also a key intermediate in the metabolism and synthesis of glucose, fatty acids and amino acids, which are three major nutrients in the organism. Citrate can also be used as a biomarker to monitor bone mass transformation and plays an important role in the diagnosis and therapeutic evaluation of bone remodeling disorders. Citrate imbalance due to citrate transporter could result in the supression of osteoblast/OC function through histone acetylation, thereby contributing to disorders in bone remodeling. Therefore, designing drugs targeting citrate-related proteins to regulate bone citrate content provides a new direction for the drug treatment of diseases related to bone remodeling disorders.
Collapse
Affiliation(s)
| | | | | | - Lin Tao
- Department of Orthopedics, The First Hospital of China Medical University, Shenyang, China
| | - Yue Zhu
- Department of Orthopedics, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
2
|
Abdian N, Soltani Zangbar H, Etminanfar M, Hamishehkar H. 3D chitosan/hydroxyapatite scaffolds containing mesoporous SiO2-HA particles: A new step to healing bone defects. Int J Biol Macromol 2024; 278:135014. [PMID: 39181354 DOI: 10.1016/j.ijbiomac.2024.135014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/10/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
Biocompatible scaffolds with high mechanical strengths that contain biodegradable components could boost bone regeneration compared with nondegradable bone repair materials. In this study, porous chitosan (CS)/hydroxyapatite (HA) scaffolds containing mesoporous SiO2-HA particles were fabricated through the freeze-drying process. According to field emission scanning electron microscopy (FESEM) results, combining mesoporous SiO2-HA particles in CS/HA scaffolds led to a uniform porous structure. It decreased pore sizes from 320 ± 1.1 μm to 145 ± 1.4 μm. Moreover, the compressive strength value of this scaffold was 25 ± 1.2 MPa. The in-vitro approaches exhibited good sarcoma osteogenic cell line (SAOS-2) adhesion, spreading, and proliferation, indicating that the scaffolds provided a suitable environment for cell cultivation. Also, in-vivo analyses in implanted defect sites of rats proved that the CS/HA/mesoporous SiO2-HA scaffolds could promote bone regeneration via enhancing osteoconduction and meliorating the expression of osteogenesis gene to 19.31 (about 5-fold higher compared to the control group) by exposing them to the bone-like precursors. Further, this scaffold's new bone formation percentage was equal to 90 % after 21 days post-surgery. Therefore, incorporating mesoporous SiO2-HA particles into CS/HA scaffolds can suggest a new future tissue engineering and regeneration strategy.
Collapse
Affiliation(s)
- Nesa Abdian
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Research Center for Advanced Materials, Faculty of Materials Engineering, Sahand University of Technology, Tabriz, Iran
| | - Hamid Soltani Zangbar
- Department of Neuroscience and Cognition, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohamadreza Etminanfar
- Research Center for Advanced Materials, Faculty of Materials Engineering, Sahand University of Technology, Tabriz, Iran
| | - Hamed Hamishehkar
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
3
|
Chen J, Zhao Q, Tang J, Lei X, Zhang J, Li Y, Li J, Li Y, Zuo Y. Enzyme-Activated Biomimetic Vesicles Confining Mineralization for Bone Maturation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:33005-33020. [PMID: 38900067 DOI: 10.1021/acsami.4c03978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Inspired by the crucial role of matrix vesicles (MVs), a series of biomimetic vesicles (BVs) fabricated by calcium glycerophosphate (CaGP) modified polyurethane were designed to mediate the mineralization through in situ enzyme activation for bone therapy. In this study, alkaline phosphatase (ALP) was harbored in the porous BVs by adsorption (Ad-BVs) or entrapment (En-BVs). High encapsulation of ALP on En-BVs was effectively self-activating by calcium ions of CaGP-modified PU that specifically hydrolyzed the organophosphorus (CaGP) to inorganic phosphate, thus promoting the formation of the highly oriented bone-like apatite in vitro. Enzyme-catalyzed kinetics confirms the regulation of apatite crystallization by the synergistic action of self-activated ALP and the confined microcompartments of BVs. This leads to a supersaturated microenvironment, with the En-BVs group exhibiting inorganic phosphate (Pi) levels 4.19 times higher and Ca2+ levels 3.67 times higher than those of simulated body fluid (SBF). Of note, the En-BVs group exhibited excellent osteo-inducing differentiation of BMSCs in vitro and the highest maturity with reduced bone loss in rat femoral defect in vivo. This innovative strategy of biomimetic vesicles is expected to provide valuable insights into the enzyme-activated field of bone therapy.
Collapse
Affiliation(s)
- Jieqiong Chen
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu, 610064, PR China
| | - Qing Zhao
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu, 610064, PR China
| | - Jiajing Tang
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu, 610064, PR China
| | - Xiaoyu Lei
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu, 610064, PR China
| | - Jinzheng Zhang
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu, 610064, PR China
| | - Yuping Li
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu, 610064, PR China
| | - Jidong Li
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu, 610064, PR China
| | - Yubao Li
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu, 610064, PR China
| | - Yi Zuo
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu, 610064, PR China
| |
Collapse
|
4
|
Jiang K, Wang K, Luo C, Su BY, Du H, Liu Y, Lei J, Luo E, Cardon L, Edeleva M, Huang SS, Xu JZ, Li ZM. A Biomimetic Fibrous Composite Scaffold with Nanotopography-Regulated Mineralization for Bone Defect Repair. Biomacromolecules 2024; 25:3784-3794. [PMID: 38743836 DOI: 10.1021/acs.biomac.4c00378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The effective regeneration of large bone defects via bone tissue engineering is challenging due to the difficulty in creating an osteogenic microenvironment. Inspired by the fibrillar architecture of the natural extracellular matrix, we developed a nanoscale bioengineering strategy to produce bone fibril-like composite scaffolds with enhanced osteogenic capability. To activate the surface for biofunctionalization, self-adaptive ridge-like nanolamellae were constructed on poly(ε-caprolactone) (PCL) electrospinning scaffolds via surface-directed epitaxial crystallization. This unique nanotopography with a markedly increased specific surface area offered abundant nucleation sites for Ca2+ recruitment, leading to a 5-fold greater deposition weight of hydroxyapatite than that of the pristine PCL scaffold under stimulated physiological conditions. Bone marrow mesenchymal stem cells (BMSCs) cultured on bone fibril-like scaffolds exhibited enhanced adhesion, proliferation, and osteogenic differentiation in vitro. In a rat calvarial defect model, the bone fibril-like scaffold significantly accelerated bone regeneration, as evidenced by micro-CT, histological histological and immunofluorescence staining. This work provides the way for recapitulating the osteogenic microenvironment in tissue-engineered scaffolds for bone repair.
Collapse
Affiliation(s)
- Kai Jiang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Kai Wang
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Chuan Luo
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Biao-Yao Su
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Hao Du
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Yao Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610065, China
| | - Jun Lei
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - En Luo
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610065, China
| | - Ludwig Cardon
- Centre for Polymer and Material Technologies, Department of Materials Textiles and Chemical Engineering, Ghent University, Technologiepark-Zwijnaarde 130, Gent 9052, Belgium
| | - Mariya Edeleva
- Centre for Polymer and Material Technologies, Department of Materials Textiles and Chemical Engineering, Ghent University, Technologiepark-Zwijnaarde 130, Gent 9052, Belgium
| | - Shi-Shu Huang
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Jia-Zhuang Xu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Zhong-Ming Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
5
|
Zhuang C, Sun R, Zhang Y, Zou Q, Zhou J, Dong N, Zhao X, Fu W, Geng X, Wang J, Li Q, Zhao RC. Treatment of Rheumatoid Arthritis Based on the Inherent Bioactivity of Black Phosphorus Nanosheets. Aging Dis 2024; 16:1652-1673. [PMID: 38913037 PMCID: PMC12096912 DOI: 10.14336/ad.2024.0319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/03/2024] [Indexed: 06/25/2024] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease that affects the living quality of patients, especially the elderly population. RA-related morbidity and mortality increase significantly with age, while current clinical drugs for RA are far from satisfactory and may have serious side effects. Therefore, the development of new drugs with higher biosafety and efficacy is demanding. Black phosphorus nanosheets (BPNSs) have been widely studied because of their excellent biocompatibility. Here, we focus on the inherent bioactivity of BPNSs, report the potential of BPNSs as a therapeutic drug for RA and elucidate the underlying therapeutic mechanism. We find that BPNSs inhibit autophagy at an early stage via the AMPK-mTOR pathway, switch the energy metabolic pathway to oxidative phosphorylation, increase intracellular ATP levels, suppress apoptosis, reduce inflammation and oxidative stress, and down-regulate senescence-associated secretory phenotype (SASP)-related genes in rheumatoid arthritis synovial fibroblasts (RA-SFs). Further, BPNSs induce the apoptosis of macrophages and promote their transition from the M1 to the M2 phenotype by regulating related cytokines. Significantly, the administration of BPNSs can alleviate key pathological features of RA in mice, revealing great therapeutic potential. This study provides a novel option for treating RA, with BPNSs emerging as a promising therapeutic candidate.
Collapse
Affiliation(s)
- Cheng Zhuang
- School of Life Sciences, Shanghai University, Shanghai, China.
| | - Ruiqi Sun
- School of Life Sciences, Shanghai University, Shanghai, China.
| | - Yuchen Zhang
- School of Medicine, Shanghai University, Shanghai, China.
| | - Qing Zou
- School of Life Sciences, Shanghai University, Shanghai, China.
| | - Jianxin Zhou
- School of Life Sciences, Shanghai University, Shanghai, China.
| | - Naijun Dong
- School of Life Sciences, Shanghai University, Shanghai, China.
- School of Medicine, Shanghai University, Shanghai, China.
| | - Xuyu Zhao
- School of Life Sciences, Shanghai University, Shanghai, China.
| | - Wenjun Fu
- School of Life Sciences, Shanghai University, Shanghai, China.
| | - Xiaoke Geng
- School of Life Sciences, Shanghai University, Shanghai, China.
| | - Jiao Wang
- School of Life Sciences, Shanghai University, Shanghai, China.
| | - Qian Li
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China.
- Center for Excellence in Tissue Engineering, Chinese Academy of Medical Sciences, Beijing, China.
- Beijing Key Laboratory of New Drug Development and Clinical Trial of Stem Cell Therapy (BZ0381), Beijing, China.
- Cell Energy Life Sciences Group Co. LTD, Qingdao, China, 266200.
| | - Robert Chunhua Zhao
- School of Life Sciences, Shanghai University, Shanghai, China.
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China.
- Center for Excellence in Tissue Engineering, Chinese Academy of Medical Sciences, Beijing, China.
- Beijing Key Laboratory of New Drug Development and Clinical Trial of Stem Cell Therapy (BZ0381), Beijing, China.
| |
Collapse
|
6
|
Machado TR, Zanardo CE, Vilela RRC, Miranda RR, Moreno NS, Leite CM, Longo E, Zucolotto V. Tailoring the structure and self-activated photoluminescence of carbonated amorphous calcium phosphate nanoparticles for bioimaging applications. J Mater Chem B 2024; 12:4945-4961. [PMID: 38685886 DOI: 10.1039/d3tb02915h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Self-activated luminescent calcium phosphate (CaP) nanoparticles, including hydroxyapatite (HA) and amorphous calcium phosphate (ACP), are promising for bioimaging and theragnostic applications in nanomedicine, eliminating the need for activator ions or fluorophores. In this study, we developed luminescent and stable citrate-functionalized carbonated ACP nanoparticles for bioimaging purposes. Our findings revealed that both the CO32- content and the posterior heating step at 400 °C significantly influenced the composition and the structural ordering of the chemically precipitated ACP nanoparticles, impacting the intensity, broadness, and position of the defect-related photoluminescence (PL) emission band. The heat-treated samples also exhibited excitation-dependent PL under excitation wavelengths typically used in bioimaging (λexc = 405, 488, 561, and 640 nm). Citrate functionalization improved the PL intensity of the nanoparticles by inhibiting non-radiative deactivation mechanisms in solution. Additionally, it resulted in an increased colloidal stability and reduced aggregation, high stability of the metastable amorphous phase and the PL emission for at least 96 h in water and supplemented culture medium. MTT assay of HepaRG cells, incubated for 24 and 48 h with the nanoparticles in concentrations ranging from 10 to 320 μg mL-1, evidenced their high biocompatibility. Internalization studies using the nanoparticles self-activated luminescence showed that cellular uptake of the nanoparticles is both time (4-24 h) and concentration (160-320 μg mL-1) dependent. Experiments using confocal laser scanning microscopy allowed the successful imaging of the nanoparticles inside cells via their intrinsic PL after 4 h of incubation. Our results highlight the potential use of citrate-functionalized carbonated ACP nanoparticles for use in internalization assays and bioimaging procedures.
Collapse
Affiliation(s)
- Thales R Machado
- GNANO - Nanomedicine and Nanotoxicology Group, Physics Institute of São Carlos, University of São Paulo, 13566-590 São Carlos, SP, Brazil.
| | - Carlos E Zanardo
- GNANO - Nanomedicine and Nanotoxicology Group, Physics Institute of São Carlos, University of São Paulo, 13566-590 São Carlos, SP, Brazil.
| | - Raquel R C Vilela
- GNANO - Nanomedicine and Nanotoxicology Group, Physics Institute of São Carlos, University of São Paulo, 13566-590 São Carlos, SP, Brazil.
| | - Renata R Miranda
- GNANO - Nanomedicine and Nanotoxicology Group, Physics Institute of São Carlos, University of São Paulo, 13566-590 São Carlos, SP, Brazil.
| | - Natália S Moreno
- GNANO - Nanomedicine and Nanotoxicology Group, Physics Institute of São Carlos, University of São Paulo, 13566-590 São Carlos, SP, Brazil.
| | - Celisnolia M Leite
- GNANO - Nanomedicine and Nanotoxicology Group, Physics Institute of São Carlos, University of São Paulo, 13566-590 São Carlos, SP, Brazil.
| | - Elson Longo
- CDMF - Center for the Development of Functional Materials, Federal University of São Carlos, 13565-905 São Carlos, SP, Brazil
| | - Valtencir Zucolotto
- GNANO - Nanomedicine and Nanotoxicology Group, Physics Institute of São Carlos, University of São Paulo, 13566-590 São Carlos, SP, Brazil.
| |
Collapse
|
7
|
Zeng Y, Yuan J, Ran Z, Zhan X, Li X, Ye H, Dong J, Cao G, Pan Z, Bao Y, Tang J, Liu X, He Y. Chitosan/NH 2-MIL-125 (Ti) scaffold loaded with doxorubicin for postoperative bone tumor clearance and osteogenesis: An in vitro study. Int J Biol Macromol 2024; 263:130368. [PMID: 38401584 DOI: 10.1016/j.ijbiomac.2024.130368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/17/2024] [Accepted: 02/20/2024] [Indexed: 02/26/2024]
Abstract
Surgical resection remains the primary treatment modality for bone tumors. However, it is prone to local bone defects and tumor recurrence. Therefore, there is an urgent need for multifunctional biomaterials that combine tumor treatment and bone repair after bone tumor surgery. Herein, a chitosan composite scaffold (CS/DOX@Ti-MOF) was designed for both tumor therapy and bone repair. Among them, the amino-functionalized Ti-based metal-organic framework (NH2-MIL-125 (Ti), Ti-MOF) has a high specific surface area of 1116 m2/g and excellent biocompatibility, and promotes osteogenic differentiation. The doxorubicin (DOX) loading capacity of Ti-MOF was 322 ± 21 mg/g, and DOX@Ti-MOF has perfect antitumor activity. Furthermore, the incorporation of DOX@Ti-MOF improved the physical and mechanical properties of the composite scaffolds, making the scaffold surface rough and favorable for cells to attach. CS/DOX@Ti-MOF retains the unique properties of each component. It responds to the release of DOX in the tumor microenvironment to remove residual tumor cells, followed by providing a site for cell attachment, proliferation, and differentiation. This promotes bone repair and achieves the sequential treatment of postoperative bone tumors. Overall, CS/DOX@Ti-MOF may be a promising substitute for postoperative bone tumor clearance and bone defect repair. It also provides a possible strategy for postoperative bone tumor treatment.
Collapse
Affiliation(s)
- Yaoxun Zeng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, Guangdong, PR China
| | - Jiongpeng Yuan
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, Guangdong, PR China
| | - Zhili Ran
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, Guangdong, PR China
| | - Xiaoguang Zhan
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, Guangdong, PR China
| | - Xinyi Li
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, Guangdong, PR China
| | - Huiling Ye
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, Guangdong, PR China
| | - Jiapeng Dong
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, Guangdong, PR China
| | - Guining Cao
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, Guangdong, PR China
| | - Zhenxing Pan
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, Guangdong, PR China
| | - Ying Bao
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, Guangdong, PR China
| | - Junze Tang
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming 650500, Yunnan, PR China
| | - Xujie Liu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, Guangdong, PR China.
| | - Yan He
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, Guangdong, PR China.
| |
Collapse
|
8
|
Abdian N, Etminanfar M, Hamishehkar H, Sheykholeslami SOR. Incorporating mesoporous SiO 2-HA particles into chitosan/hydroxyapatite scaffolds: A comprehensive evaluation of bioactivity and biocompatibility. Int J Biol Macromol 2024; 260:129565. [PMID: 38246457 DOI: 10.1016/j.ijbiomac.2024.129565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 01/05/2024] [Accepted: 01/16/2024] [Indexed: 01/23/2024]
Abstract
In this work, composite scaffolds with various composition ratios of chitosan (CS), hydroxyapatite (HA), and mesoporous SiO2 particles co-synthesized with hydroxyapatite (SiO2-HA) were fabricated via the freeze-drying method for bone tissue engineering applications. Morphological studies showed that adding mesoporous particles resulted in a structure with a more uniformly porous geometry, subsequently leading to reduced biodegradation rates and water absorption in the scaffolds. The bioactivity results showed the introduction of mesoporous particles notably enhanced the coverage of the scaffold surface with apatite films. Moreover, biocompatibility assessments using sarcoma osteogenic cell line (SAOS-2) highlighted mesoporous particles' positive impact on cell adhesion and growth. The fluorescence images showed spindle-shaped cells with a greater number and normal cell nuclei for the scaffolds containing mesoporous SiO2-HA particles. The MTT cytotoxicity results indicated that the scaffolds containing mesoporous particles showed approximately 25 % higher cell survival more than single chitosan-based ones. What is more, the mesoporous-containing scaffolds occurred to have the best alkaline phosphatase test (ALP) activity among all scaffolds. It is important to add that CS/HA/mesoporous SiO2-HA scaffolds including SAOS-2 cells showed no sign of either early or late apoptosis. These findings affirm the potential of CS/HA/mesoporous SiO2-HA scaffolds as promising implants for bone tissue engineering.
Collapse
Affiliation(s)
- Nesa Abdian
- Research Center for Advanced Materials, Faculty of Materials Engineering, Sahand University of Technology, 51335-1996 Tabriz, Iran; Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohamadreza Etminanfar
- Research Center for Advanced Materials, Faculty of Materials Engineering, Sahand University of Technology, 51335-1996 Tabriz, Iran.
| | - Hamed Hamishehkar
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Omid Reza Sheykholeslami
- Research Center for Advanced Materials, Faculty of Materials Engineering, Sahand University of Technology, 51335-1996 Tabriz, Iran
| |
Collapse
|
9
|
Tang L, Wu T, Li J, Yu Y, Ma Z, Sun L, Ta D, Fan X. Study on Synergistic Effects of Nanohydroxyapatite/High-Viscosity Carboxymethyl Cellulose Scaffolds Stimulated by LIPUS for Bone Defect Repair of Rats. ACS Biomater Sci Eng 2024; 10:1018-1030. [PMID: 38289029 DOI: 10.1021/acsbiomaterials.3c01381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2024]
Abstract
Despite the self-healing capacity of bone, the regeneration of critical-size bone defects remains a major clinical challenge. In this study, nanohydroxyapatite (nHAP)/high-viscosity carboxymethyl cellulose (hvCMC, 6500 mPa·s) scaffolds and low-intensity pulsed ultrasound (HA-LIPUS) were employed to repair bone defects. First, hvCMC was prepared from ramie fiber, and the degree of substitution (DS), purity, and content of NaCl of hvCMC samples were 0.91, 99.93, and 0.017%, respectively. Besides, toxic metal contents were below the permissible limits for pharmaceutically used materials. Our results demonstrated that the hvCMC is suitable for pharmaceutical use. Second, nHAP and hvCMC were employed to prepare scaffolds by freeze-drying. The results indicated that the scaffolds were porous, and the porosity was 35.63 ± 3.52%. Subsequently, the rats were divided into four groups (n = 8) randomly: normal control (NC), bone defect (BD), bone defect treated with nHAP/hvCMC scaffolds (HA), and bone defect treated with nHAP/hvCMC scaffolds and stimulated by LIPUS (HA-LIPUS). After drilling surgery, nHAP/hvCMC scaffolds were implanted in the defect region of HA and HA-LIPUS rats. Meanwhile, HA-LIPUS rats were treated by LIPUS (1.5 MHz, 80 mW cm-2) irradiation for 2 weeks. Compared with BD rats, the maximum load and bone mineral density of HA-LIPUS rats were increased by 20.85 and 51.97%, respectively. The gene and protein results indicated that nHAP/hvCMC scaffolds and LIPUS promoted the bone defect repair and regeneration of rats significantly by activating Wnt/β-catenin and inhibiting OPG/RANKL signaling pathways. Overall, compared with BD rats, nHAP/hvCMC scaffolds and LIPUS promoted bone defect repair significantly. Furthermore, the research results also indicated that there are synergistic effects for bone defect repair between the nHAP/hvCMC scaffolds and LIPUS.
Collapse
Affiliation(s)
- Liang Tang
- Institute of Sports Biology, Shaanxi Normal University, Xi'an 710119, China
| | - Tianpei Wu
- Institute of Sports Biology, Shaanxi Normal University, Xi'an 710119, China
| | - Jiaxiang Li
- Institute of Sports Biology, Shaanxi Normal University, Xi'an 710119, China
| | - Yanan Yu
- Institute of Sports Biology, Shaanxi Normal University, Xi'an 710119, China
| | - Zhanke Ma
- Institute of Sports Biology, Shaanxi Normal University, Xi'an 710119, China
| | - Lijun Sun
- Institute of Sports Biology, Shaanxi Normal University, Xi'an 710119, China
| | - Dean Ta
- Center for Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai 200433, China
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Xiushan Fan
- Institute of Sports Biology, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|
10
|
Zeng Y, Pan Z, Yuan J, Song Y, Feng Z, Chen Z, Ye Z, Li Y, Bao Y, Ran Z, Li X, Ye H, Zhang K, Liu X, He Y. Inhibiting Osteolytic Breast Cancer Bone Metastasis by Bone-Targeted Nanoagent via Remodeling the Bone Tumor Microenvironment Combined with NIR-II Photothermal Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301003. [PMID: 37211708 DOI: 10.1002/smll.202301003] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 05/08/2023] [Indexed: 05/23/2023]
Abstract
Bone is one of the prone metastatic sites of patients with advanced breast cancer. The "vicious cycle" between osteoclasts and breast cancer cells plays an essential role in osteolytic bone metastasis from breast cancer. In order to inhibit bone metastasis from breast cancer, NIR-II photoresponsive bone-targeting nanosystems (CuP@PPy-ZOL NPs) are designed and synthesized. CuP@PPy-ZOL NPs can trigger the photothermal-enhanced Fenton response and photodynamic effect to enhance the photothermal treatment (PTT) effect and thus achieve synergistic anti-tumor effect. Meanwhile, they exhibit a photothermal enhanced ability to inhibit osteoclast differentiation and promote osteoblast differentiation, which reshaped the bone microenvironment. CuP@PPy-ZOL NPs effectively inhibited the proliferation of tumor cells and bone resorption in the in vitro 3D bone metastases model of breast cancer. In a mouse model of breast cancer bone metastasis, CuP@PPy-ZOL NPs combined with PTT with NIR-II significantly inhibited the tumor growth of breast cancer bone metastases and osteolysis while promoting bone repair to achieve the reversal of osteolytic breast cancer bone metastases. Furthermore, the potential biological mechanisms of synergistic treatment are identified by conditioned culture experiments and mRNA transcriptome analysis. The design of this nanosystem provides a promising strategy for treating osteolytic bone metastases.
Collapse
Affiliation(s)
- Yaoxun Zeng
- Allan H. Conney Laboratory for Anticancer Research, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| | - Zhenxing Pan
- Allan H. Conney Laboratory for Anticancer Research, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| | - Jiongpeng Yuan
- Allan H. Conney Laboratory for Anticancer Research, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| | - Yuqiong Song
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, P. R. China
| | - Zhenzhen Feng
- Allan H. Conney Laboratory for Anticancer Research, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| | - Zefeng Chen
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong, SAR, 999077, P. R. China
| | - Zhaoyi Ye
- Allan H. Conney Laboratory for Anticancer Research, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| | - Yushan Li
- Allan H. Conney Laboratory for Anticancer Research, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| | - Ying Bao
- Allan H. Conney Laboratory for Anticancer Research, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| | - Zhili Ran
- Allan H. Conney Laboratory for Anticancer Research, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| | - Xinyi Li
- Allan H. Conney Laboratory for Anticancer Research, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| | - Huiling Ye
- Allan H. Conney Laboratory for Anticancer Research, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| | - Kun Zhang
- Allan H. Conney Laboratory for Anticancer Research, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| | - Xujie Liu
- Allan H. Conney Laboratory for Anticancer Research, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| | - Yan He
- Allan H. Conney Laboratory for Anticancer Research, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| |
Collapse
|
11
|
Umer A, Ghouri MD, Muyizere T, Aqib RM, Muhaymin A, Cai R, Chen C. Engineered Nano-Bio Interfaces for Stem Cell Therapy. PRECISION CHEMISTRY 2023; 1:341-356. [PMID: 37654807 PMCID: PMC10466455 DOI: 10.1021/prechem.3c00056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/08/2023] [Accepted: 06/08/2023] [Indexed: 09/02/2023]
Abstract
Engineered nanomaterials (ENMs) with different topographies provide effective nano-bio interfaces for controlling the differentiation of stem cells. The interaction of stem cells with nanoscale topographies and chemical cues in their microenvironment at the nano-bio interface can guide their fate. The use of nanotopographical cues, in particular nanorods, nanopillars, nanogrooves, nanofibers, and nanopits, as well as biochemical forces mediated factors, including growth factors, cytokines, and extracellular matrix proteins, can significantly impact stem cell differentiation. These factors were seen as very effective in determining the proliferation and spreading of stem cells. The specific outgrowth of stem cells can be decided with size variation of topographic nanomaterial along with variation in matrix stiffness and surface structure like a special arrangement. The precision chemistry enabled controlled design, synthesis, and chemical composition of ENMs can regulate stem cell behaviors. The parameters of size such as aspect ratio, diameter, and pore size of nanotopographic structures are the main factors for specific termination of stem cells. Protein corona nanoparticles (NPs) have shown a powerful facet in stem cell therapy, where combining specific proteins could facilitate a certain stem cell differentiation and cellular proliferation. Nano-bio reactions implicate the interaction between biological entities and nanoparticles, which can be used to tailor the stem cells' culmination. The ion release can also be a parameter to enhance cellular proliferation and to commit the early differentiation of stem cells. Further research is needed to fully understand the mechanisms underlying the interactions between engineered nano-bio interfaces and stem cells and to develop optimized regenerative medicine and tissue engineering designs.
Collapse
Affiliation(s)
- Arsalan Umer
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
& CAS Center for Excellence in Nanoscience and Technology of China, Chinese Academy of Sciences (CAS), Beijing100190, China
- University
of Chinese Academy of Sciences, Beijing100049, China
| | - Muhammad Daniyal Ghouri
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
& CAS Center for Excellence in Nanoscience and Technology of China, Chinese Academy of Sciences (CAS), Beijing100190, China
- University
of Chinese Academy of Sciences, Beijing100049, China
| | - Theoneste Muyizere
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
& CAS Center for Excellence in Nanoscience and Technology of China, Chinese Academy of Sciences (CAS), Beijing100190, China
| | - Raja Muhammad Aqib
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
& CAS Center for Excellence in Nanoscience and Technology of China, Chinese Academy of Sciences (CAS), Beijing100190, China
| | - Abdul Muhaymin
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
& CAS Center for Excellence in Nanoscience and Technology of China, Chinese Academy of Sciences (CAS), Beijing100190, China
| | - Rong Cai
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
& CAS Center for Excellence in Nanoscience and Technology of China, Chinese Academy of Sciences (CAS), Beijing100190, China
| | - Chunying Chen
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
& CAS Center for Excellence in Nanoscience and Technology of China, Chinese Academy of Sciences (CAS), Beijing100190, China
- University
of Chinese Academy of Sciences, Beijing100049, China
- GBA
National Institute for Nanotechnology Innovation, Guangdong 5110700, China
| |
Collapse
|
12
|
Su BY, Chen ZJ, Lv JC, Wang ZG, Huang FW, Liu Y, Luo E, Wang J, Xu JZ, Li ZM. Scalable Fabrication of Polymeric Composite Microspheres to Inhibit Oral Pathogens and Promote Osteogenic Differentiation of Periodontal Membrane Stem Cells. ACS Biomater Sci Eng 2023; 9:4431-4441. [PMID: 37452570 DOI: 10.1021/acsbiomaterials.3c00452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Periodontitis is a worldwide bacterial infectious disease, resulting in the resorption of tooth-supporting structures. Biodegradable polymeric microspheres are emerging as an appealing local therapy candidate for periodontal defect regeneration but suffer from tedious procedures and low yields. Herein, we developed a facile yet scalable approach to prepare polylactide composite microspheres with outstanding drug-loading capability. It was realized by blending equimolar polylactide enantiomers at the temperature between the melting point of homocrystallites and stereocomplex (sc) crystallites, enabling the precipitation of sc crystallites in the form of microspheres. Meanwhile, epigallocatechin gallate (EGCG) and nano-hydroxyapatite were encapsulated in the microspheres in the designated amount. Such an assembly allowed the fast and sustained release of EGCG and Ca2+ ions. The resultant hybrid composite microspheres not only exhibited strong antimicrobial activity against typical oral pathogens (Porphyromonas gingivalis and Enterococcus faecalis), but also directly promoted osteogenic differentiation of periodontal ligament stem cells with good cytocompatibility. These dual-functional composite microspheres offer a desired drug delivery platform to address the practical needs for periodontitis treatment.
Collapse
Affiliation(s)
- Biao-Yao Su
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Zi-Jian Chen
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Jia-Cheng Lv
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Zhi-Guo Wang
- West China School of Nursing, Sichuan University/West China Hospital, Sichuan University, Chengdu 610041, China
| | - Fu-Wen Huang
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Yao Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China
| | - En Luo
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China
| | - Jing Wang
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Jia-Zhuang Xu
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Zhong-Ming Li
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
13
|
Liu X, Chen H, Ren H, Wang B, Li X, Peng S, Zhang Q, Yan Y. Effects of ATP on the Physicochemical Properties and Cytocompatibility of Calcium Sulfate/Calcium Citrate Composite Cement. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16113947. [PMID: 37297081 DOI: 10.3390/ma16113947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/18/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023]
Abstract
Adenosine triphosphate (ATP), acting as a source of energy, has effects on cellular activities, such as adhesion, proliferation, and differentiation. In this study, ATP-loaded calcium sulfate hemihydrate/calcium citrate tetrahydrate cement (ATP/CSH/CCT) was successfully prepared for the first time. The effect of different contents of ATP on the structure and physicochemical properties of ATP/CSH/CCT was also studied in detail. The results indicated that incorporating ATP into the cement did not significantly alter their structures. However, the addition ratio of ATP directly impacted the mechanical properties and in vitro degradation properties of the composite bone cement. The compressive strength of ATP/CSH/CCT gradually decreased with an increasing ATP content. The degradation rate of ATP/CSH/CCT did not significantly change at low concentrations of ATP, but it increased with a higher ATP content. The composite cement induced the deposition of a Ca-P layer in a phosphate buffer solution (PBS, pH = 7.4). Additionally, the release of ATP from the composite cement was controlled. The ATP was controlled releasing at the 0.5% and 1% ATP in cement by the diffusion of ATP and the degradation of the cement, whereas it was controlled by the diffusion process merely at the 0.1% ATP in cement. Furthermore, ATP/CSH/CCT demonstrated good cytoactivity with the addition of ATP and is expected to be used for the repair and regeneration of bone tissue.
Collapse
Affiliation(s)
- Xiangyue Liu
- College of Physics, Sichuan University, Chengdu 610065, China
| | - Hong Chen
- College of Physics, Sichuan University, Chengdu 610065, China
| | - Haohao Ren
- College of Physics, Sichuan University, Chengdu 610065, China
| | - Bo Wang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Xiaodan Li
- College of Physics, Sichuan University, Chengdu 610065, China
| | - Suping Peng
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Qiyi Zhang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Yonggang Yan
- College of Physics, Sichuan University, Chengdu 610065, China
| |
Collapse
|
14
|
Wang H, Li X, Lai S, Cao Q, Liu Y, Li J, Zhu X, Fu W, Zhang X. Construction of Vascularized Tissue Engineered Bone with nHA-Coated BCP Bioceramics Loaded with Peripheral Blood-Derived MSC and EPC to Repair Large Segmental Femoral Bone Defect. ACS APPLIED MATERIALS & INTERFACES 2023; 15:249-264. [PMID: 36548196 DOI: 10.1021/acsami.2c15000] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The regenerative repair of segmental bone defect (SBD) is an urgent problem in the field of orthopedics. Rapid induction of angiogenesis and osteoinductivity after implantation of scaffold is critical. In this study, a unique tissue engineering strategy with mixture of peripheral blood-derived mesenchymal stem cells (PBMSC) and endothelial progenitor cells (PBEPC) was applied in a 3D-printed biphasic calcium phosphate (BCP) scaffold with highly bioactive nano hydroxyapatite (nHA) coating (nHA/BCP) to construct a novel vascularized tissue engineered bone (VTEB) for rabbit femoral SBD repair. The 2D coculture of PBMSC and PBEPC showed that they could promote the osteogenic or angiogenic differentiation of the cells from each other, especially in the group of PBEPC/PBMSC = 75:25. Besides, the 3D coculture results exhibited that the nHA coating could further promote PBEPC/PBMSC adhesion, proliferation, and osteogenic and angiogenic differentiation on the BCP scaffold. In vivo experiments showed that among the four groups (BCP, BCP-PBEPC/PBMSC, nHA/BCP, and nHA/BCP-PBEPC/PBMSC), the nHA/BCP-PBEPC/PBMSC group induced the best formation of blood vessels and new bone and, thus, the good repair of SBD. It revealed the synergistic effect of nHA and PBEPC/PBMSC on the angiogenesis and osteogenesis of the BCP scaffold. Therefore, the construction of VTEB in this study could provide a possibility for the regenerative repair of SBD.
Collapse
Affiliation(s)
- Huihui Wang
- Department of Orthopaedic Surgery, Orthopaedic Research Institute, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Xiangfeng Li
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Sike Lai
- Department of Orthopaedic Surgery, Orthopaedic Research Institute, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Quanle Cao
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Yunyi Liu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Jian Li
- Department of Orthopaedic Surgery, Orthopaedic Research Institute, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Xiangdong Zhu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Weili Fu
- Department of Orthopaedic Surgery, Orthopaedic Research Institute, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| |
Collapse
|
15
|
Peng J, Zhao J, Tang Q, Wang J, Song W, Lu X, Huang X, Chen G, Zheng W, Zhang L, Han Y, Yan C, Wan Q, Chen L. Low intensity near-infrared light promotes bone regeneration via circadian clock protein cryptochrome 1. Int J Oral Sci 2022; 14:53. [PMID: 36376275 PMCID: PMC9663728 DOI: 10.1038/s41368-022-00207-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/04/2022] [Accepted: 10/12/2022] [Indexed: 11/16/2022] Open
Abstract
Bone regeneration remains a great clinical challenge. Low intensity near-infrared (NIR) light showed strong potential to promote tissue regeneration, offering a promising strategy for bone defect regeneration. However, the effect and underlying mechanism of NIR on bone regeneration remain unclear. We demonstrated that bone regeneration in the rat skull defect model was significantly accelerated with low-intensity NIR stimulation. In vitro studies showed that NIR stimulation could promote the osteoblast differentiation in bone mesenchymal stem cells (BMSCs) and MC3T3-E1 cells, which was associated with increased ubiquitination of the core circadian clock protein Cryptochrome 1 (CRY1) in the nucleus. We found that the reduction of CRY1 induced by NIR light activated the bone morphogenetic protein (BMP) signaling pathways, promoting SMAD1/5/9 phosphorylation and increasing the expression levels of Runx2 and Osterix. NIR light treatment may act through sodium voltage-gated channel Scn4a, which may be a potential responder of NIR light to accelerate bone regeneration. Together, these findings suggest that low-intensity NIR light may promote in situ bone regeneration in a CRY1-dependent manner, providing a novel, efficient and non-invasive strategy to promote bone regeneration for clinical bone defects.
Collapse
|
16
|
Hydroxyapatite Nanoparticles for Improved Cancer Theranostics. J Funct Biomater 2022; 13:jfb13030100. [PMID: 35893468 PMCID: PMC9326646 DOI: 10.3390/jfb13030100] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 12/12/2022] Open
Abstract
Beyond their well-known applications in bone tissue engineering, hydroxyapatite nanoparticles (HAp NPs) have also been showing great promise for improved cancer therapy. The chemical structure of HAp NPs offers excellent possibilities for loading and delivering a broad range of anticancer drugs in a sustained, prolonged, and targeted manner and thus eliciting lower complications than conventional chemotherapeutic strategies. The incorporation of specific therapeutic elements into the basic composition of HAp NPs is another approach, alone or synergistically with drug release, to provide advanced anticancer effects such as the capability to inhibit the growth and metastasis of cancer cells through activating specific cell signaling pathways. HAp NPs can be easily converted to smart anticancer agents by applying different surface modification treatments to facilitate the targeting and killing of cancer cells without significant adverse effects on normal healthy cells. The applications in cancer diagnosis for magnetic and nuclear in vivo imaging are also promising as the detection of solid tumor cells is now achievable by utilizing superparamagnetic HAp NPs. The ongoing research emphasizes the use of HAp NPs in fabricating three-dimensional scaffolds for the treatment of cancerous tissues or organs, promoting the regeneration of healthy tissue after cancer detection and removal. This review provides a summary of HAp NP applications in cancer theranostics, highlighting the current limitations and the challenges ahead for this field to open new avenues for research.
Collapse
|
17
|
Liu C, Pan L, Liu C, Liu W, Li Y, Cheng X, Jian X. Enhancing Tissue Adhesion and Osteoblastic Differentiation of MC3T3-E1 Cells on Poly(aryl ether ketone) by Chemically Anchored Hydroxyapatite Nanocomposite Hydrogel Coating. Macromol Biosci 2021; 21:e2100078. [PMID: 34146384 DOI: 10.1002/mabi.202100078] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/19/2021] [Indexed: 11/08/2022]
Abstract
Tissue adhesion to bone implant and osteoblastic differentiation are the key factors to achieve poly(aryl ether ketone) (PAEK) implant osseointegration. However, physical interaction of implant with tissue and hydroxyapatite coating suffers from slow implant tissue integration and lack of long-term stability. In this study, a novel poly(phthalazinone ether sulfone ketone) containing allyl groups (APPBAESK) is coated onto PPBESK sheet for reacting with the allyl groups of the hydrogel coating to enhance its stability. N-Succinimidyl (NHS)-ester activated group and nano-hydroxyapatite (nano-HA) are introduced into the hydrogel synthesized from gelatin methacrylate (GelMA) and acrylic acid to construct a nanocomposite hydrogel coating on PPBESK which is a promising PAEK implant material. The hydrophilicity of the PPBESK sheet is improved by the hydrogel coating. The chemical components of the nanocomposite hydrogel coating are confirmed by X-ray photoelectron spectroscope, Attenuated total reflection infrared, and X-ray powder diffraction. The tissue shear adhesion strength of the hydrogel coating toward pig skin is enhanced due to the synergism of NHS-ester activated group and nano-HA. The osteogenic differentiation of MC3T3-E1 preosteoblasts is promoted by nano-HA in nanocomposite hydrogel coating. Therefore, the bifunctional nanocomposite hydrogel coating provides a great application prospect in the surface modification of PAEK implants in bone tissue engineering.
Collapse
Affiliation(s)
- Chengde Liu
- State Key Laboratory of Fine Chemicals, Liaoning High Performance Resin Engineering Research Center, Department of Polymer Science and Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Liang Pan
- State Key Laboratory of Fine Chemicals, Liaoning High Performance Resin Engineering Research Center, Department of Polymer Science and Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Cheng Liu
- State Key Laboratory of Fine Chemicals, Liaoning High Performance Resin Engineering Research Center, Department of Polymer Science and Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Wentao Liu
- State Key Laboratory of Fine Chemicals, Liaoning High Performance Resin Engineering Research Center, Department of Polymer Science and Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Yizheng Li
- State Key Laboratory of Fine Chemicals, Liaoning High Performance Resin Engineering Research Center, Department of Polymer Science and Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Xitong Cheng
- State Key Laboratory of Fine Chemicals, Liaoning High Performance Resin Engineering Research Center, Department of Polymer Science and Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Xigao Jian
- State Key Laboratory of Fine Chemicals, Liaoning High Performance Resin Engineering Research Center, Department of Polymer Science and Engineering, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
18
|
Anita Lett J, Sagadevan S, Fatimah I, Hoque ME, Lokanathan Y, Léonard E, Alshahateet SF, Schirhagl R, Oh WC. Recent advances in natural polymer-based hydroxyapatite scaffolds: Properties and applications. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110360] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
19
|
Yang Y, Cheng Y, Deng F, Shen L, Zhao Z, Peng S, Shuai C. A bifunctional bone scaffold combines osteogenesis and antibacterial activity via in situ grown hydroxyapatite and silver nanoparticles. Biodes Manuf 2021. [DOI: 10.1007/s42242-021-00130-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
20
|
Galgaro BC, Beckenkamp LR, van den M Nunnenkamp M, Korb VG, Naasani LIS, Roszek K, Wink MR. The adenosinergic pathway in mesenchymal stem cell fate and functions. Med Res Rev 2021; 41:2316-2349. [PMID: 33645857 DOI: 10.1002/med.21796] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/02/2021] [Accepted: 02/17/2021] [Indexed: 12/18/2022]
Abstract
Mesenchymal stem cells (MSCs) play an important role in tissue homeostasis and damage repair through their ability to differentiate into cells of different tissues, trophic support, and immunomodulation. These properties made them attractive for clinical applications in regenerative medicine, immune disorders, and cell transplantation. However, despite multiple preclinical and clinical studies demonstrating beneficial effects of MSCs, their native identity and mechanisms of action remain inconclusive. Since its discovery, the CD73/ecto-5'-nucleotidase is known as a classic marker for MSCs, but its role goes far beyond a phenotypic characterization antigen. CD73 contributes to adenosine production, therefore, is an essential component of purinergic signaling, a pathway composed of different nucleotides and nucleosides, which concentrations are finely regulated by the ectoenzymes and receptors. Thus, purinergic signaling controls pathophysiological functions such as proliferation, migration, cell fate, and immune responses. Despite the remarkable progress already achieved in considering adenosinergic pathway as a therapeutic target in different pathologies, its role is not fully explored in the context of the therapeutic functions of MSCs. Therefore, in this review, we provide an overview of the role of CD73 and adenosine-mediated signaling in the functions ascribed to MSCs, such as homing and proliferation, cell differentiation, and immunomodulation. Additionally, we will discuss the pathophysiological role of MSCs, via CD73 and adenosine, in different diseases, as well as in tumor development and progression. A better understanding of the adenosinergic pathway in the regulation of MSCs functions will help to provide improved therapeutic strategies applicable in regenerative medicine.
Collapse
Affiliation(s)
- Bruna C Galgaro
- Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Liziane R Beckenkamp
- Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Martha van den M Nunnenkamp
- Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Vitória G Korb
- Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Liliana I S Naasani
- Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Katarzyna Roszek
- Department of Biochemistry, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Toruń, Poland
| | - Márcia R Wink
- Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
21
|
Liu M, Ding H, Wang H, Wang M, Wu X, Gan L, Cheng L, Li X. Moringa oleifera leaf extracts protect BMSC osteogenic induction following peroxidative damage by activating the PI3K/Akt/Foxo1 pathway. J Orthop Surg Res 2021; 16:150. [PMID: 33610167 PMCID: PMC7896384 DOI: 10.1186/s13018-021-02284-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 02/08/2021] [Indexed: 12/28/2022] Open
Abstract
Objective We aimed to investigate the therapeutic effects of Moringa oleifera leaf extracts on osteogenic induction of rat bone marrow mesenchymal stem cells (BMSCs) following peroxidative damage and to explore the underlying mechanisms. Methods Conditioned medium was used to induce osteogenic differentiation of BMSCs, which were treated with H2O2, Moringa oleifera leaf extracts-containing serum, or the phosphatidyl inositol-3 kinase (PI3K) inhibitor wortmannin, alone or in combination. Cell viability was measured using the MTT assay. Cell cycle was assayed using flow cytometry. Expression levels of Akt, phosphorylated (p)Akt, Foxo1, and cleaved caspase-3 were analyzed using western blot analysis. The mRNA levels of osteogenesis-associated genes, including alkaline phosphatase (ALP), collagen І, osteopontin (OPN), and Runx2, were detected using qRT-PCR. Reactive oxygen species (ROS) and malondialdehyde (MDA) levels, as well as superoxide dismutase (SOD), glutathione peroxidase (GSH-PX), and ALP activity were detected using commercially available kits. Osteogenic differentiation capability was determined using alizarin red staining. Results During osteogenic induction of rat BMSCs, H2O2 reduced cell viability and proliferation, inhibited osteogenesis, increased ROS and MDA levels, and decreased SOD and GSH-PX activity. H2O2 significantly reduced pAkt and Foxo1 expression, and increased cleaved caspase-3 levels in BMSCs. Additional treatments with Moringa oleifera leaf extracts partially reversed the H2O2-induced changes. Wortmannin partially attenuated the effects of Moringa oleifera leaf extracts on protein expression of Foxo1, pAkt, and cleaved caspase-3, as well as mRNA levels of osteogenesis-associated genes. Conclusion Moringa oleifera leaf extracts ameliorate peroxidative damage and enhance osteogenic induction of rat BMSCs by activating the PI3K/Akt/Foxo1 pathway.
Collapse
Affiliation(s)
- Meiling Liu
- Department of Geriatrics, Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang District, Harbin, 150086, China
| | - Haifeng Ding
- Department of Geriatrics, Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang District, Harbin, 150086, China
| | - Hongzhi Wang
- Department of Geriatrics, Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang District, Harbin, 150086, China
| | - Manfeng Wang
- Department of Geriatrics, Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang District, Harbin, 150086, China
| | - Xiaowei Wu
- Department of Geriatrics, Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang District, Harbin, 150086, China.
| | - Lu Gan
- Department of Geriatrics, Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang District, Harbin, 150086, China.
| | - Luyang Cheng
- Department of Geriatrics, Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang District, Harbin, 150086, China
| | - Xianglu Li
- Department of Geriatrics, Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang District, Harbin, 150086, China
| |
Collapse
|
22
|
Methylation-mediated down-regulation of microRNA-497-195 cluster confers osteogenic differentiation in ossification of the posterior longitudinal ligament of the spine via ADORA2A. Biochem J 2020; 477:2249-2261. [PMID: 32432317 DOI: 10.1042/bcj20200157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/13/2020] [Accepted: 05/20/2020] [Indexed: 12/20/2022]
Abstract
Aberrant expression of microRNAs (miRNAs) has been associated with spinal ossification of the posterior longitudinal ligament (OPLL). Our initial bioinformatic analysis identified differentially expressed ADORA2A in OPLL and its regulatory miRNAs miR-497 and miR-195. Hence, this study was conducted to clarify the functional relevance of miR-497-195 cluster in OPLL, which may implicate in Adenosine A2A (ADORA2A). PLL tissues were collected from OPLL and non-OPLL patients, followed by quantification of miR-497, miR-195 and ADORA2A expression. The expression of miR-497, miR-195 and/or ADORA2A was altered in posterior longitudinal ligament (PLL) cells, which then were stimulated with cyclic mechanical stress (CMS). We validated that ADORA2A was expressed highly, while miR-497 and miR-195 were down-regulated in PLL tissues of OPLL patients. miR-195 and miR-497 expression in CMS-treated PLL cells was restored by a demethylation reagent 5-aza-2'-deoxycytidine (AZA). Moreover, expression of miR-195 and miR-497 was decreased by promoting promoter CpG island methylation. ADORA2A was verified as the target of miR-195 and miR-497. Overexpression of miR-195 and miR-497 diminished expression of osteogenic factors in PLL cells by inactivating the cAMP/PKA signaling pathway via down-regulation of ADORA2A. Collectively, miR-497-195 cluster augments osteogenic differentiation of PLL cells by inhibiting ADORA2A-dependent cAMP/PKA signaling pathway.
Collapse
|
23
|
Huang F, Chen JY, Ouyang JM. Comparison of the inhibition of high phosphate-induced smooth muscle cell calcification by Porphyra yezoensis and Astragalus polysaccharides. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
24
|
Wang C, Jeong KJ, Kim J, Kang SW, Kang J, Han IH, Lee IW, Oh SJ, Lee J. Emission-tunable probes using terbium(III)-doped self-activated luminescent hydroxyapatite for in vitro bioimaging. J Colloid Interface Sci 2020; 581:21-30. [PMID: 32768732 DOI: 10.1016/j.jcis.2020.07.083] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 07/17/2020] [Accepted: 07/17/2020] [Indexed: 02/04/2023]
Abstract
Lanthanide ion (Ln3+)-doped nanoscale hydroxyapatites (nHAp) with tunable luminescence have attracted increasing attention due to their potential applications as useful biomedical tools (e.g., imaging and clinical therapy). In this study, we reported that doping Terbium (III) ions (Tb3+) in self-activated luminescent nHAp via a facile hydrothermal reaction, using trisodium citrate (Cit3-), generates unique emission-tunable probes known as Cit/Tb-nHAp. The morphology, crystal phase, and luminescence properties of these Cit/Tb-nHAp probes are studied in detail. Moreover, the results demonstrate that the luminescence of self-activated nHAp originates from the carbon dots trapped within the nHAp crystals, in which partial energy transfer occurs from carbon dots (CDs) to Tb3+. The color tunability is successfully achieved by regulating the addition of Cit3-. Biocompatibility study indicates that when co-cultured with C6 glioma cells in vitro for 3 days, ≤800 ppm Cit/Tb-nHAp is not cytotoxic for C6 glioma cells. We also present in vitro data showing efficient cytoplasmic localization of transferrin conjugated Cit/Tb-nHAp into C6 glioma cells by fluorescence cell imaging. We have successfully engineered Cit/Tb-nHAp, a promising biocompatible agent for future in vitro and in vivo fluorescence bioimaging.
Collapse
Affiliation(s)
- Caifeng Wang
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Ki-Jae Jeong
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Jeonghyo Kim
- Department of Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Seon Woo Kang
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Jieun Kang
- Department of Otolaryngology and Biomedical Research Institute, Pusan National University Hospital, Pusan National University School of Medicine, Busan 49241, Republic of Korea
| | - In Ho Han
- Department of Neurosurgery & Medical Research Institute, Pusan National University Hospital, Pusan National University School of Medicine, Busan 49241, Republic of Korea
| | - Il-Woo Lee
- Deparment of Otolaryngology and Biomedical Research Institute, Pusan National University Yangsan Hospital, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea
| | - Se-Joon Oh
- Department of Otolaryngology and Biomedical Research Institute, Pusan National University Hospital, Pusan National University School of Medicine, Busan 49241, Republic of Korea
| | - Jaebeom Lee
- Department of Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea; Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea.
| |
Collapse
|
25
|
Huang LH, Liu H, Chen JY, Sun XY, Yao ZH, Han J, Ouyang JM. Seaweed Porphyra yezoensis polysaccharides with different molecular weights inhibit hydroxyapatite damage and osteoblast differentiation of A7R5 cells. Food Funct 2020; 11:3393-3409. [PMID: 32232300 DOI: 10.1039/c9fo01732a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Vascular calcification (VC) is a common pathological manifestation in patients with cardiovascular diseases, leading to high mortality in patients with chronic kidney diseases. The deposition of hydroxyapatite (HAP) crystals on vascular smooth muscle cells leads to cell damage, which promotes osteogenic transformation. In this study, four different molecular weights (MWs ) of Porphyra yezoensis polysaccharides (PYP1, PYP2, PYP3, and PYP4 with MWs of 576, 49.5, 12.6, and 4.02 kDa, respectively) were used to coat HAP, and the differences in toxicity and calcification of HAP on A7R5 cells before and after coating were studied. The results showed that PYPs could effectively reduce HAP damage to the A7R5 cells. Under the protection of PYPs, cell viability increased and lactate dehydrogenase release, active oxygen level, and cell necrosis rate decreased; also, the amount of the HAP crystals adhering to cell surfaces and entering cells decreased. PYPs with low molecular weights presented better protective effects than high-molecular-weight PYPs. PYPs also inhibited the osteogenic transformation of the A7R5 cells induced by HAP and decreased alkaline phosphatase (ALP) activity and expressions of bone/chondrocyte phenotype genes (runt-related factor 2, ALP, osteopontin, and osteocalcin). In the adenine-induced chronic renal failure (CRF) mouse VC model, PYP4 was found to obviously inhibit the aortic calcium level, and it also inhibited the serum creatinine, serum phosphorus and serum BUN levels. PYP4 (least molecular weight) showed the best inhibitory effect on calcification and may be considered as a candidate drug with therapeutic potential for inhibiting cellular damage and osteoblast differentiation induced by the HAP crystals.
Collapse
Affiliation(s)
- Ling-Hong Huang
- Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou 510632, China.
| | | | | | | | | | | | | |
Collapse
|
26
|
Huang LH, Sun XY, Ouyang JM. Shape-dependent toxicity and mineralization of hydroxyapatite nanoparticles in A7R5 aortic smooth muscle cells. Sci Rep 2019; 9:18979. [PMID: 31831831 PMCID: PMC6908626 DOI: 10.1038/s41598-019-55428-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 11/11/2019] [Indexed: 01/04/2023] Open
Abstract
Vascular smooth muscle cell damage is a key step in inducing vascular calcification that yields hydroxyapatite (HAP) as a major product. The effect of the shape of HAP on the damage to vascular smooth muscle cells has yet to be investigated. In this study, we compared the differences in toxicity of four various morphological nano-HAP crystals, namely, H-Rod, H-Needle, H-Sphere, and H-Plate, in rat aortic smooth muscle cells (A7R5). The sizes of these crystals were 39 nm × 115 nm, 41 nm ×189 nm, 56 nm × 56 nm, and 91 nm × 192 nm, respectively. Results showed that all HAPs decreased cell viability, disorganized cell morphology, disrupted cell membranes, increased intracellular reactive oxygen species concentration, decreased mitochondrial membrane potential, decreased lysosome integrity, increased alkaline phosphatase activity, and increased intracellular calcium concentration, resulting in cell necrosis. The cytotoxicity of the four kinds of HAP was ranked as follows: H-Plate > H-Sphere > H-Needle > H-Rod. The cytotoxicity of each crystal was positively correlated with the following factors: large specific surface area, high electrical conductivity and low surface charge. HAP accelerated calcium deposits on the A7R5 cell surface and induced the expression of osteogenic proteins, such as BMP-2, Runx2, OCN, and ALP. The crystals with high cytotoxicity caused more calcium deposits on the cell surface, higher expression levels of osteogenic protein, and stronger osteogenic transformation abilities. These findings elucidated the relationship between crystal shape and cytotoxicity and provided theoretical references for decreasing the risks of vascular calcification.
Collapse
Affiliation(s)
- Ling-Hong Huang
- Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou, 510632, China
| | - Xin-Yuan Sun
- Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou, 510632, China
| | - Jian-Ming Ouyang
- Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
27
|
Li Y, Wang Y, Li Y, Luo W, Jiang J, Zhao J, Liu C. Controllable Synthesis of Biomimetic Hydroxyapatite Nanorods with High Osteogenic Bioactivity. ACS Biomater Sci Eng 2019; 6:320-328. [PMID: 33463205 DOI: 10.1021/acsbiomaterials.9b00914] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The development of biodegradable materials with high osteogenic bioactivity is important for achieving rapid bone regeneration. Although hydroxyapatite (HAp) has been applied as a biomaterial for bone engineering due to its good osteoconductivity, conventional synthetic HAp nanomaterials still lack sufficient osteogenesis, likely due to their high crystallinity and uncontrollable architecture. A design of HAp nanoparticles mimicking bone features may create good microenvironments that promote osteogenesis for rapid bone regeneration. In this study, HAp nanoparticles with a comparatively less crystalline structure and nanorod shapes mimicking biological HAp nanocrystals of natural bone were fabricated using a simple chemical precipitation approach with mild temperature control in the absence of any organic solvents. Transmission electron microscopy (TEM) indicated that HAp nanorods with aspect ratios from 2.0 to 4.4 were synthesized by adjusting the reaction time as well as the reaction temperature. Fourier transform infrared spectroscopy and X-ray diffraction experiments displayed that HAp nanorods prepared at 30 °C (HAp-30 with an aspect ratio of 2.9) had a low crystalline structure and B-type CO32- substitution similar to those of natural HAp originating from bone tissue. The energy-dispersive spectroscopy (EDS) results showed that the Ca/P ratio of HAp-30 was 1.66 ± 0.13. An in vitro biological evaluation against rat bone marrow-derived mesenchymal stem cells indicated that the resulting HAp nanorods had excellent biocompatibility (with an ∼80-fold increase in IC50 compared to that of conventional HAp nanoparticles). Interestingly, the alkaline phosphatase (ALP), alizarin red S, and immunofluorescence staining results all showed that stem cells display an obvious osteogenesis dependence on the HAp nanostructure. Specifically, HAp nanorods with a moderate aspect ratio had the optimal osteogenic capacity (e.g., HAp-30 offered a 2.8-fold increase in ALP expression and a 4-fold increase in OCN expression relative to that provided by irregular HAp at day 14). It is expected that HAp nanorods with controllable architectures and size have potential as a kind of new bioactive bone filler for bone defect repair.
Collapse
Affiliation(s)
- Yulin Li
- The Key Laboratory for Ultrafine Materials of Ministry of Education, Engineering Research Centre for Biomedical Materials of Ministry of Education, State Key Laboratory of Bioreactor Engineering, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yaqi Wang
- The Key Laboratory for Ultrafine Materials of Ministry of Education, Engineering Research Centre for Biomedical Materials of Ministry of Education, State Key Laboratory of Bioreactor Engineering, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yamin Li
- Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Wei Luo
- The Key Laboratory for Ultrafine Materials of Ministry of Education, Engineering Research Centre for Biomedical Materials of Ministry of Education, State Key Laboratory of Bioreactor Engineering, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jia Jiang
- Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Jinzhong Zhao
- Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Changsheng Liu
- The Key Laboratory for Ultrafine Materials of Ministry of Education, Engineering Research Centre for Biomedical Materials of Ministry of Education, State Key Laboratory of Bioreactor Engineering, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
28
|
Liu H, Huang LH, Sun XY, Ouyang JM. High-phosphorus environment promotes calcification of A7R5 cells induced by hydroxyapatite nanoparticles. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 107:110228. [PMID: 31761154 DOI: 10.1016/j.msec.2019.110228] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/28/2019] [Accepted: 09/18/2019] [Indexed: 12/19/2022]
Abstract
This study simulated the high-phosphorus (Pi) environment in patients with chronic kidney disease. Nano-hydroxyapatite (HAP) crystals were used to damage rat aortic smooth muscle cells (A7R5) pre-damaged with different concentrations of Pi solution to compare the differences in HAP-induced calcification in A7R5 cells before and after injury by high-Pi condition. After the A7R5 cells were damaged by high-Pi environment, the following were observed. HAP resulted in declined cell viability and lysosomal integrity, release of lactate dehydrogenase, and increased reactive oxygen species production. The ability of high-Pi damaged cells to internalize HAP crystals declined; crystal adhesion and calcium deposition on the cell surface and alkaline phosphatase activities increased. Osteopontin expression and level of Runt-related transcription factor 2 were increased, and HAP-induced osteogenic transformation was enhanced. High-Pi condition promoted the adhesion of A7R5 cells to nano-HAP crystals and inhibited HAP endocytosis, increasing the risk of calcification.
Collapse
Affiliation(s)
- Hong Liu
- Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou, 510632, China
| | - Ling-Hong Huang
- Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou, 510632, China
| | - Xin-Yuan Sun
- Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou, 510632, China
| | - Jian-Ming Ouyang
- Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
29
|
Lim KT, Patel DK, Choung HW, Seonwoo H, Kim J, Chung JH. Evaluation of Bone Regeneration Potential of Long-Term Soaked Natural Hydroxyapatite. ACS APPLIED BIO MATERIALS 2019; 2:5535-5543. [DOI: 10.1021/acsabm.9b00345] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Ki-Taek Lim
- Department of Biosystems Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Dinesh K. Patel
- The Institute of Forest Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Han Wool Choung
- Department of Oral and Maxillofacial Surgery and Dental Research Institute, School of Dentistry, Seoul National University, Seoul 151921, Republic of Korea
| | - Hoon Seonwoo
- Department of Industrial Machinery Engineering, Suncheon National University, Suncheon 57922, Republic of Korea
| | - Jangho Kim
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju 500757, Republic of Korea
| | - Jong Hoon Chung
- Department of Biosystems & Biomaterials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
30
|
Sun W, Ge K, Jin Y, Han Y, Zhang H, Zhou G, Yang X, Liu D, Liu H, Liang XJ, Zhang J. Bone-Targeted Nanoplatform Combining Zoledronate and Photothermal Therapy To Treat Breast Cancer Bone Metastasis. ACS NANO 2019; 13:7556-7567. [PMID: 31259530 DOI: 10.1021/acsnano.9b00097] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Bone metastasis, a clinical complication of patients with advanced breast cancer, seriously reduces the quality of life. To avoid destruction of the bone matrix, current treatments focus on inhibiting the cancer cell growth and the osteoclast activity through combination therapy. Therefore, it could be beneficial to develop a bone-targeted drug delivery system to treat bone metastasis. Here, a bone-targeted nanoplatform was developed using gold nanorods enclosed inside mesoporous silica nanoparticles (Au@MSNs) which were then conjugated with zoledronic acid (ZOL). The nanoparticles (Au@MSNs-ZOL) not only showed bone-targeting ability in vivo but also inhibited the formation of osteoclast-like cells and promoted osteoblast differentiation in vitro. The combination of Au@MSNs-ZOL and photothermal therapy (PTT), triggered by near-infrared irradiation, inhibited tumor growth both in vitro and in vivo and relieved pain and bone resorption in vivo by inducing apoptosis in cancer cells and improving the bone microenvironment. This single nanoplatform combines ZOL and PTT to provide an exciting strategy for treating breast cancer bone metastasis.
Collapse
Affiliation(s)
- Wentong Sun
- Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry and Environmental Science , Hebei University , Baoding 071002 , P.R. China
| | - Kun Ge
- Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry and Environmental Science , Hebei University , Baoding 071002 , P.R. China
- Hebei Key Laboratory of Chronic Kidney Diseases and Bone Metabolism , Affiliated Hospital of Hebei University , Baoding 071000 , P.R. China
| | - Yan Jin
- Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry and Environmental Science , Hebei University , Baoding 071002 , P.R. China
| | - Yu Han
- Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry and Environmental Science , Hebei University , Baoding 071002 , P.R. China
| | - Haisong Zhang
- Hebei Key Laboratory of Chronic Kidney Diseases and Bone Metabolism , Affiliated Hospital of Hebei University , Baoding 071000 , P.R. China
| | - Guoqiang Zhou
- Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry and Environmental Science , Hebei University , Baoding 071002 , P.R. China
| | - Xinjian Yang
- Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry and Environmental Science , Hebei University , Baoding 071002 , P.R. China
| | - Dandan Liu
- Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry and Environmental Science , Hebei University , Baoding 071002 , P.R. China
| | - Huifang Liu
- Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry and Environmental Science , Hebei University , Baoding 071002 , P.R. China
| | - Xing-Jie Liang
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology of China , No. 11, First North Road , Zhongguancun, Beijing 100190 , P.R. China
| | - Jinchao Zhang
- Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry and Environmental Science , Hebei University , Baoding 071002 , P.R. China
| |
Collapse
|
31
|
Huang LH, Han J, Ouyang JM, Gui BS. Shape-dependent adhesion and endocytosis of hydroxyapatite nanoparticles on A7R5 aortic smooth muscle cells. J Cell Physiol 2019; 235:465-479. [PMID: 31222743 DOI: 10.1002/jcp.28987] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 05/24/2019] [Accepted: 05/28/2019] [Indexed: 12/12/2022]
Abstract
The interaction between nanohydroxyapatite (HAP) and smooth muscle cells is an important step in vascular calcification. However, the effect of the shape of HAP on adhesion and endocytosis to aortic smooth muscle cells has been rarely reported. Four different morphological HAP crystals (H-Rod, H-Needle, H-Sphere, and H-Plate) were selected to interact with rat aortic smooth muscle cells (A7R5). Fluorescence-labeled HAP was used to detect crystal adhesion and endocytosis and then pretreated with different endocytic inhibitors to explore the pathway of endocytotic crystals. The distribution of crystals inside and outside the cells and the crystal localization in lysosomes was observed through laser confocal microscopy. The effect of crystal on the cell cycle and the changes in the expression of phosphatidylserine, osteopontin, α-actin, core binding factor alpha 1, and osterix on the surface of A7R5 cells were detected. The adhesion and endocytosis of HAP on A7R5 cells were closely related to crystal shapes and ranked as follows: H-Plate > H-Sphere > H-Needle > H-Rod. H-Sphere and H-Needle were internalized into the cells mainly via the clathrin-mediated pathway, whereas H-Plate and H-Rod were internalized into the cells mainly via macropinocytosis. The endocytosed nano-HAP was mainly distributed in the cell lysosome. The adhesion and endocytosis of HAP to A7R5 cells were positively correlated with the specific surface area, and contact area of HAP and negatively correlated with the absolute value of Zeta and contact angle of HAP. This study provided insights into the effect of crystal morphology on vascular calcification and its mechanism.
Collapse
Affiliation(s)
- Ling-Hong Huang
- Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou, China
| | - Jin Han
- Department of Nephrology, The Second Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jian-Ming Ouyang
- Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou, China
| | - Bao-Song Gui
- Department of Nephrology, The Second Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
32
|
Uskoković V, Tang S, Nikolić MG, Marković S, Wu VM. Calcium phosphate nanoparticles as intrinsic inorganic antimicrobials: In search of the key particle property. Biointerphases 2019; 14:031001. [PMID: 31109162 PMCID: PMC6527436 DOI: 10.1116/1.5090396] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 04/08/2019] [Accepted: 05/06/2019] [Indexed: 01/10/2023] Open
Abstract
One of the main goals of materials science in the 21st century is the development of materials with rationally designed properties as substitutes for traditional pharmacotherapies. At the same time, there is a lack of understanding of the exact material properties that induce therapeutic effects in biological systems, which limits their rational optimization for the related medical applications. This study sets the foundation for a general approach for elucidating nanoparticle properties as determinants of antibacterial activity, with a particular focus on calcium phosphate nanoparticles. To that end, nine physicochemical effects were studied and a number of them were refuted, thus putting an end to frequently erred hypotheses in the literature. Rather than having one key particle property responsible for eliciting the antibacterial effect, a complex synergy of factors is shown to be at work, including (a) nanoscopic size; (b) elevated intracellular free calcium levels due to nanoparticle solubility; (c) diffusivity and favorable electrostatic properties of the nanoparticle surface, primarily low net charge and high charge density; and (d) the dynamics of perpetual exchange of ultrafine clusters across the particle/solution interface. On the positive side, this multifaceted mechanism is less prone to induce bacterial resistance to the therapy and can be a gateway to the sphere of personalized medicine. On a more problematic side, it implies a less intense effect compared to single-target molecular therapies and a difficulty of elucidating the exact mechanisms of action, while also making the rational design of theirs for this type of medical application a challenge.
Collapse
Affiliation(s)
- Vuk Uskoković
- Department of Bioengineering, University of Illinois, Chicago, Illinois 60607-7052
| | - Sean Tang
- Advanced Materials and Nanobiotechnology Laboratory, Department of Biomedical and Pharmaceutical Sciences, Center for Targeted Drug Delivery, Chapman University, Irvine, California 92618-1908
| | - Marko G Nikolić
- Institute of Physics, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia
| | - Smilja Marković
- Institute of Technical Sciences of the Serbian Academy of Sciences and Arts (SASA), Knez Mihailova 35/IV, 11000 Belgrade, Serbia
| | - Victoria M Wu
- Advanced Materials and Nanobiotechnology Laboratory, Department of Biomedical and Pharmaceutical Sciences, Center for Targeted Drug Delivery, Chapman University, Irvine, California 92618-1908
| |
Collapse
|
33
|
Ammonium-Induced Synthesis of Highly Fluorescent Hydroxyapatite Nanoparticles with Excellent Aqueous Colloidal Stability for Secure Information Storage. COATINGS 2019. [DOI: 10.3390/coatings9050289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In this paper, uniform hydroxyapatite (HA) nanoparticles, with excellent aqueous colloidal stability and high fluorescence, have been successfully synthesized via a citrate-assisted hydrothermal method. The effect of the molar ratio of ammonium phosphate in phosphate (RAMP) and hydrothermal time on the resultant products was characterized in terms of crystalline structure, morphology, colloidal stability, and fluorescence behavior. When the RAMP is 50% and the hydrothermal time is 4 h, the product consists of a pure hexagonal HA phase and a uniform rod-like morphology, with 120- to 150-nm length and approximately 20-nm diameter. The corresponding dispersion is colloidally stable, and transparent for at least one week, and has an intense bright blue emission (centered at 440 nm, 11.6-ns lifetime, and 73.80% quantum efficiency) when excited by 340-nm UV light. Although prolonging the hydrothermal time and increasing the RAMP had no appreciable effect on the aqueous colloidal stability of HA nanoparticles, the fluorescence intensity was enhanced. The cause of HA fluorescence are more biased towards carbon dots (which are mainly polymer clusters and/or molecular fluorophores constituents) trapped in the hydroxyapatite crystal structure. Owing to these properties, a highly fluorescent HA colloidal dispersion could find applications in secure information storage.
Collapse
|
34
|
Soares da Silva J, Machado TR, Martins TA, Assis M, Foggi CC, Macedo NG, Beltrán-Mir H, Cordoncillo E, Andrés J, Longo E. α-AgVO 3 Decorated by Hydroxyapatite (Ca 10(PO 4) 6(OH) 2): Tuning Its Photoluminescence Emissions and Bactericidal Activity. Inorg Chem 2019; 58:5900-5913. [PMID: 31012582 DOI: 10.1021/acs.inorgchem.9b00249] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Defect-related luminescent materials have attracted interest because of their excellent optical properties and are considered as a less expensive and nontoxic alternative to commonly used lanthanide-based optical systems. These materials are fundamentally and technologically important for the next generation of full-color tunable light-emitting diodes as well as in the biomedical field. In this study, we report the preparation of α-silver vanadate (α-AgVO3, AV) decorated by hydroxyapatite (Ca10(PO4)6(OH)2, HA) with intense photoluminescence (PL) emissions at various HA/AV molar ratios (1:1-1:1/32) by a simple route based on chemical precipitation. The well-defined diffraction peaks observed by X-ray diffraction were all indexed to the monoclinic AV and hexagonal HA phases. Analysis of the results obtained by Fourier transform infrared spectroscopy reveals the presence of short-range structural order as deduced by the characteristic vibrational modes assigned to AV and HA systems. Characterization by scanning and transmission electron microscopies confirms the presence of AV and HA micro- and nanorods, respectively. UV-vis spectroscopy renders band gap energies of 5.80 eV for HA and in the range 2.59-2.65 eV for pure AV and HA/AV samples. The PL data reveal the presence of broad-band emission profiles, typical of defect-related optical centers in materials. Depending on the molar ratio, the emission can be completely tunable from the blue to red spectral regions; in addition, pure white color emission was obtained. On the basis of these results, we propose an order-disorder model induced by structural and interface defects to explain the PL emissions in the HA/AV system. Moreover, our results show that HA/AV composites have superior bactericidal activity against Staphylococcus aureus (methicillin-resistant and methicillin-susceptible) and can be used as a novel multifunctional material.
Collapse
Affiliation(s)
- Jussara Soares da Silva
- Departamento de Química , CDMF, Universidade Federal de São Carlos (UFSCar) , 13565-905 São Carlos , São Paulo , Brazil
| | - Thales R Machado
- Departamento de Química , CDMF, Universidade Federal de São Carlos (UFSCar) , 13565-905 São Carlos , São Paulo , Brazil
| | - Tiago A Martins
- Departamento de Química , CDMF, Universidade Federal de São Carlos (UFSCar) , 13565-905 São Carlos , São Paulo , Brazil
| | - Marcelo Assis
- Departamento de Química , CDMF, Universidade Federal de São Carlos (UFSCar) , 13565-905 São Carlos , São Paulo , Brazil
| | - Camila C Foggi
- Departamento de Química , CDMF, Universidade Federal de São Carlos (UFSCar) , 13565-905 São Carlos , São Paulo , Brazil
| | - Nadia G Macedo
- Departamento de Química , CDMF, Universidade Federal de São Carlos (UFSCar) , 13565-905 São Carlos , São Paulo , Brazil
| | - Héctor Beltrán-Mir
- Departament de Química Inorgànica i Orgànica , Universitat Jaume I (UJI) , 12071 Castellón de la Plana , Castelló , Spain
| | - Eloisa Cordoncillo
- Departament de Química Inorgànica i Orgànica , Universitat Jaume I (UJI) , 12071 Castellón de la Plana , Castelló , Spain
| | - Juan Andrés
- Departament de Química Física i Analítica , Universitat Jaume I (UJI) , 12071 Castellón de la Plana , Castelló , Spain
| | - Elson Longo
- Departamento de Química , CDMF, Universidade Federal de São Carlos (UFSCar) , 13565-905 São Carlos , São Paulo , Brazil
| |
Collapse
|
35
|
Gao C, Jin Y, Jia G, Suo X, Liu H, Liu D, Yang X, Ge K, Liang XJ, Wang S, Zhang J. Y 2O 3 Nanoparticles Caused Bone Tissue Damage by Breaking the Intracellular Phosphate Balance in Bone Marrow Stromal Cells. ACS NANO 2019; 13:313-323. [PMID: 30571089 DOI: 10.1021/acsnano.8b06211] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Y2O3 nanoparticles (NPs) have become great promising products for numerous applications in nanoscience especially for biomedical application, therefore increasing the probability of human exposure and gaining wide attention in biosecurity. It is well known that rare earth (RE) materials are deposited in the bone and excreted very slowly. Nevertheless, the effect of Y2O3-based NPs on bone metabolism has not been exactly known yet. In the present study, the effects of Y2O3 NPs on bone marrow stromal cells (BMSCs) and bone metabolism in mice after intravenous injection were studied. The results demonstrated that Y2O3 NPs could be taken up into BMSCs and localized in acidifying intracellular lysosomes and underwent dissolution and transformation from Y2O3 to YPO4, which could lead to a break in the intracellular phosphate balance and induce lysosomal- and mitochondrial-dependent apoptosis pathways. Furthermore, after being administered to mice, a higher concentration of yttrium occurred in bone, which caused the apoptosis of bone cells and induced the destruction of bone structure. However, the formation of a YPO4 coating on the surface of Y2O3 NPs by pretreatment of Y2O3 NPs in lysosome-simulated body fluid could observably decrease the toxicity in vivo and in vitro. This study may be useful for practical application of Y2O3 NPs in the biomedical field.
Collapse
Affiliation(s)
- Chunyue Gao
- College of Chemistry & Environmental Science, Chemical Biology Key Laboratory of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education , Hebei University , Baoding 071002 , People's Republic of China
| | - Yi Jin
- College of Medical Science , Hebei University , Baoding 071002 , People's Republic of China
| | - Guang Jia
- College of Chemistry & Environmental Science, Chemical Biology Key Laboratory of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education , Hebei University , Baoding 071002 , People's Republic of China
| | - Xiaomin Suo
- College of Chemistry & Environmental Science, Chemical Biology Key Laboratory of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education , Hebei University , Baoding 071002 , People's Republic of China
| | - Huifang Liu
- College of Pharmacy , Hebei University , Baoding 071002 , People's Republic of China
| | - Dandan Liu
- College of Chemistry & Environmental Science, Chemical Biology Key Laboratory of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education , Hebei University , Baoding 071002 , People's Republic of China
| | - Xinjian Yang
- College of Chemistry & Environmental Science, Chemical Biology Key Laboratory of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education , Hebei University , Baoding 071002 , People's Republic of China
| | - Kun Ge
- College of Chemistry & Environmental Science, Chemical Biology Key Laboratory of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education , Hebei University , Baoding 071002 , People's Republic of China
| | - Xing-Jie Liang
- Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, and National Center for Nanoscience and Technology , Beijing 100190 , People's Republic of China
| | - Shuxiang Wang
- College of Chemistry & Environmental Science, Chemical Biology Key Laboratory of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education , Hebei University , Baoding 071002 , People's Republic of China
| | - Jinchao Zhang
- College of Chemistry & Environmental Science, Chemical Biology Key Laboratory of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education , Hebei University , Baoding 071002 , People's Republic of China
| |
Collapse
|
36
|
Johnson GP, Stavenschi E, Eichholz KF, Corrigan MA, Fair S, Hoey DA. Mesenchymal stem cell mechanotransduction is cAMP dependent and regulated by adenylyl cyclase 6 and the primary cilium. J Cell Sci 2018; 131:jcs.222737. [PMID: 30301777 DOI: 10.1242/jcs.222737] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 09/21/2018] [Indexed: 01/24/2023] Open
Abstract
Mechanical loading is a potent stimulus of bone adaptation, requiring the replenishment of the osteoblast from a progenitor population. One such progenitor is the mesenchymal stem cell (MSC), which undergoes osteogenic differentiation in response to oscillatory fluid shear. Yet, the mechanism mediating stem cell mechanotransduction, and thus the potential to target this therapeutically, is poorly understood. In this study, we demonstrate that MSCs utilise cAMP as a second messenger in mechanotransduction, which is required for flow-mediated increases in osteogenic gene expression. Furthermore, we demonstrate that this mechanosignalling is dependent on the primary cilium and the ciliary localised adenylyl cyclase 6. Finally, we also demonstrate that this mechanotransduction mechanism can be targeted therapeutically to enhance cAMP signalling and early osteogenic signalling, mimicking the beneficial effect of physical loading. Our findings therefore demonstrate a novel mechanism of MSC mechanotransduction that can be targeted therapeutically, demonstrating a potential mechanotherapeutic for bone-loss diseases such as osteoporosis.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Gillian P Johnson
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College, Dublin D02 R590, Ireland.,Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin 2 D02 DK07, Ireland.,Department of Mechanical, Aeronautical and Biomedical Engineering, School of Engineering, University of Limerick, Limerick V94 PH61, Ireland.,Laboratory of Animal Reproduction, Department of Biological Sciences, School of Natural Sciences, Faculty of Science and Engineering, University of Limerick, Limerick V94 T9PX, Ireland
| | - Elena Stavenschi
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College, Dublin D02 R590, Ireland.,Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin 2 D02 DK07, Ireland
| | - Kian F Eichholz
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College, Dublin D02 R590, Ireland.,Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin 2 D02 DK07, Ireland
| | - Michele A Corrigan
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College, Dublin D02 R590, Ireland.,Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin 2 D02 DK07, Ireland
| | - Sean Fair
- Laboratory of Animal Reproduction, Department of Biological Sciences, School of Natural Sciences, Faculty of Science and Engineering, University of Limerick, Limerick V94 T9PX, Ireland
| | - David A Hoey
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College, Dublin D02 R590, Ireland .,Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin 2 D02 DK07, Ireland.,Department of Mechanical, Aeronautical and Biomedical Engineering, School of Engineering, University of Limerick, Limerick V94 PH61, Ireland.,Advanced Materials and Bioengineering Research Centre, Trinity College Dublin & RCSI, Dublin 2 D02 VN51, Ireland
| |
Collapse
|
37
|
Transfection of gene regulation nanoparticles complexed with pDNA and shRNA controls multilineage differentiation of hMSCs. Biomaterials 2018; 177:1-13. [PMID: 29883913 DOI: 10.1016/j.biomaterials.2018.05.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 05/11/2018] [Accepted: 05/21/2018] [Indexed: 10/16/2022]
Abstract
Overexpression and knockdown of specific proteins can control stem cell differentiation for therapeutic purposes. In this study, we fabricated RUNX2, SOX9, and C/EBPα plasmid DNAs (pDNAs) and ATF4-targeting shRNA (shATF4) to induce osteogenesis, chondrogenesis, and adipogenesis of human mesenchymal stem cells (hMSCs). The pDNAs and shATF4 were complexed with TRITC-gene regulation nanoparticles (GRN). Osteogenesis-related gene expression was reduced at early (12 h) and late (36 h) time points after co-delivery of shATF4 and SOX9 or C/EBPα pDNA, respectively, and osteogenesis was inhibited in these hMSCs. By contrast, osteogenesis-related genes were highly expressed upon co-delivery of RUNX2 and ATF4 pDNAs. DEX in GRN enhanced chondrogenic differentiation. Expression of osteogenesis-, chondrogenesis-, and adipogenesis-related genes was higher in hMSCs transfected with NPs complexed with RUNX2 and ATF4 pDNAs, shATF4 and SOX9 pDNA, and shATF4 and C/EBPα pDNA for 72 h than in control hMSCs, respectively. Moreover, delivery of these NPs also increased expression of osteogenesis-, chondrogenesis-, and adipogenesis-related proteins. These alterations in expression led to morphological changes, indicating that hMSCs differentiated into osteoblasts, chondrocytes, and adipose cells.
Collapse
|
38
|
Yan X, Wang H, Li Y, Jiang Y, Shao Q, Xu W. MicroRNA‑92a overexpression promotes the osteogenic differentiation of bone mesenchymal stem cells by impeding Smad6‑mediated runt‑related transcription factor 2 degradation. Mol Med Rep 2018; 17:7821-7826. [PMID: 29620201 DOI: 10.3892/mmr.2018.8829] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 02/14/2018] [Indexed: 11/06/2022] Open
Abstract
Bone mesenchymal stem cells (BMSCs) are an important source of stem cells for tissue repair and regeneration; therefore, understanding the mechanisms that regulate stem cell differentiation in a specific lineage is critical. Runt‑related transcription factor 2 (Runx2) is a bone‑specific transcription factor that serves an important role in promoting osteogenic differentiation. However, Runx2 protein levels are regulated by the ubiquitin‑proteasome pathway. Previous research has identified that Smad6 can interact with Runx2 and enhance Smurf1‑induced Runx2 degradation in a ubiquitin‑proteasome‑dependent manner. Bioinformatics analysis demonstrated that miR‑92a can target Smad6. To characterize the regulatory effect of miR‑92a on osteogenic differentiation of BMSCs and assess the interactive association between Smad6 and miR‑92a, BMSCs were obtained from mice and miR‑92a or Smad6 overexpression vectors were constructed. Reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) and western blots were used to analyze the expression of miR‑92a and Smad6, and the luciferase reporter assay was used to examine the interaction between miR‑92a and Smad6. BMSCs were induced in osteogenic differentiation media for 21 days. The alkaline phosphatase activity was assessed and Alizarin Red histochemical staining was also performed. The results suggested that the expression of miR‑92a suppressed Smad6‑mediated Runx2 degradation by direct integration with the 3'‑UTR of Smad6 mRNA, which was confirmed by a luciferase reporter assay. In addition, the expression of miR‑92a promoted the osteogenic differentiation of BMSCs. However, the regulatory effect of miR‑92a was inhibited by overexpression of Smad6. Taken together, the results suggest that miR‑92a expression inhibits the osteogenic differentiation of BMSCs by targeting Smad6.
Collapse
Affiliation(s)
- Xu Yan
- Department of Orthopedics, 455th Hospital of PLA, Shanghai 200052, P.R. China
| | - Hao Wang
- Teaching Center of Experiment Medicine, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Yufei Li
- Department of Plastic Surgery, 455th Hospital of PLA, Shanghai 200052, P.R. China
| | - Yuxin Jiang
- School of Medicine, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Qingdong Shao
- Department of Orthopedics, 455th Hospital of PLA, Shanghai 200052, P.R. China
| | - Weidong Xu
- Department of Orthopedics, 455th Hospital of PLA, Shanghai 200052, P.R. China
| |
Collapse
|
39
|
Ge M, Ge K, Gao F, Yan W, Liu H, Xue L, Jin Y, Ma H, Zhang J. Biomimetic mineralized strontium-doped hydroxyapatite on porous poly(l-lactic acid) scaffolds for bone defect repair. Int J Nanomedicine 2018; 13:1707-1721. [PMID: 29599615 PMCID: PMC5866725 DOI: 10.2147/ijn.s154605] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Introduction poly(l-lactic acid) (PLLA) has been approved for clinical use by the US Food and Drug Administration (FDA); however, their stronger hydrophobicity and relatively fast degradation rate restricted their widespread application. In consideration of the composition of bone, the inorganic–organic composite has a great application prospect in bone tissue engineering. Many inorganic–organic composite scaffolds were prepared by directly mixing the active ingredient, but this method is uncontrolled and will lead to lack of homogeneity in the polymer matrix. Strontium (Sr) is an admirable addition to improve the bioactivity and bone induction of hydroxyapatite (HA). To our knowledge, the application of biomimetic mineralized strontium-doped hydroxyapatite on porous poly(l-lactic acid) (Sr-HA/PLLA) scaffolds for bone defect repair has never been reported till date. Biomimetic mineralized Sr-HA/PLLA porous scaffold was developed in this study. The results indicated that the Sr-HA/PLLA porous scaffold could improve the surface hydrophobicity, reduce the acidic environment of the degradation, and enhance the osteoinductivity; moreover, the ability of protein adsorption and the modulus of compression were increased. The results also clearly showed the effectiveness of the Sr-HA/PLLA porous scaffold in promoting cell adhesion, proliferation, and alkaline phosphatase (ALP) activity. The micro computed tomography (micro-CT) results showed that more new bones were formed by Sr-HA/PLLA porous scaffold treatment. The histological results confirmed the osteoinductivity of the Sr-HA/PLLA porous scaffold. The results suggested that the Sr-HA/PLLA porous scaffold has a good application prospect in bone tissue engineering in the future. Purpose The purpose of this study was to promote the bone repair. Materials and methods Surgical operation of rabbits was carried out in this study. Results The results showed that formation of a large number of new bones by the Sr-HA/PLLA porous scaffold treatment is possible. Conclusion Biomimetic mineralized Sr-HA/PLLA porous scaffold could effectively promote the restoration of bone defects in vivo.
Collapse
Affiliation(s)
- Min Ge
- Department of Chemistry, College of Chemistry and Environmental Science, Hebei University, Baoding, People's Republic of China.,Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding, People's Republic of China
| | - Kun Ge
- Department of Chemistry, College of Chemistry and Environmental Science, Hebei University, Baoding, People's Republic of China.,Department of Science and Technology, Affiliated Hospital of Hebei University, Baoding, People's Republic of China
| | - Fei Gao
- Department of Orthopedics, Affiliated Hospital of Hebei University, Baoding, People's Republic of China
| | - Weixiao Yan
- Department of Chemistry, College of Chemistry and Environmental Science, Hebei University, Baoding, People's Republic of China.,Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding, People's Republic of China
| | - Huifang Liu
- Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding, People's Republic of China
| | - Li Xue
- Department of Chemistry, College of Chemistry and Environmental Science, Hebei University, Baoding, People's Republic of China
| | - Yi Jin
- Department of Chemistry, College of Chemistry and Environmental Science, Hebei University, Baoding, People's Republic of China.,Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding, People's Republic of China
| | - Haiyun Ma
- Department of Chemistry, College of Chemistry and Environmental Science, Hebei University, Baoding, People's Republic of China
| | - Jinchao Zhang
- Department of Chemistry, College of Chemistry and Environmental Science, Hebei University, Baoding, People's Republic of China.,Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding, People's Republic of China
| |
Collapse
|
40
|
Machado TR, Sczancoski JC, Beltrán-Mir H, Nogueira IC, Li MS, Andrés J, Cordoncillo E, Longo E. A novel approach to obtain highly intense self-activated photoluminescence emissions in hydroxyapatite nanoparticles. J SOLID STATE CHEM 2017. [DOI: 10.1016/j.jssc.2016.12.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
41
|
Liu H, Jin Y, Ge K, Jia G, Li Z, Yang X, Chen S, Ge M, Sun W, Liu D, Zhang J. Europium-Doped Gd 2O 3 Nanotubes Increase Bone Mineral Density in Vivo and Promote Mineralization in Vitro. ACS APPLIED MATERIALS & INTERFACES 2017; 9:5784-5792. [PMID: 28118705 DOI: 10.1021/acsami.6b14682] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Europium-doped Gd2O3 nanotubes (Gd2O3:Eu3+ NTs) have been extensively applied in the field of bioscience for their photostability and magnetic properties. Nevertheless, the distribution and interaction between Gd2O3:Eu3+ NTs and metabolism of bone are not yet sufficiently understood. In this study, a systematic study of the toxicity and distribution of Gd2O3:Eu3+ NTs in mice after oral administration was carried out. The results showed that a small number of the Gd2O3:Eu3+ NTs could pass through biological barriers into the lung, liver, and spleen, but a high concentration was observed in bone. Furthermore, the effects of Gd2O3:Eu3+ NTs on bone metabolism were systematically studied in vitro and in vivo when accumulating in bone. After being administered to mice, the Gd2O3:Eu3+ NTs extremely enhanced the bone mineral density and bone biomechanics. In vitro the Gd2O3:Eu3+ NTs increased the alkaline phosphatase (ALP) activity and mineralization and promoted the expression of osteogenesis genes in preosteoblasts MC3T3-E1 through activation of the BMP signaling pathway. This study will be significant for appropriate application of Gd2O3:Eu3+ NTs in the biomedical field and expounding the molecular mechanism of bone metabolism.
Collapse
Affiliation(s)
| | - Yi Jin
- College of Basic Medical Science, Hebei University , Baoding 071000, China
| | - Kun Ge
- Affiliated Hospital of Hebei University , Baoding 071000, China
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Yi DK, Nanda SS, Kim K, Tamil Selvan S. Recent progress in nanotechnology for stem cell differentiation, labeling, tracking and therapy. J Mater Chem B 2017; 5:9429-9451. [DOI: 10.1039/c7tb02532g] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Nanotechnology advancements for stem cell differentiation, labeling, tracking and therapeutic applications in cardiac repair, bone, and liver regeneration are delineated.
Collapse
Affiliation(s)
- Dong Kee Yi
- Department of Chemistry
- Myongji University
- Yongin 449-728
- South Korea
| | | | - Kwangmeyung Kim
- Center for Theragnosis
- Biomedical Research Institute
- Korea Institute of Science and Technology (KIST)
- Seoul
- South Korea
| | | |
Collapse
|
43
|
Jin Y, Liu X, Liu H, Chen S, Gao C, Ge K, Zhang C, Zhang J. Oxidative stress-induced apoptosis of osteoblastic MC3T3-E1 cells by hydroxyapatite nanoparticles through lysosomal and mitochondrial pathways. RSC Adv 2017. [DOI: 10.1039/c7ra01008g] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Hydroxyapatite nanoparticles (HAPs) cause apoptosis of osteoblastic MC3T3-E1 cells through oxidative stress-induced lysosomal and mitochondrial pathway.
Collapse
Affiliation(s)
- Yi Jin
- Key Laboratory of Chemical Biology of Hebei Province
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education
- College of Chemistry & Environmental Science
- Hebei University
- Baoding 071002
| | - Xiaolong Liu
- Key Laboratory of Chemical Biology of Hebei Province
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education
- College of Chemistry & Environmental Science
- Hebei University
- Baoding 071002
| | - Huifang Liu
- Key Laboratory of Chemical Biology of Hebei Province
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education
- College of Chemistry & Environmental Science
- Hebei University
- Baoding 071002
| | - Shizhu Chen
- Key Laboratory of Chemical Biology of Hebei Province
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education
- College of Chemistry & Environmental Science
- Hebei University
- Baoding 071002
| | - Chunyue Gao
- Key Laboratory of Chemical Biology of Hebei Province
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education
- College of Chemistry & Environmental Science
- Hebei University
- Baoding 071002
| | - Kun Ge
- Key Laboratory of Chemical Biology of Hebei Province
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education
- College of Chemistry & Environmental Science
- Hebei University
- Baoding 071002
| | - Cuimiao Zhang
- Key Laboratory of Chemical Biology of Hebei Province
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education
- College of Chemistry & Environmental Science
- Hebei University
- Baoding 071002
| | - Jinchao Zhang
- Key Laboratory of Chemical Biology of Hebei Province
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education
- College of Chemistry & Environmental Science
- Hebei University
- Baoding 071002
| |
Collapse
|
44
|
Zhang L, Chen J, Chai W, Ni M, Sun X, Tian D. Glycitin regulates osteoblasts through TGF-β or AKT signaling pathways in bone marrow stem cells. Exp Ther Med 2016; 12:3063-3067. [PMID: 27882117 DOI: 10.3892/etm.2016.3696] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Accepted: 07/26/2016] [Indexed: 12/24/2022] Open
Abstract
The aim of the present study was to examine the effect of glycitin on the regulation of osteoblasts from bone marrow stem cells (BMSCs) through transforming growth factor (TGF)-β or protein kinase B (AKT) signaling pathways. BMSCs were extracted from New Zealand white rabbits and used to analyze the effect of glycitin on BMSCs. BMSCs were cleared using xylene and observed via light microscopy. BMSCs were subsequently induced with glycitin (0.01, 0.5, 1, 5 and 10 µM) for 7 days, and stained with Oil Red O. The mechanism of action of glycitin on BMSCs was investigated, in which contact with collagen type I (Col I), alkaline phosphatase (ALP), TGF-β and AKT was studied. Firstly, BMSCs appeared homogeneously mazarine blue, and which showed that BMSCs were successful extracted. Administration of glycitin increased cell proliferation and promoted osteoblast formation from BMSCs. Furthermore, glycitin activated the gene expression of Col I and ALP in BMSCs. Notably, glycitin suppressed protein expression of TGF-β and AKT in BMSCs. These results indicated that glycitin may regulate osteoblasts through TGF-β or AKT signaling pathways in BMSCs.
Collapse
Affiliation(s)
- Liyan Zhang
- Department of Orthopedics, General Hospital of Chinese People's Liberation Army, Beijing 100853, P.R. China; First Department of Orthopedics, Affiliated Hospital of Beihua University, Jilin 132000, P.R. China
| | - Jiying Chen
- Department of Orthopedics, General Hospital of Chinese People's Liberation Army, Beijing 100853, P.R. China
| | - Wei Chai
- Department of Orthopedics, General Hospital of Chinese People's Liberation Army, Beijing 100853, P.R. China
| | - Min Ni
- Department of Orthopedics, General Hospital of Chinese People's Liberation Army, Beijing 100853, P.R. China
| | - Xin Sun
- Life Science Research Center of Beihua University, Jilin 132000, P.R. China
| | - Dan Tian
- Life Science Research Center of Beihua University, Jilin 132000, P.R. China
| |
Collapse
|