1
|
Tavangar A, Premnath P, Tan B, Venkatakrishnan K. Antifouling nanoplatform for controlled attachment of E. coli. Biomed Mater 2024; 19:045019. [PMID: 38772388 DOI: 10.1088/1748-605x/ad4e87] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/21/2024] [Indexed: 05/23/2024]
Abstract
Biofouling is the most common cause of bacterial contamination in implanted materials/devices resulting in severe inflammation, implant mobilization, and eventual failure. Since bacterial attachment represents the initial step toward biofouling, developing synthetic surfaces that prevent bacterial adhesion is of keen interest in biomaterials research. In this study, we develop antifouling nanoplatforms that effectively impede bacterial adhesion and the consequent biofilm formation. We synthesize the antifouling nanoplatform by introducing silicon (Si)/silica nanoassemblies to the surface through ultrafast ionization of Si substrates. We assess the effectiveness of these nanoplatforms in inhibitingEscherichia coli(E. coli) adhesion. The findings reveal a significant reduction in bacterial attachment on the nanoplatform compared to untreated silicon, with bacteria forming smaller colonies. By manipulating physicochemical characteristics such as nanoassembly size/concentration and nanovoid size, we further control bacterial attachment. These findings suggest the potential of our synthesized nanoplatform in developing biomedical implants/devices with improved antifouling properties.
Collapse
Affiliation(s)
- Amirhossein Tavangar
- Department of Mathematics, Research Skills and Analysis, Humber College Institute of Technology, 205 Humber College Boulevard, Toronto, ON M9W 5L7, Canada
| | - Priyatha Premnath
- Department of Biomedical Engineering, College of Engineering and Applied Science, University of Wisconsin, 3200 North Cramer Street, Milwaukee, WI 53211, United States of America
| | - Bo Tan
- Nanocharacterization Laboratory, Department of Aerospace Engineering, Toronto Metropolitan University, 350 Victoria Street, Toronto, ON M5B 2K3, Canada
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, 36 Queen Street East, Toronto, ON M5B 1W8, Canada
| | - Krishnan Venkatakrishnan
- Ultrashort Laser Nanomanufacturing Research Facility, Department of Mechanical and Industrial Engineering, Toronto Metropolitan University, 350 Victoria Street, Toronto, ON M5B 2K3, Canada
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, 36 Queen Street East, Toronto, ON M5B 1W8, Canada
| |
Collapse
|
2
|
Gurunathan S, Jeyaraj M, Kang MH, Kim JH. Melatonin Enhances Palladium-Nanoparticle-Induced Cytotoxicity and Apoptosis in Human Lung Epithelial Adenocarcinoma Cells A549 and H1229. Antioxidants (Basel) 2020; 9:E357. [PMID: 32344592 PMCID: PMC7222421 DOI: 10.3390/antiox9040357] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/18/2020] [Accepted: 04/22/2020] [Indexed: 02/07/2023] Open
Abstract
Palladium nanoparticles (PdNPs) are increasingly being used in medical and biological applications due to their unique physical and chemical properties. Recent evidence suggests that these nanoparticles can act as both a pro-oxidant and as an antioxidant. Melatonin (MLT), which also shows pro- and antioxidant properties, can enhance the efficacy of chemotherapeutic agents when combined with anticancer drugs. Nevertheless, studies regarding the molecular mechanisms underlying the anticancer effects of PdNPs and MLT in cancer cells are still lacking. Therefore, we aimed to investigate the potential toxicological and molecular mechanisms of PdNPs, MLT, and the combination of PdNPs with MLT in A549 lung epithelial adenocarcinoma cells. We evaluated cell viability, cell proliferation, cytotoxicity, oxidative stress, mitochondrial dysfunction, and apoptosis in cells treated with different concentrations of PdNPs and MLT. PdNPs and MLT induced cytotoxicity, which was confirmed by leakage of lactate dehydrogenase, increased intracellular protease, and reduced membrane integrity. Oxidative stress increased the levels of reactive oxygen species (ROS), malondialdehyde (MDA), nitric oxide (NO), protein carbonyl content (PCC), lipid hydroperoxide (LHP), and 8-isoprostane. Combining PdNPs with MLT elevated the levels of mitochondrial dysfunction by decreasing mitochondrial membrane potential (MMP), ATP content, mitochondrial number, and expression levels of the main regulators of mitochondrial biogenesis. Additionally, PdNPs and MLT induced apoptosis and oxidative DNA damage due to accumulation of 4-hydroxynonenal (HNE), 8-oxo-2'-deoxyguanosine (8-OhdG), and 8-hydroxyguanosine (8-OHG). Finally, PdNPs and MLT increased mitochondrially mediated stress and apoptosis, which was confirmed by the increased expression levels of apoptotic genes. To our knowledge, this is the first study demonstrating the effects of combining PdNPs and MLT in human lung cancer cells. These findings provide valuable insights into the molecular mechanisms involved in PdNP- and MLT-induced toxicity, and it may be that this combination therapy could be a potential effective therapeutic approach. This combination effect provides information to support the clinical evaluation of PdNPs and MLT as a suitable agents for lung cancer treatment, and the combined effect provides therapeutic value, as non-toxic concentrations of PdNPs and MLT are more effective, better tolerated, and show less adverse effects. Finally, this study suggests that MLT could be used as a supplement in nano-mediated combination therapies used to treat lung cancer.
Collapse
Affiliation(s)
- Sangiliyandi Gurunathan
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea; (M.J.); (M.-H.K.)
| | | | | | - Jin-Hoi Kim
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea; (M.J.); (M.-H.K.)
| |
Collapse
|
3
|
Ali S, Sharma AS, Ahmad W, Zareef M, Hassan MM, Viswadevarayalu A, Jiao T, Li H, Chen Q. Noble Metals Based Bimetallic and Trimetallic Nanoparticles: Controlled Synthesis, Antimicrobial and Anticancer Applications. Crit Rev Anal Chem 2020; 51:454-481. [PMID: 32233874 DOI: 10.1080/10408347.2020.1743964] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Noble bimetallic and trimetallic nanoparticles (NBT-NPs) have superior biomedical applications as compared to their monometallic counterparts. The performance of these nanomaterials depends on their composition, shape and size. Hence, the controlled-synthesis of these nanomaterials is a hot area of research. Till date, no review article in the literature accounts regarding the controlled-synthesis and biomedical applications related to morphology, optimum composition, biocompatibility and versatile chemistry of NBT-NPs. Taking this into contemplation, an effort was made to provide a clear insight into the morphology-controlled synthesis and size/shape-dependent anticancer and bactericidal applications of NBT-NPs. Chemical reduction method for the controlled-synthesis of NBT-NPs is reviewed critically. Furthermore, the potential role of various reaction parameters such as time, reducing agents, stabilizing/capping agents, nature/concentration of precursors, temperature and pH in the shape/size-controlled synthesis of these nanomaterials are discussed. In the second part of this article, anticancer and bactericidal applications of the NBT-NPs are reviewed and the influences of optimum composition, size, surface structure, versatile chemistry and synergism are studied. Finally, the current challenges in the controlled-synthesis and biomedical applications of these nanomaterials, and prospects to resolve related issues are discussed. HighlightsChemical reduction method for the synthesis of NBT-NPs is reviewed.The influences of parameters on the control synthesis of NBT-NPs are discussed.Antibacterial and anticancer applications and cytotoxicity of NBT-NPs are reviewed.Possible solutions for the key challenges are discussed.Outlooks about the synthesis and biomedical applications of NBT-NPs are discussed.
Collapse
Affiliation(s)
- Shujat Ali
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Arumugam Selva Sharma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Waqas Ahmad
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Muhammad Zareef
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Md Mehdi Hassan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, P. R. China
| | | | - Tianhui Jiao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Huanhuan Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Quansheng Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, P. R. China
| |
Collapse
|
4
|
Zhang L, Chen X, Wu J, Ding S, Wang X, Lei Q, Fang W. Palladium nanoparticles induce autophagy and autophagic flux blockade in Hela cells. RSC Adv 2018. [DOI: 10.1039/c7ra11400a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Size-dependent autophagy and autophagic flux blockade in Hela cells by palladium nanoparticles.
Collapse
Affiliation(s)
- Li Zhang
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
- China
| | - Xuerui Chen
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
- China
| | - Jianzhou Wu
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
- China
| | - Shiping Ding
- School of Medicine
- Zhejiang University
- Hangzhou 310058
- China
| | - Xu Wang
- Hangzhou Medical College
- Hangzhou 310053
- China
| | - Qunfang Lei
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
- China
| | - Wenjun Fang
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
- China
| |
Collapse
|
5
|
Capek I. Polymer decorated gold nanoparticles in nanomedicine conjugates. Adv Colloid Interface Sci 2017; 249:386-399. [PMID: 28259207 DOI: 10.1016/j.cis.2017.01.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 01/10/2017] [Accepted: 01/11/2017] [Indexed: 02/06/2023]
Abstract
Noble metal, especially gold nanoparticles and their conjugates with biopolymers have immense potential for disease diagnosis and therapy on account of their surface plasmon resonance (SPR) enhanced light scattering and absorption. Conjugation of noble metal nanoparticles to ligands specifically targeted to biomarkers on diseased cells allows molecular-specific imaging and detection of disease. The development of smart gold nanoparticles (AuNPs) that can deliver therapeutics at a sustained rate directly to cancer cells may provide better efficacy and lower toxicity for treating cancer tumors. We highlight some of the promising classes of targeting systems that are under development for the delivery of gold nanoparticles. Nanoparticles designed for biomedical applications are often coated with polymers containing reactive functional groups to conjugate targeting ligands, cell receptors or drugs. Using targeted nanoparticles to deliver chemotherapeutic agents in cancer therapy offers many advantages to improve drug/gene delivery and to overcome many problems associated with conventional radiotherapy and chemotherapy. The targeted nanoparticles were found to be effective in killing cancer cells which were studied using various anticancer assays. Cell morphological analysis shows the changes occurred in cancer cells during the treatment with AuNPs. The results determine the influence of particle size and concentration of AuNPs on their absorption, accumulation, and cytotoxicity in model normal and cancer cells. As the mean particle diameter of the AuNPs decreased, their rate of absorption by the intestinal epithelium cells increased. These results provide important insights into the relationship between the dimensions of AuNPs and their gastrointestinal uptake and potential cytotoxicity. Furthermore gold nanoparticles efficiently convert the absorbed light into localized heat, which can be exploited for the selective laser photothermal therapy of cancer. We also review the emerging technologies for the fabrication of targeted gold colloids as imagining agents.
Collapse
Affiliation(s)
- Ignác Capek
- Slovak Academy of Sciences, Polymer Institute, Institute of Measurement Sciences, Dúbravská cesta, Bratislava, Slovakia.
| |
Collapse
|
6
|
Chowdhury AKMRH, Tan B, Venkatakrishnan K. Fibroblast-Cytophilic and HeLa-Cytotoxic Dual Function Carbon Nanoribbon Network Platform. ACS APPLIED MATERIALS & INTERFACES 2017; 9:19662-19676. [PMID: 28530092 DOI: 10.1021/acsami.7b04819] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Carbon nanomaterials have emerged as a promising material in cancer diagnosis and therapy. Carbon nanomaterials/nanostructures (C-C molecular structure) act as a carrier/skeleton and require further surface modification through functionalization with chemicals or biomolecules to attain cell response. We report the synthesis of a novel carbon nanoribbon network (CNRN) platform that possesses a combination of C-C and C-O bond architecture. The bioactive CNRN showed enhanced ability for cell adhesion. Most importantly, it induced opposite cell responses from healthy cells and cancerous cells, cytophilic to fibroblasts but cytotoxic to HeLa cells. Ultrafast laser ionization under ambient conditions transforms nonbioresponsive C-C bond of graphite to C-C and C-O bonds, forming a self-assembled CNRN platform. The morphology, nanochemistry, and functionality on modulating fibroblast and HeLa adhesion and proliferation of the fabricated CNRN platforms were investigated. The results of in vitro studies suggested that the CNRN platforms not only attracted but also actively accelerated the adhesion and proliferation of both fibroblasts and HeLa cells. The proliferation rate of fibroblasts and HeLa cells is 91 and 98 times greater compared with that of a native graphite substrate, respectively. The morphology of the cells over a period of 24 to 48 h revealed that the CNRN platform induced an apoptosis-like cytotoxic function on HeLa cells, whereas fibroblasts experienced a cytophilic effect and formed a tissuelike structure. The degree of cytotoxic or cytophilic effect can be further enhanced by adjusting parameters such as the ratio of C-C bonds to C-O bonds, the nanoribbon width, and the nanovoid porosity of the CNRN platforms, which could be tuned by careful control of laser ionization. In a nutshell, for the first time, pristine carbon nanostructures free from biochemical functionalization demonstrate dual function, cytophilic to fibroblast cells and cytotoxic to HeLa cells.
Collapse
Affiliation(s)
| | | | - Krishnan Venkatakrishnan
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital , Toronto, Ontario M5B 1W8, Canada
| |
Collapse
|
7
|
Chowdhury AKMRH, Tavangar A, Tan B, Venkatakrishnan K. Biofunctionalized 3-D Carbon Nano-Network Platform for Enhanced Fibroblast Cell Adhesion. Sci Rep 2017; 7:44250. [PMID: 28287138 PMCID: PMC5347155 DOI: 10.1038/srep44250] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 02/06/2017] [Indexed: 12/18/2022] Open
Abstract
Carbon nanomaterials have been investigated for various biomedical applications. In most cases, however, these nanomaterials must be functionalized biologically or chemically due to their biological inertness or possible cytotoxicity. Here, we report the development of a new carbon nanomaterial with a bioactive phase that significantly promotes cell adhesion. We synthesize the bioactive phase by introducing self-assembled nanotopography and altered nano-chemistry to graphite substrates using ultrafast laser. To the best of our knowledge, this is the first time that such a cytophilic bio-carbon is developed in a single step without requiring subsequent biological/chemical treatments. By controlling the nano-network concentration and chemistry, we develop platforms with different degrees of cell cytophilicity. We study quantitatively and qualitatively the cell response to nano-network platforms with NIH-3T3 fibroblasts. The findings from the in vitro study indicate that the platforms possess excellent biocompatibility and promote cell adhesion considerably. The study of the cell morphology shows a healthy attachment of cells with a well-spread shape, overextended actin filaments, and morphological symmetry, which is indicative of a high cellular interaction with the nano-network. The developed nanomaterial possesses great biocompatibility and considerably stimulates cell adhesion and subsequent cell proliferation, thus offering a promising path toward engineering various biomedical devices.
Collapse
Affiliation(s)
- A. K. M. Rezaul Haque Chowdhury
- Nanocharacterization Laboratory, Department of Aerospace Engineering, Ryerson University, 350 Victoria Street, Toronto, ON, M5B 2K3, Canada
| | - Amirhossein Tavangar
- Micro/Nanofabrication Laboratory, Department of Mechanical and Industrial Engineering, Ryerson University, 350 Victoria Street, Toronto, ON, M5B 2K3, Canada
| | - Bo Tan
- Nanocharacterization Laboratory, Department of Aerospace Engineering, Ryerson University, 350 Victoria Street, Toronto, ON, M5B 2K3, Canada
| | - Krishnan Venkatakrishnan
- Micro/Nanofabrication Laboratory, Department of Mechanical and Industrial Engineering, Ryerson University, 350 Victoria Street, Toronto, ON, M5B 2K3, Canada
- Affiliate Scientist, Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, Ontario, M5B 1W8, Canada
| |
Collapse
|
8
|
Kaemmerer E, Rodriguez Garzon TE, Lock AM, Lovitt CJ, Avery VM. Innovative in vitro models for breast cancer drug discovery. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.ddmod.2017.02.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|