1
|
Gao Y, Meng S, Liu W, Zhang Y, Zhang Y, Dong A, Zhang L. Physical Contact-Triggered In Situ Reactivation of Antibacterial Hydrogels. ACS APPLIED MATERIALS & INTERFACES 2023; 15:7735-7746. [PMID: 36735761 DOI: 10.1021/acsami.2c19113] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
In situ reactivation of hydrogels remains a long-standing key challenge in chemistry and materials science. Herein, we first report an ultraconvenient in situ renewable antibacterial hydrogel prepared via a facile physical contact-triggered strategy based on an ultrafast chlorine transfer pathway. We discover that the as-proposed hydrogel with a programmable 3D network cross-linked by noncovalent bonds and physical interactions can serve as a smart platform for selective active chlorine transfer at the hydrogel/hydrogel interface. Systematic experiments and density functional theory prove that the N-halamine glycopolymers integrated into the hydrogel system work as a specific renewable biocide, permitting the final hydrogel to be recharged in situ within 1 min under ambient conditions. Due to its strength and durability, pathogen specificity, and biocompatibility, coupled with its rapid in situ reactivation, this antibacterial hydrogel holds great potential for in vivo biomedical use and circulating water disinfection. We envision this proposed strategy will pave a new avenue for the development of in situ renewable smart hydrogels for real-world applications.
Collapse
Affiliation(s)
- Yue Gao
- Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot010021, People's Republic of China
| | - Suriguga Meng
- Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot010021, People's Republic of China
| | - Wenxin Liu
- College of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao028000, China
| | - Yu Zhang
- Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot010021, People's Republic of China
| | - Yanling Zhang
- Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot010021, People's Republic of China
| | - Alideertu Dong
- Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot010021, People's Republic of China
| | - Lei Zhang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin300350, People's Republic of China
| |
Collapse
|
2
|
Mei R, Heng X, Liu X, Chen G. Glycopolymers for Antibacterial and Antiviral Applications. Molecules 2023; 28:molecules28030985. [PMID: 36770653 PMCID: PMC9919862 DOI: 10.3390/molecules28030985] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/05/2023] [Accepted: 01/11/2023] [Indexed: 01/21/2023] Open
Abstract
Diseases induced by bacterial and viral infections are common occurrences in our daily life, and the main prevention and treatment strategies are vaccination and taking antibacterial/antiviral drugs. However, vaccines can only be used for specific viral infections, and the abuse of antibacterial/antiviral drugs will create multi-drug-resistant bacteria and viruses. Therefore, it is necessary to develop more targeted prevention and treatment methods against bacteria and viruses. Proteins on the surface of bacteria and viruses can specifically bind to sugar, so glycopolymers can be used as potential antibacterial and antiviral drugs. In this review, the research of glycopolymers for bacterial/viral detection/inhibition and antibacterial/antiviral applications in recent years are summarized.
Collapse
Affiliation(s)
- Ruoyao Mei
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China
| | - Xingyu Heng
- Key Laboratory of Polymeric Material Design and Synthesis for Biomedical Function, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren−Ai Road, Suzhou 215123, China
| | - Xiaoli Liu
- Key Laboratory of Polymeric Material Design and Synthesis for Biomedical Function, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren−Ai Road, Suzhou 215123, China
- Correspondence: (X.L.); (G.C.)
| | - Gaojian Chen
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China
- Key Laboratory of Polymeric Material Design and Synthesis for Biomedical Function, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren−Ai Road, Suzhou 215123, China
- Correspondence: (X.L.); (G.C.)
| |
Collapse
|
3
|
Zhao X, Tang H, Jiang X. Deploying Gold Nanomaterials in Combating Multi-Drug-Resistant Bacteria. ACS NANO 2022; 16:10066-10087. [PMID: 35776694 DOI: 10.1021/acsnano.2c02269] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Antibiotic resistance has become a serious threat to human health due to the overuse of antibiotics. Different antibiotics are being developed to treat resistant bacteria, but the development cycle of antibiotics is hard to keep up with the high incidence of antibiotic resistance. Recent advances in antimicrobial nanomaterials have made nanotechnology a powerful solution to this dilemma. Among these nanomaterials, gold nanomaterials have excellent antibacterial efficacy and biosafety, making them alternatives to antibiotics. This review presents strategies that use gold nanomaterials to combat drug-resistant bacteria. We focus on the influence of physicochemical factors such as surface chemistry, size, and shape of gold nanomaterials on their antimicrobial properties and describe the antimicrobial applications of gold nanomaterials in medical devices. Finally, the existing challenges and future directions are discussed.
Collapse
Affiliation(s)
- Xiaohui Zhao
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, Guangdong 518055, P.R. China
| | - Hao Tang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, Guangdong 518055, P.R. China
| | - Xingyu Jiang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, Guangdong 518055, P.R. China
| |
Collapse
|
4
|
Groß R, Dias Loiola LM, Issmail L, Uhlig N, Eberlein V, Conzelmann C, Olari L, Rauch L, Lawrenz J, Weil T, Müller JA, Cardoso MB, Gilg A, Larsson O, Höglund U, Pålsson SA, Tvilum AS, Løvschall KB, Kristensen MM, Spetz A, Hontonnou F, Galloux M, Grunwald T, Zelikin AN, Münch J. Macromolecular Viral Entry Inhibitors as Broad-Spectrum First-Line Antivirals with Activity against SARS-CoV-2. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201378. [PMID: 35543527 PMCID: PMC9284172 DOI: 10.1002/advs.202201378] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/11/2022] [Indexed: 05/03/2023]
Abstract
Inhibitors of viral cell entry based on poly(styrene sulfonate) and its core-shell nanoformulations based on gold nanoparticles are investigated against a panel of viruses, including clinical isolates of SARS-CoV-2. Macromolecular inhibitors are shown to exhibit the highly sought-after broad-spectrum antiviral activity, which covers most analyzed enveloped viruses and all of the variants of concern for SARS-CoV-2 tested. The inhibitory activity is quantified in vitro in appropriate cell culture models and for respiratory viral pathogens (respiratory syncytial virus and SARS-CoV-2) in mice. Results of this study comprise a significant step along the translational path of macromolecular inhibitors of virus cell entry, specifically against enveloped respiratory viruses.
Collapse
Affiliation(s)
- Rüdiger Groß
- Institute of Molecular VirologyUlm University Medical CenterUlm89081Germany
| | - Lívia Mesquita Dias Loiola
- Department of Chemistry and iNano Interdisciplinary Nanoscience CentreAarhus UniversityAarhus8000Denmark
- Brazilian Synchrotron Light LaboratoryBrazilian Center for Research in Energy and MaterialsCampinasSão Paulo13083‐970Brazil
| | - Leila Issmail
- Fraunhofer Institute for Cell Therapy and Immunology IZILeipzig04103Germany
| | - Nadja Uhlig
- Fraunhofer Institute for Cell Therapy and Immunology IZILeipzig04103Germany
| | - Valentina Eberlein
- Fraunhofer Institute for Cell Therapy and Immunology IZILeipzig04103Germany
| | - Carina Conzelmann
- Institute of Molecular VirologyUlm University Medical CenterUlm89081Germany
| | - Lia‐Raluca Olari
- Institute of Molecular VirologyUlm University Medical CenterUlm89081Germany
| | - Lena Rauch
- Institute of Molecular VirologyUlm University Medical CenterUlm89081Germany
| | - Jan Lawrenz
- Institute of Molecular VirologyUlm University Medical CenterUlm89081Germany
| | - Tatjana Weil
- Institute of Molecular VirologyUlm University Medical CenterUlm89081Germany
| | - Janis A. Müller
- Institute of Molecular VirologyUlm University Medical CenterUlm89081Germany
| | - Mateus Borba Cardoso
- Brazilian Synchrotron Light LaboratoryBrazilian Center for Research in Energy and MaterialsCampinasSão Paulo13083‐970Brazil
| | - Andrea Gilg
- Institute of Molecular VirologyUlm University Medical CenterUlm89081Germany
| | | | | | - Sandra Axberg Pålsson
- Department of Molecular BiosciencesThe Wenner‐Gren Institute Stockholm UniversityStockholm10691Sweden
| | - Anna Selch Tvilum
- Department of Chemistry and iNano Interdisciplinary Nanoscience CentreAarhus UniversityAarhus8000Denmark
| | - Kaja Borup Løvschall
- Department of Chemistry and iNano Interdisciplinary Nanoscience CentreAarhus UniversityAarhus8000Denmark
| | - Maria M. Kristensen
- Department of Chemistry and iNano Interdisciplinary Nanoscience CentreAarhus UniversityAarhus8000Denmark
| | - Anna‐Lena Spetz
- Department of Molecular BiosciencesThe Wenner‐Gren Institute Stockholm UniversityStockholm10691Sweden
| | | | - Marie Galloux
- Université Paris‐SaclayINRAE, UVSQ, VIMJouy‐en‐Josas78352France
| | - Thomas Grunwald
- Fraunhofer Institute for Cell Therapy and Immunology IZILeipzig04103Germany
| | - Alexander N. Zelikin
- Department of Chemistry and iNano Interdisciplinary Nanoscience CentreAarhus UniversityAarhus8000Denmark
| | - Jan Münch
- Institute of Molecular VirologyUlm University Medical CenterUlm89081Germany
| |
Collapse
|
5
|
Sun W, Liu J, Hao Q, Lu K, Wu Z, Chen H. A novel Y-shaped photoiniferter used for the construction of polydimethylsiloxane surfaces with antibacterial and antifouling properties. J Mater Chem B 2021; 10:262-270. [PMID: 34889346 DOI: 10.1039/d1tb01968f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The simultaneous introduction of two new functionalities into the same polymeric substrate under mild reaction conditions is an interesting and important topic. Herein, dual-functional polydimethylsiloxane (PDMS) surfaces with antibacterial and antifouling properties were conveniently developed via a novel Y-shaped asymmetric dual-functional photoiniferter (Y-iniferter). The Y-iniferter was initially immobilized onto the PDMS surface by radical coupling under visible light irradiation. Afterwards, poly(2-hydroxyethyl methacrylate) (PHEMA) brushes and antibacterial ionic liquid (IL) fragments were simultaneously immobilized on the Y-iniferter-modified PDMS surfaces by combining the sulfur(VI)-fluoride exchange (SuFEx) click reaction and UV-photoinitiated polymerization. Experiments using E. coli as a model bacterium demonstrated that the modified PDMS surfaces had both the expected antibacterial properties of the IL fragments and the excellent antifouling properties of PHEMA brushes. Furthermore, the cytotoxicity of the modified PDMS surfaces to L929 cells was examined in vitro with a CCK-8 assay, which showed that the modified surfaces maintained excellent cytocompatibility. Briefly, this strategy of constructing an antibacterial and antifouling PDMS surface has the advantages of simplicity and convenience and might inspire the construction of diverse dual-functional surfaces by utilizing PDMS more effectively.
Collapse
Affiliation(s)
- Wei Sun
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| | - Jingrui Liu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| | - Qing Hao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| | - Kunyan Lu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| | - Zhaoqiang Wu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| | - Hong Chen
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| |
Collapse
|
6
|
Borjihan Q, Wu H, Dong A, Gao H, Yang Y. AIEgens for Bacterial Imaging and Ablation. Adv Healthc Mater 2021; 10:e2100877. [PMID: 34342176 DOI: 10.1002/adhm.202100877] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/04/2021] [Indexed: 12/15/2022]
Abstract
Accurate and sensitive diagnosis of pathogenic bacterial infection is a fundamental first step for correct bacteria management, helping to avoid the development of drug-resistant bacteria caused by the inappropriate use and overuse of antibiotics. Fluorescence probes as a promising visual tool can help identify pathogens rapidly and reliably. However, rigidly structured traditional fluorescence probes generally suffer from the drawback of aggregation-caused quenching (ACQ) effect, which greatly undermines their advantages with respect to sensitivity. Luminogens with aggregation-induced emission properties, namely AIEgens, can overcome the ACQ effect and certain AIEgen-based materials are capable of generating reactive oxygen species (ROS) in the aggregate states. Hence, they have become powerful tools for imaging and killing bacteria. This review summarizes the recent advances in AIEgens for the diagnosis and treatment of pathogen infections. Special attention has been paid to the molecular design, the application in bacterial imaging and ablation in vitro and in vivo, and the biocompatibility of AIEgens. Finally, the challenges and prospects are discussed in terms of using AIEgens to advance precision therapies for pathogen infections.
Collapse
Affiliation(s)
- Qinggele Borjihan
- College of Chemistry and Chemical Engineering Engineering Research Center of Dairy Quality and Safety Control Technology Ministry of Education Inner Mongolia University Hohhot 010021 P. R. China
| | - Haixia Wu
- College of Chemistry and Chemical Engineering Engineering Research Center of Dairy Quality and Safety Control Technology Ministry of Education Inner Mongolia University Hohhot 010021 P. R. China
| | - Alideertu Dong
- College of Chemistry and Chemical Engineering Engineering Research Center of Dairy Quality and Safety Control Technology Ministry of Education Inner Mongolia University Hohhot 010021 P. R. China
| | - Hui Gao
- State Key Laboratory of Separation Membranes and Membrane Processes School of Materials Science and Engineering Tiangong University Tianjin 300387 P. R. China
| | - Ying‐Wei Yang
- International Joint Research Laboratory of Nano‐Micro Architecture Chemistry College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| |
Collapse
|
7
|
Kasza K, Gurnani P, Hardie KR, Cámara M, Alexander C. Challenges and solutions in polymer drug delivery for bacterial biofilm treatment: A tissue-by-tissue account. Adv Drug Deliv Rev 2021; 178:113973. [PMID: 34530014 DOI: 10.1016/j.addr.2021.113973] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/12/2021] [Accepted: 09/08/2021] [Indexed: 02/07/2023]
Abstract
To tackle the emerging antibiotic resistance crisis, novel antimicrobial approaches are urgently needed. Bacterial communities (biofilms) are a particular concern in this context. Biofilms are responsible for most human infections and are inherently less susceptible to antibiotic treatments. Biofilms have been linked with several challenging chronic diseases, including implant-associated osteomyelitis and chronic wounds. The specific local environments present in the infected tissues further contribute to the rise in antibiotic resistance by limiting the efficacy of systemic antibiotic therapies and reducing drug concentrations at the infection site, which can lead to reoccurring infections. To overcome the shortcomings of systemic drug delivery, encapsulation within polymeric carriers has been shown to enhance antimicrobial efficacy, permeation and retention at the infection site. In this Review, we present an overview of current strategies for antimicrobial encapsulation within polymeric carriers, comparing challenges and solutions on a tissue-by-tissue basis. We compare challenges and proposed drug delivery solutions from the perspective of the local environments for biofilms found in oral, wound, gastric, urinary tract, bone, pulmonary, vaginal, ocular and middle/inner ear tissues. We will also discuss future challenges and barriers to clinical translation for these therapeutics. The following Review demonstrates there is a significant imbalance between the research focus being placed on different tissue types, with some targets (oral and wound biofims) being extensively more studied than others (vaginal and otitis media biofilms and endocarditis). Furthermore, the importance of the local tissue environment when selecting target therapies is demonstrated, with some materials being optimal choices for certain sites of bacterial infection, while having limited applicability in others.
Collapse
|
8
|
Glycopolymer N-halamine-modified biochars with high specificity for Escherichia coli eradication. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2021.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
9
|
Li Y, Sun W, Zhang A, Jin S, Liang X, Tang Z, Liu X, Chen H. Vascular cell behavior on heparin-like polymers modified silicone surfaces: The prominent role of the lotus leaf-like topography. J Colloid Interface Sci 2021; 603:501-510. [PMID: 34197993 DOI: 10.1016/j.jcis.2021.06.100] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 02/06/2023]
Abstract
Vascular cell behavior on material surfaces, such as heparin-like polymers, can be affected by the surface chemical composition and surface topological structure. In this study, the effects of heparin-like polymers and lotus leaf-like topography on surface vascular cell behavior are considered. By combining multicomponent thermo-curing and replica molding, a polydimethylsiloxane surface containing bromine (PDMS-Br) with lotus leaf-like topography is obtained. Heparin-like polymers with different chemical compositions are grafted onto PDMS-Br surfaces using visible-light-induced graft polymerization. Compared with unmodified PDMS-Br, surfaces modified by sulfonate-containing polymers are more friendly to vascular cells, while those modified by a glyco-polymer are much more resistant to vascular cells. The introduction of lotus leaf-like topography results in different degrees of decrease in cell density on different heparin-like polymer-modified surfaces. In addition, the combination of heparin-like polymers and lotus leaf-like topography results in the change in protein adsorption, indicating that the two factors may affect the surface vascular cell behavior by affecting the adsorption of relative proteins. The combination of bionic surface topography and different chemical components of heparin-like polymers on material surfaces suggests a new way of engineering cell-material interactions.
Collapse
Affiliation(s)
- Yuepeng Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, P. R. China
| | - Wei Sun
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, P. R. China
| | - Aiyang Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, P. R. China
| | - Sheng Jin
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, P. R. China
| | - Xinyi Liang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, P. R. China
| | - Zengchao Tang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, P. R. China; Jiangsu Biosurf Biotech Company Ltd., Building 26, Dongjing industrial square, No.1, Jintian Road, Suzhou Industrial Park, Suzhou, 215123, P. R. China
| | - Xiaoli Liu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, P. R. China.
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, P. R. China
| |
Collapse
|
10
|
Mahadevegowda SH, Ruan L, Zhang J, Hou S, Raju C, Chan-Park MB. Synthesis of dimeric and tetrameric trithiomannoside clusters through convenient photoinitiated thiol-ene click protocol for efficient inhibition of gram-negative bacteria. J Carbohydr Chem 2021. [DOI: 10.1080/07328303.2021.1928154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Surendra H. Mahadevegowda
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
- Department of Chemistry, School of Sciences, National Institute of Technology Andhra Pradesh, Tadepalligudem, India
| | - Lin Ruan
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| | - Jianhua Zhang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| | - Shuai Hou
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| | - Cheerlavancha Raju
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| | - Mary B. Chan-Park
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
11
|
Babutan I, Lucaci AD, Botiz I. Antimicrobial Polymeric Structures Assembled on Surfaces. Polymers (Basel) 2021; 13:1552. [PMID: 34066135 PMCID: PMC8150949 DOI: 10.3390/polym13101552] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/08/2021] [Accepted: 05/09/2021] [Indexed: 12/16/2022] Open
Abstract
Pathogenic microbes are the main cause of various undesired infections in living organisms, including humans. Most of these infections are favored in hospital environments where humans are being treated with antibiotics and where some microbes succeed in developing resistance to such drugs. As a consequence, our society is currently researching for alternative, yet more efficient antimicrobial solutions. Certain natural and synthetic polymers are versatile materials that have already proved themselves to be highly suitable for the development of the next-generation of antimicrobial systems that can efficiently prevent and kill microbes in various environments. Here, we discuss the latest developments of polymeric structures, exhibiting (reinforced) antimicrobial attributes that can be assembled on surfaces and coatings either from synthetic polymers displaying antiadhesive and/or antimicrobial properties or from blends and nanocomposites based on such polymers.
Collapse
Affiliation(s)
- Iulia Babutan
- Interdisciplinary Research Institute on Bio-Nano-Sciences, Babeș-Bolyai University, 42 Treboniu Laurian Str., 400271 Cluj-Napoca, Romania;
- Faculty of Physics, Babeș-Bolyai University, 1 M. Kogălniceanu Str., 400084 Cluj-Napoca, Romania
| | - Alexandra-Delia Lucaci
- George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, 38 Gheorghe Marinescu Str., 540142 Târgu Mureș, Romania;
| | - Ioan Botiz
- Interdisciplinary Research Institute on Bio-Nano-Sciences, Babeș-Bolyai University, 42 Treboniu Laurian Str., 400271 Cluj-Napoca, Romania;
| |
Collapse
|
12
|
Yu T, Xianyu Y. Array-Based Biosensors for Bacteria Detection: From the Perspective of Recognition. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006230. [PMID: 33870615 DOI: 10.1002/smll.202006230] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/18/2020] [Indexed: 05/24/2023]
Abstract
Array-based biosensors have shown as effective and powerful tools to distinguish intricate mixtures with infinitesimal differences among analytes such as nucleic acids, proteins, microorganisms, and other biomolecules. In array-based bacterial sensing, the recognition of bacteria is the initial step that can crucially influence the analytical performance of a biosensor array. Bacteria recognition as well as the signal readout and mathematical analysis are indispensable to ensure the discrimination ability of array-based biosensors. Strategies for bacteria recognition mainly include the specific interaction between biomolecules and the corresponding receptors on bacteria, the noncovalent interaction between materials and bacteria, and the specific targeting of bacterial metabolites. In this review, recent advances in array-based bacteria sensors are discussed from the perspective of bacteria recognition relying on the characteristics of different bacteria. Principles of bacteria recognition and signal readout for bacteria detection are highlighted as well as the discussion on future trends in array-based biosensors.
Collapse
Affiliation(s)
- Ting Yu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Yunlei Xianyu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
- Fuli Institute of Food Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Ningbo Research Institute, Zhejiang University, Ningbo, Zhejiang, 315100, China
| |
Collapse
|
13
|
Namivandi-Zangeneh R, Wong EHH, Boyer C. Synthetic Antimicrobial Polymers in Combination Therapy: Tackling Antibiotic Resistance. ACS Infect Dis 2021; 7:215-253. [PMID: 33433995 DOI: 10.1021/acsinfecdis.0c00635] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Antibiotic resistance is a critical global healthcare issue that urgently needs new effective solutions. While small molecule antibiotics have been safeguarding us for nearly a century since the discovery of penicillin by Alexander Fleming, the emergence of a new class of antimicrobials in the form of synthetic antimicrobial polymers, which was driven by the advances in controlled polymerization techniques and the desire to mimic naturally occurring antimicrobial peptides, could play a key role in fighting multidrug resistant bacteria in the near future. By harnessing the ability to control chemical and structural properties of polymers almost at will, synthetic antimicrobial polymers can be strategically utilized in combination therapy with various antimicrobial coagents in different formats to yield more potent (synergistic) outcomes. In this review, we present a short summary of the different combination therapies involving synthetic antimicrobial polymers, focusing on their combinations with nitric oxide, antibiotics, essential oils, and metal- and carbon-based inorganics.
Collapse
Affiliation(s)
- Rashin Namivandi-Zangeneh
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN), School of Chemical Engineering, UNSW Australia, Sydney, New South Wales 2052, Australia
| | - Edgar H. H. Wong
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN), School of Chemical Engineering, UNSW Australia, Sydney, New South Wales 2052, Australia
| | - Cyrille Boyer
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN), School of Chemical Engineering, UNSW Australia, Sydney, New South Wales 2052, Australia
| |
Collapse
|
14
|
Xu Y, Zhang H, Liu XW. Antimicrobial Carbohydrate-Based Macromolecules: Their Structures and Activities. J Org Chem 2020; 85:15827-15836. [DOI: 10.1021/acs.joc.0c01597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Yuan Xu
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Hongbin Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Xue-Wei Liu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| |
Collapse
|
15
|
Ribeiro JPM, Mendonça PV, Coelho JFJ, Matyjaszewski K, Serra AC. Glycopolymer Brushes by Reversible Deactivation Radical Polymerization: Preparation, Applications, and Future Challenges. Polymers (Basel) 2020; 12:E1268. [PMID: 32492977 PMCID: PMC7362234 DOI: 10.3390/polym12061268] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/26/2020] [Accepted: 05/29/2020] [Indexed: 12/27/2022] Open
Abstract
The cellular surface contains specific proteins, also known as lectins, that are carbohydrates receptors involved in different biological events, such as cell-cell adhesion, cell recognition and cell differentiation. The synthesis of well-defined polymers containing carbohydrate units, known as glycopolymers, by reversible deactivation radical polymerization (RDRP) methods allows the development of tailor-made materials with high affinity for lectins because of their multivalent interaction. These polymers are promising candidates for the biomedical field, namely as novel diagnostic disease markers, biosensors, or carriers for tumor-targeted therapy. Although linear glycopolymers are extensively studied for lectin recognition, branched glycopolymeric structures, such as polymer brushes can establish stronger interactions with lectins. This specific glycopolymer topology can be synthesized in a bottlebrush form or grafted to/from surfaces by using RDRP methods, allowing a precise control over molecular weight, grafting density, and brush thickness. Here, the preparation and application of glycopolymer brushes is critically discussed and future research directions on this topic are suggested.
Collapse
Affiliation(s)
- Jessica P. M. Ribeiro
- Department of Chemical Engineering, Centre for Mechanical Engineering, Materials and Processes, University of Coimbra, Rua Sílvio Lima-Polo II, 3030-790 Coimbra, Portugal; (J.P.M.R.); (J.F.J.C.)
| | - Patrícia V. Mendonça
- Department of Chemical Engineering, Centre for Mechanical Engineering, Materials and Processes, University of Coimbra, Rua Sílvio Lima-Polo II, 3030-790 Coimbra, Portugal; (J.P.M.R.); (J.F.J.C.)
| | - Jorge F. J. Coelho
- Department of Chemical Engineering, Centre for Mechanical Engineering, Materials and Processes, University of Coimbra, Rua Sílvio Lima-Polo II, 3030-790 Coimbra, Portugal; (J.P.M.R.); (J.F.J.C.)
| | - Krzysztof Matyjaszewski
- Department of Materials Science & Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA;
| | - Arménio C. Serra
- Department of Chemical Engineering, Centre for Mechanical Engineering, Materials and Processes, University of Coimbra, Rua Sílvio Lima-Polo II, 3030-790 Coimbra, Portugal; (J.P.M.R.); (J.F.J.C.)
| |
Collapse
|
16
|
Hong M, Miao Z, Xu X, Zhang Q. Magnetic Iron Oxide Nanoparticles Immobilized with Sugar-Containing Poly(ionic liquid) Brushes for Efficient Trapping and Killing of Bacteria. ACS APPLIED BIO MATERIALS 2020; 3:3664-3672. [DOI: 10.1021/acsabm.0c00298] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Mei Hong
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
- Institute of Polymer Ecomaterials, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Ziyue Miao
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
- Institute of Polymer Ecomaterials, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Xiaoling Xu
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
- Institute of Polymer Ecomaterials, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Qiang Zhang
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
- Institute of Polymer Ecomaterials, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| |
Collapse
|
17
|
Kheiri S, Liu X, Thompson M. Nanoparticles at biointerfaces: Antibacterial activity and nanotoxicology. Colloids Surf B Biointerfaces 2019; 184:110550. [PMID: 31606698 DOI: 10.1016/j.colsurfb.2019.110550] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 08/28/2019] [Accepted: 10/02/2019] [Indexed: 12/16/2022]
Abstract
Development of a biomaterial that is resistant to the adhesion and consequential proliferation of bacteria, represents a significant challenge in terms of application of such materials in various aspects of health care. Over recent years a large number of synthetic methods have appeared with the overall goal of the prevention of bacterial adhesion to surfaces. In contrast to these artificial techniques, living organisms over millions of years have developed different systems to prevent the colonization of microorganisms. Recently, these natural approaches, which are based on surface nanotopography, have been mimicked to fabricate a modern antibacterial surface. In this vein, use of nanoparticle (NP) technology has been explored in order to create a suitable antibacterial surface. However, few studies have focused on the toxicity of these techniques and the ecotoxicity of NP materials on mammalian and bacterial cells simultaneously. Researchers have observed that the majority of previous studies have demonstrated some of the extents of the harmful impacts on mammalian cells. Here, we provide a critical review of the NP approach to antibacterial surface treatment, and also summarize the studies of toxic effects caused by metal NPs on bacteria and mammalian cells.
Collapse
Affiliation(s)
- Sina Kheiri
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada
| | - Xinyu Liu
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario, M5S 3G9, Canada.
| | - Michael Thompson
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario, M5S 3G9, Canada; Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada.
| |
Collapse
|
18
|
Zhang S, Liu W, Dong Y, Wei T, Wu Z, Chen H. Design, Synthesis, and Application of a Difunctional Y-Shaped Surface-Tethered Photoinitiator. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:3470-3478. [PMID: 30727730 DOI: 10.1021/acs.langmuir.8b04323] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Mixed homopolymer brushes have unique interfacial properties that can be exploited for both fundamental studies and applications in technology. Herein, the synthesis of a new catechol-based biomimetic Y-shaped binary photoinitiator (Y-photoinitiator) and its applications for surface modification with polymer brushes through both "grafting to" and "grafting from" strategies are reported. The "leg" of the Y consists of a catechol group as surface anchoring moiety. The arms are photoinitiator moieties that can be "addressed" independent of each other by radiation of different wavelengths. Using ultraviolet and visible light successively, each arm of the Y-photoinitiator was activated, thereby allowing the synthesis of Y-shaped block copolymer brushes with dissimilar polymer chains. The suitability of the Y-photoinitiator for surface modification was first investigated using N-vinylpyrrolidone and styrene as the model monomers for successive UV-photoiniferter-mediated polymerization and visible-light-induced polymerization, respectively. Switching of the wetting properties of the Y-shaped block copolymer brush poly( N-vinylpyrrolidone)- block-poly(styrene) (PVP- b-PS)-grafted surfaces by contact with different solvents was also investigated. To further exploit this novel Y-photoinitiator for the preparation of functional interfaces, Y-shaped block copolymer brushes poly(1-(2-methacryloyloxyhexyl)-3-methylimidazolium bromide)- block-poly( N-vinylpyrrolidone- co-glycidyl methacrylate) (PIL(Br)- b-P(NVP- co-GMA)) were also prepared and subsequently functionalized with the cell-adhesive arginine-glycine-aspartic acid (RGD) peptides by reaction with the glycidyl groups (PILPNG-RGD). The PILPNG-RGD grafted surfaces showed excellent cell-adhesive, bacteriostatic, and bactericidal properties. Thus, it can be concluded that further exploitation of this novel Y-photoinitiator for graft polymerization should allow the preparation of a wide range of functional interfaces with tailored properties.
Collapse
Affiliation(s)
- Shuxiang Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , P. R. China
| | - Wenying Liu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , P. R. China
| | - Yishi Dong
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , P. R. China
| | - Ting Wei
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , P. R. China
| | - Zhaoqiang Wu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , P. R. China
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , P. R. China
| |
Collapse
|
19
|
Ma Z, Zhu XX. Copolymers containing carbohydrates and other biomolecules: design, synthesis and applications. J Mater Chem B 2019; 7:1361-1378. [DOI: 10.1039/c8tb03162b] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review highlights recent progress in random and block copolymers containing sugar and other biocompounds, including their design, synthesis, properties and selected applications.
Collapse
Affiliation(s)
- Zhiyuan Ma
- Département de Chimie
- Université de Montréal
- Montreal
- Canada
| | - X. X. Zhu
- Département de Chimie
- Université de Montréal
- Montreal
- Canada
| |
Collapse
|
20
|
Hu J, Wei P, Seeberger PH, Yin J. Mannose-Functionalized Nanoscaffolds for Targeted Delivery in Biomedical Applications. Chem Asian J 2018; 13:3448-3459. [PMID: 30251341 DOI: 10.1002/asia.201801088] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/18/2018] [Indexed: 12/27/2022]
Abstract
Targeted drug delivery by nanomaterials has been extensively investigated as an effective strategy to surmount obstacles in the conventional treatment of cancer and infectious diseases, such as systemic toxicity, low drug efficacy, and drug resistance. Mannose-binding C-type lectins, which primarily include mannose receptor (MR, CD206) and dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN), are highly expressed on various cancer cells, endothelial cells, macrophages, and dendritic cells (DCs), which make them attractive targets for therapeutic effect. Mannosylated nanomaterials hold great potential in cancer and infection treatment on account of their direct therapeutic effect on targeted cells, modulation of the tumor microenvironment, and stimulation of immune response through antigen presentation. This review presents the recent advances in mannose-based targeted delivery nanoplatforms incorporated with different therapies in the biomedical field.
Collapse
Affiliation(s)
- Jing Hu
- Wuxi School of Medicine, Jiangnan University, Lihu Avenue1800, Wuxi, 214122, China
| | - Peng Wei
- Department Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education, School of Biotechnology, Jiangnan University, Lihu Avenue1800, Wuxi, 214122, China
| | - Peter H Seeberger
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Jian Yin
- Department Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education, School of Biotechnology, Jiangnan University, Lihu Avenue1800, Wuxi, 214122, China
| |
Collapse
|
21
|
Regeneration and reuse of polymeric nanocomposites in wastewater remediation: the future of economic water management. Polym Bull (Berl) 2018. [DOI: 10.1007/s00289-018-2403-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
22
|
Liu M, Li J, Li B. Mannose-Modificated Polyethylenimine: A Specific and Effective Antibacterial Agent against Escherichia coli. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:1574-1580. [PMID: 29304546 DOI: 10.1021/acs.langmuir.7b03556] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Polyethylenimine (PEI) has antimicrobial activity against Gram-positive (Staphylococcus aureus, S. aureus) and Gram-negative (Escherichia coli, E. coli), bacteria but is highly cytotoxic, and the selective antimicrobial activity against S. aureus is obviously better than that against E. coli. To reduce the cytotoxicity and improve the antibacterial activity against E. coli, we modified PEI with d-mannose through nucleophilic addition between primary amine and aldehyde groups to get mannose-modified polyethylenimine copolymer particles (Man-PEI CPs). The use of mannose may provide good targeting ability toward E. coli pili. The antibacterial activity of Man-PEI CPs was investigated. Man-PEI CPs shows specific and very strong killing capability against E. coli at a concentration of 10 μg/mL, which is the highest antimicrobial efficiency compared to that of unmodified PEI (220 μg/mL). The antibacterial mechanism demonstrated that the enhancement in antibacterial activity is due to specific recognition of the mannose and destroying the cell wall of the bacteria by PEIs. Importantly, the Man-PEI CPs show less cytotoxicity and excellent biocompatibility. The results indicate that Man-PEI CPs have great potential as novel antimicrobial materials to prevent bacterial infections and provide specific applications for killing E. coli.
Collapse
Affiliation(s)
- Mei Liu
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, College of Food Engineering and Nutritional Science and ‡Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University , Xi'an 710119, China
| | - Jiao Li
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, College of Food Engineering and Nutritional Science and ‡Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University , Xi'an 710119, China
| | - Baoxin Li
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, College of Food Engineering and Nutritional Science and ‡Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University , Xi'an 710119, China
| |
Collapse
|
23
|
Natan M, Banin E. From Nano to Micro: using nanotechnology to combat microorganisms and their multidrug resistance. FEMS Microbiol Rev 2018; 41:302-322. [PMID: 28419240 DOI: 10.1093/femsre/fux003] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Accepted: 01/17/2017] [Indexed: 12/12/2022] Open
Abstract
The spread of antibiotic resistance and increasing prevalence of biofilm-associated infections is driving demand for new means to treat bacterial infection. Nanotechnology provides an innovative platform for addressing this challenge, with potential to manage even infections involving multidrug-resistant (MDR) bacteria. The current review summarizes recent progress over the last 2 years in the field of antibacterial nanodrugs, and describes their unique properties, mode of action and activity against MDR bacteria and biofilms. Biocompatibility and commercialization are also discussed. As opposed to the more common division of nanoparticles (NPs) into organic- and inorganic-based materials, this review classifies NPs into two functional categories. The first includes NPs exhibiting intrinsic antibacterial properties and the second is devoted to NPs serving as a cargo for delivering antibacterial agents. Antibacterial nanomaterials used to decorate medical devices and implants are reviewed here as well.
Collapse
Affiliation(s)
- Michal Natan
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel.,The Institute for Advanced Materials and Nanotechnology, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Ehud Banin
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel.,The Institute for Advanced Materials and Nanotechnology, Bar-Ilan University, Ramat-Gan 52900, Israel
| |
Collapse
|
24
|
Li S, Liu B, Wei T, Hu C, Hang Y, Dong Y, Liu X, Chen H. Microfluidic channels with renewable and switchable biological functionalities based on host–guest interactions. J Mater Chem B 2018; 6:8055-8063. [DOI: 10.1039/c8tb02148a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Microfluidic channels with renewable and switchable biological functionalities were prepared using host–guest interactions.
Collapse
Affiliation(s)
- Siyuan Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University
- Suzhou
- P. R. China
| | - Bing Liu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University
- Suzhou
- P. R. China
| | - Ting Wei
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University
- Suzhou
- P. R. China
| | - Changming Hu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University
- Suzhou
- P. R. China
| | - Yingjie Hang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University
- Suzhou
- P. R. China
| | - Yishi Dong
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University
- Suzhou
- P. R. China
| | - Xiaoli Liu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University
- Suzhou
- P. R. China
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University
- Suzhou
- P. R. China
| |
Collapse
|
25
|
Tran CD, Prosenc F, Franko M. Facile synthesis, structure, biocompatibility and antimicrobial property of gold nanoparticle composites from cellulose and keratin. J Colloid Interface Sci 2018; 510:237-245. [DOI: 10.1016/j.jcis.2017.09.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 08/28/2017] [Accepted: 09/01/2017] [Indexed: 12/26/2022]
|
26
|
|
27
|
Compostella F, Pitirollo O, Silvestri A, Polito L. Glyco-gold nanoparticles: synthesis and applications. Beilstein J Org Chem 2017; 13:1008-1021. [PMID: 28684980 PMCID: PMC5480336 DOI: 10.3762/bjoc.13.100] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 05/05/2017] [Indexed: 01/15/2023] Open
Abstract
Glyco-gold nanoparticles combine in a single entity the peculiar properties of gold nanoparticles with the biological activity of carbohydrates. The result is an exciting nanosystem, able to mimic the natural multivalent presentation of saccharide moieties and to exploit the peculiar optical properties of the metallic core. In this review, we present recent advances on glyco-gold nanoparticle applications in different biological fields, highlighting the key parameters which inspire the glyco nanoparticle design.
Collapse
Affiliation(s)
- Federica Compostella
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Via Saldini 50, 20133 Milan, Italy
| | - Olimpia Pitirollo
- Department of Chemistry, University of Milan, Via C. Golgi 19, 20133 Milan, Italy
| | - Alessandro Silvestri
- Department of Chemistry, University of Milan, Via C. Golgi 19, 20133 Milan, Italy
- CNR – ISTM, Nanotechnology Lab., Via G. Fantoli 16/15, 20138 Milan, Italy
| | - Laura Polito
- CNR – ISTM, Nanotechnology Lab., Via G. Fantoli 16/15, 20138 Milan, Italy
| |
Collapse
|
28
|
Wang X, Zhu S, Liu L, Li L. Flexible Antibacterial Film Based on Conjugated Polyelectrolyte/Silver Nanocomposites. ACS APPLIED MATERIALS & INTERFACES 2017; 9:9051-9058. [PMID: 28233485 DOI: 10.1021/acsami.7b00885] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
In this work, we report a flexible film based on conjugated polyelectrolyte/silver nanocomposites with efficient antibacterial activity. A flexible poly(dimethylsiloxane) film served as a substrate for deposition of nanostructured silver. A light-activated antibacterial agent, based on the cationic conjugated polyelectrolyte poly({9,9-bis[6'-(N,N-trimethylamino)hexyl]-2,7-fluorenyleneethynylene}-alt-co-1,4-(2,5-dimethoxy)phenylene)dibromide (PFEMO) was self-assembled on the negatively charged substrate. By changing the thickness of the poly(l-lysine)/poly(acrylic acid) multilayers between the metal substrate and PFEMO, we obtained concomitant enhancement of PFEMO fluorescence, phosphorescence, and reactive oxygen species generation. These enhancements were induced by surface plasmon resonance effects of the Ag nanoparticles, which overlapped the PFEMO absorption band. Owing to the combination of enhanced bactericidal effects and good flexibility, these films have great potential for use as novel biomaterials for preventing bacterial infections.
Collapse
Affiliation(s)
- Xiaoyu Wang
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing , Beijing 100083, P. R. China
| | - Shuxian Zhu
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing , Beijing 100083, P. R. China
| | - Lu Liu
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing , Beijing 100083, P. R. China
| | - Lidong Li
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing , Beijing 100083, P. R. China
- State Key Laboratory of Fine Chemicals, Dalian University of Technology , Dalian 116024, P. R. China
| |
Collapse
|
29
|
Pranantyo D, Xu LQ, Hou Z, Kang ET, Chan-Park MB. Increasing bacterial affinity and cytocompatibility with four-arm star glycopolymers and antimicrobial α-polylysine. Polym Chem 2017. [DOI: 10.1039/c7py00441a] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cationic polypeptide arms disintegrate bacterial membranes, while glycopolymer arms promote biocompatibility with simultaneous targeting of the bacterial surface.
Collapse
Affiliation(s)
- Dicky Pranantyo
- Department of Chemical & Biomolecular Engineering
- National University of Singapore
- Kent Ridge
- Singapore 119260
| | - Li Qun Xu
- Department of Chemical & Biomolecular Engineering
- National University of Singapore
- Kent Ridge
- Singapore 119260
| | - Zheng Hou
- Centre of Antimicrobial Bioengineering
- School of Chemical and Biomedical Engineering
- Nanyang Technological University
- Singapore 637459
| | - En-Tang Kang
- Department of Chemical & Biomolecular Engineering
- National University of Singapore
- Kent Ridge
- Singapore 119260
| | - Mary B. Chan-Park
- Centre of Antimicrobial Bioengineering
- School of Chemical and Biomedical Engineering
- Nanyang Technological University
- Singapore 637459
| |
Collapse
|
30
|
Qu Y, Wei T, Zhan W, Hu C, Cao L, Yu Q, Chen H. A reusable supramolecular platform for the specific capture and release of proteins and bacteria. J Mater Chem B 2017; 5:444-453. [DOI: 10.1039/c6tb02821g] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A re-usable supramolecular platform with the capability of high-efficiency capture and on-demand release of specific proteins and bacteria was developed.
Collapse
Affiliation(s)
- Yangcui Qu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou
| | - Ting Wei
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou
| | - Wenjun Zhan
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou
| | - Changming Hu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou
| | - Limin Cao
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou
| | - Qian Yu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou
| |
Collapse
|
31
|
Dong YS, Xiong XH, Lu XW, Wu ZQ, Chen H. Antibacterial surfaces based on poly(cationic liquid) brushes: switchability between killing and releasing via anion counterion switching. J Mater Chem B 2016; 4:6111-6116. [PMID: 32263499 DOI: 10.1039/c6tb01464j] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The development of a smart antibacterial surface that can both kill attached live bacteria and release dead bacteria is reported. The surface consists of counterion-responsive poly(cationic liquid) brushes of poly(1-(2-methacryloyloxyhexyl)-3-methylimidazolium bromide) (PIL(Br)), the properties of which can be switched repeatedly between bacterial killing and bacterial release. Upon counter-anion exchange of PIL(Br) chains using lithium bis(trifluoromethanesulfonyl) amide (LiTf2N) to yield PIL(Tf2N), the wettability of the surface changes from hydrophilic (water contact angle ∼52°) to hydrophobic (∼97°). The PIL(Br) chains adopt an extended conformation with bactericidal properties. Counter-anion switching to PIL(Tf2N) gives a collapsed chain conformation allowing the release of killed bacteria. The switchable killing and releasing actions of the surface were maintained over three cycles. Thus it is concluded that PIL(Br) layers provide a viable approach for the fabrication of "smart" antibacterial surfaces.
Collapse
Affiliation(s)
- Yi-Shi Dong
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-ai Road, Suzhou 215123, P. R. China.
| | | | | | | | | |
Collapse
|