1
|
Tang C, Rao H, Li S, She P, Qin JS. A Review of Metal-Organic Frameworks Derived Hollow-Structured Photocatalysts: Synthesis and Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405533. [PMID: 39212632 DOI: 10.1002/smll.202405533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/18/2024] [Indexed: 09/04/2024]
Abstract
Photocatalysis is a most important approach to addressing global energy shortages and environmental issues due to its environmentally friendly and sustainable properties. The key to realizing efficient photocatalysis relies on developing appropriate catalysts with high efficiency and chemical stability. Among various photocatalysts, Metal-organic frameworks (MOFs)-derived hollow-structured materials have drawn increased attention in photocatalysis based on advantages like more active sites, strong light absorption, efficient transfer of pho-induced charges, excellent stability, high electrical conductivity, and better biocompatibility. Specifically, MOFs-derived hollow-structured materials are widely utilized in photocatalytic CO2 reduction (CO2RR), hydrogen evolution (HER), nitrogen fixation (NRR), degradation, and other reactions. This review starts with the development story of MOFs, the commonly adopted synthesis strategies of MOFs-derived hollow materials, and the latest research progress in various photocatalytic applications are also introduced in detail. Ultimately, the challenges of MOFs-derived hollow-structured materials in practical photocatalytic applications are also prospected. This review holds great potential for developing more applicable and efficient MOFs-derived hollow-structured photocatalysts.
Collapse
Affiliation(s)
- Chenxi Tang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Heng Rao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Shuming Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Ping She
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
- Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Jun-Sheng Qin
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| |
Collapse
|
2
|
Cakan N, Issa AA, Alsalman H, Aliyev E, Duden EI, Gurcan Bayrak K, Caglar M, Turan S, Erkartal M, Sen U. Enhancing the Properties of Yttria-Stabilized Zirconia Composites with Zeolitic Imidazolate Framework-Derived Nanocarbons. ACS APPLIED MATERIALS & INTERFACES 2023; 15:58931-58939. [PMID: 38066717 DOI: 10.1021/acsami.3c15359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Ceramic matrix composites (CMCs) reinforced with nanocarbon have attracted significant interest due to their potential to enhance mechanical, thermal, and electrical properties. Although the investigation of carbon-based materials such as graphene and carbon nanotubes as additives for advanced ceramics has been widespread, the utilization of metal-organic framework (MOF)-derived nanocarbons in CMCs remains largely unexplored. We extended our previous proof-of-concept investigations by demonstrating the effectiveness of a different type of MOF-derived carbon as a reinforcing phase in an alternative ceramic matrix. We employed spark plasma sintering (SPS) to consolidate yttria-stabilized zirconia (YSZ) and zeolitic imidazolate framework (ZIF-67) powder blends at 1300 °C and a uniaxial pressure of 50 MPa. YSZ serves as the ceramic matrix, whereas ZIF-67 serves as the nanocarbon source. The composite exhibits a highly significant improvement in fracture toughness with an increase of up to 13% compared to that of the YSZ monolith. The formation of ZIF-derived nanocarbon interlayers is responsible for the observed enhancement in ductility, which can be attributed to their ability to facilitate energy dissipation during crack propagation and inhibit grain growth. Furthermore, the room-temperature electrical conductivity of the sintered samples demonstrates a substantial improvement, primarily due to the in situ formation of nanocarbon-based fillers, reaching an impressive 27 S/m with 10 wt % ZIF-67 content. Based on the results, it can be inferred that the incorporation of in situ MOF-derived nanocarbons into CMCs leads to a substantial improvement in both the mechanical and electrical properties.
Collapse
Affiliation(s)
- Niyaz Cakan
- Department of Materials Science and Engineering, Faculty of Engineering, Eskisehir Technical University, Eskisehir 26555, Turkey
| | - Abduselam Abubeker Issa
- Department of Materials Science and Engineering, Faculty of Engineering, Eskisehir Technical University, Eskisehir 26555, Turkey
| | - Hamza Alsalman
- Department of Mechanical Engineering, Faculty of Engineering, Abdullah Gul University, Kayseri 38080, Turkey
| | - Emin Aliyev
- Department of Mechanical Engineering, Faculty of Engineering, Abdullah Gul University, Kayseri 38080, Turkey
- UNAM-Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800, Turkey
| | - Enes Ibrahim Duden
- Department of Materials Science and Engineering, Faculty of Engineering, Eskisehir Technical University, Eskisehir 26555, Turkey
| | - Kubra Gurcan Bayrak
- Department of Materials Science and Engineering, Faculty of Engineering, Eskisehir Technical University, Eskisehir 26555, Turkey
| | - Mujdat Caglar
- Department of Physics, Faculty of Science, Eskisehir Technical University, Eskisehir 26470, Turkey
| | - Servet Turan
- Department of Materials Science and Engineering, Faculty of Engineering, Eskisehir Technical University, Eskisehir 26555, Turkey
| | - Mustafa Erkartal
- Department of Engineering Science, Faculty of Engineering, Abdullah Gul University, Kayseri 38080, Turkey
| | - Unal Sen
- Department of Materials Science and Engineering, Faculty of Engineering, Eskisehir Technical University, Eskisehir 26555, Turkey
- Advanced Technologies Application and Research Center, Eskisehir Technical University, Eskisehir 26555, Turkey
| |
Collapse
|
3
|
Zhang S, Xie Y, Somerville RJ, Tirani FF, Scopelliti R, Fei Z, Zhu D, Dyson PJ. MOF-Based Solid-State Proton Conductors Obtained by Intertwining Protic Ionic Liquid Polymers with MIL-101. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206999. [PMID: 37317016 DOI: 10.1002/smll.202206999] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/07/2023] [Indexed: 06/16/2023]
Abstract
Solid-state proton conductors based on the use of metal-organic framework (MOF) materials as proton exchange membranes are being investigated as alternatives to the current state of the art. This study reports a new family of proton conductors based on MIL-101 and protic ionic liquid polymers (PILPs) containing different anions. By first installing protic ionic liquid (PIL) monomers inside the hierarchical pores of a highly stable MOF, MIL-101, then carrying out polymerization in situ, a series of PILP@MIL-101 composites was synthesized. The resulting PILP@MIL-101 composites not only maintain the nanoporous cavities and water stability of MIL-101, but the intertwined PILPs provide a number of opportunities for much-improved proton transport compared to MIL-101. The PILP@MIL-101 composite with HSO4 - anions shows superprotonic conductivity (6.3 × 10-2 S cm-1 ) at 85 °C and 98% relative humidity. The mechanism of proton conduction is proposed. In addition, the structures of the PIL monomers were determined by single crystal X-ray analysis, which reveals many strong hydrogen bonding interactions with O/NH···O distances below 2.6 Å.
Collapse
Affiliation(s)
- Shunlin Zhang
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, CH-1015, Switzerland
| | - Yuxin Xie
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Rosie J Somerville
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, CH-1015, Switzerland
| | - Farzaneh Fadaei Tirani
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, CH-1015, Switzerland
| | - Rosario Scopelliti
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, CH-1015, Switzerland
| | - Zhaofu Fei
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, CH-1015, Switzerland
| | - Dunru Zhu
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Paul J Dyson
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, CH-1015, Switzerland
| |
Collapse
|
4
|
Liu L, Li X, Liu Z, Zhang S, Qian L, Chen Z, Li J, Fang P, He C. High-performance fuel cells using Nafion composite membranes with alignment of sulfonated graphene oxides induced by a strong magnetic field. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
5
|
Ultrahigh proton conductive nanofibrous composite membrane with an interpenetrating framework and enhanced acid-base interfacial layers for vanadium redox flow battery. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120327] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
6
|
Rao Z, Lan M, Wang Z, Wan H, Li G, Zhu J, Tang B, Liu H. Effectively facilitating the proton conduction of proton exchange membrane by polydopamine modified hollow metal−organic framework. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120098] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
Tellez-Cruz MM, Escorihuela J, Solorza-Feria O, Compañ V. Proton Exchange Membrane Fuel Cells (PEMFCs): Advances and Challenges. Polymers (Basel) 2021; 13:3064. [PMID: 34577965 PMCID: PMC8468942 DOI: 10.3390/polym13183064] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/21/2021] [Accepted: 08/30/2021] [Indexed: 11/16/2022] Open
Abstract
The study of the electrochemical catalyst conversion of renewable electricity and carbon oxides into chemical fuels attracts a great deal of attention by different researchers. The main role of this process is in mitigating the worldwide energy crisis through a closed technological carbon cycle, where chemical fuels, such as hydrogen, are stored and reconverted to electricity via electrochemical reaction processes in fuel cells. The scientific community focuses its efforts on the development of high-performance polymeric membranes together with nanomaterials with high catalytic activity and stability in order to reduce the platinum group metal applied as a cathode to build stacks of proton exchange membrane fuel cells (PEMFCs) to work at low and moderate temperatures. The design of new conductive membranes and nanoparticles (NPs) whose morphology directly affects their catalytic properties is of utmost importance. Nanoparticle morphologies, like cubes, octahedrons, icosahedrons, bipyramids, plates, and polyhedrons, among others, are widely studied for catalysis applications. The recent progress around the high catalytic activity has focused on the stabilizing agents and their potential impact on nanomaterial synthesis to induce changes in the morphology of NPs.
Collapse
Affiliation(s)
- Miriam M. Tellez-Cruz
- Department of Chemistry, Centro de Investigación y de Estudios Avanzados, Av. IPN 2508, Ciudad de México 07360, Mexico; (M.M.T.-C.); (O.S.-F.)
| | - Jorge Escorihuela
- Departamento de Química Orgánica, Universitat de València, Av. Vicent Andrés Estellés s/n, Burjassot, 46100 Valencia, Spain
| | - Omar Solorza-Feria
- Department of Chemistry, Centro de Investigación y de Estudios Avanzados, Av. IPN 2508, Ciudad de México 07360, Mexico; (M.M.T.-C.); (O.S.-F.)
| | - Vicente Compañ
- Departamento de Termodinámica Aplicada (ETSII), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| |
Collapse
|
8
|
Cai YY, Zhang QG, Zhu AM, Liu QL. Two-dimensional metal-organic framework-graphene oxide hybrid nanocomposite proton exchange membranes with enhanced proton conduction. J Colloid Interface Sci 2021; 594:593-603. [PMID: 33780764 DOI: 10.1016/j.jcis.2021.03.070] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/05/2021] [Accepted: 03/14/2021] [Indexed: 10/21/2022]
Abstract
A novel two-dimensional (2D) zeolitic imidazolate framework-graphene oxide hybrid nanocomposite (ZIF-L@GO) is designed as an inorganic filler in sulfonated poly(ether ether ketone) (SPEEK). ZIF-L with unique leaf-like morphology is grown in-situ on the GO sheet in aqueous media at room temperature. The terminal imidazole linker in ZIF-L@GO and the -SO3H in SPEEK can form acid-base pairs in the membrane interface to produce low energy proton conduction highway. Benefiting from the unique structural advantage, the hybrid SP-ZIF-L@GO membranes displayed promoted physicochemical and electrochemical performances over the pure SPEEK. The SP-ZIF-L@GO-5 achieved a proton conductivity of 0.265 and 0.0364 S cm-1 at 70 °C-100% RH and 90 °C-40% RH, 1.76- and 6.24-fold higher than pure SPEEK, respectively. Meanwhile, a single cell based on SP-ZIF-L@GO-5 had an output power up to 652.82 mW cm-2 at 60 °C, 1.45 times higher than the pure SPEEK. In addition, the durability test was performed by holding open circuit voltage (OCV) for 24 h. The SP-ZIF-L@GO-5 provided better long-term stability than the pure SPEEK. These superior performance suggests a promising application in PEMFC.
Collapse
Affiliation(s)
- Yuan Yuan Cai
- Department of Chemical & Biochemical Engineering, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China
| | - Qiu Gen Zhang
- Department of Chemical & Biochemical Engineering, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China
| | - Ai Mei Zhu
- Department of Chemical & Biochemical Engineering, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China
| | - Qing Lin Liu
- Department of Chemical & Biochemical Engineering, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China
| |
Collapse
|
9
|
Barjola A, Reyes-Rodríguez JL, Solorza-Feria O, Giménez E, Compañ V. Novel SPEEK-ZIF-67 Proton Exchange Nanocomposite Membrane for PEMFC Application at Intermediate Temperatures. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c01780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Arturo Barjola
- Instituto de Tecnología de Materiales, Universitat Politècnica de València (UPV), Camino de Vera s/n, 46022 Valencia, Spain
| | - José Luis Reyes-Rodríguez
- Departamento de Química, Centro de Investigación y de Estudios Avanzados del I.P.N. (CINVESTAV), Av. I.P.N. 2508, Col. Zacatenco, Delegación Gustavo A. Madero, C.P. 07360 Ciudad de México, México
| | - Omar Solorza-Feria
- Departamento de Química, Centro de Investigación y de Estudios Avanzados del I.P.N. (CINVESTAV), Av. I.P.N. 2508, Col. Zacatenco, Delegación Gustavo A. Madero, C.P. 07360 Ciudad de México, México
| | - Enrique Giménez
- Instituto de Tecnología de Materiales, Universitat Politècnica de València (UPV), Camino de Vera s/n, 46022 Valencia, Spain
| | - Vicente Compañ
- Escuela Técnica Superior de Ingenieros Industriales, Departamento de Termodinámica Aplicada, Universitat Politècnica de València, Camino de Vera s/n, 46020 Valencia, Spain
| |
Collapse
|
10
|
|
11
|
Liu Q, Li Z, Wang D, Li Z, Peng X, Liu C, Zheng P. Metal Organic Frameworks Modified Proton Exchange Membranes for Fuel Cells. Front Chem 2020; 8:694. [PMID: 32850683 PMCID: PMC7432281 DOI: 10.3389/fchem.2020.00694] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 07/06/2020] [Indexed: 01/04/2023] Open
Abstract
Proton exchange membrane fuel cells (PEMFCs) have received considerable interest due to their low operating temperature and high energy conversion rate. However, their practical implement suffers from significant performance challenge. In particular, proton exchange membrane (PEM) as the core component of PEMFCs, have shown a strong correlation between its properties (e.g., proton conductivity, dimensional stability) and the performance of fuel cells. Metal-organic frameworks (MOFs) as porous inorganic-organic hybrid materials have attracted extensive attention in gas storage, gas separation and reaction catalysis. Recently, the MOFs-modified PEMs have shown outstanding performance, which have great merit in commercial application. This manuscript presents an overview of the recent progress in the modification of PEMs with MOFs, with a special focus on the modification mechanism of MOFs on the properties of composite membranes. The characteristics of different types of MOFs in modified application were summarized.
Collapse
Affiliation(s)
- Quanyi Liu
- College of Civil Aviation Safety Engineering, Civil Aviation Flight University of China, Guanghan, China
| | - Zekun Li
- College of Civil Aviation Safety Engineering, Civil Aviation Flight University of China, Guanghan, China
| | - Donghui Wang
- College of Civil Aviation Safety Engineering, Civil Aviation Flight University of China, Guanghan, China
| | - Zhifa Li
- College of Civil Aviation Safety Engineering, Civil Aviation Flight University of China, Guanghan, China
| | - Xiaoliang Peng
- College of Civil Aviation Safety Engineering, Civil Aviation Flight University of China, Guanghan, China
| | - Chuanbang Liu
- College of Civil Aviation Safety Engineering, Civil Aviation Flight University of China, Guanghan, China
| | - Penglun Zheng
- College of Civil Aviation Safety Engineering, Civil Aviation Flight University of China, Guanghan, China
| |
Collapse
|
12
|
Fang M, Montoro C, Semsarilar M. Metal and Covalent Organic Frameworks for Membrane Applications. MEMBRANES 2020; 10:E107. [PMID: 32455983 PMCID: PMC7281687 DOI: 10.3390/membranes10050107] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 05/19/2020] [Indexed: 12/16/2022]
Abstract
Better and more efficient membranes are needed to face imminent and future scientific, technological and societal challenges. New materials endowed with enhanced properties are required for the preparation of such membranes. Metal and Covalent Organic Frameworks (MOFs and COFs) are a new class of crystalline porous materials with large surface area, tuneable pore size, structure, and functionality, making them a perfect candidate for membrane applications. In recent years an enormous number of articles have been published on the use of MOFs and COFs in preparation of membranes for various applications. This review gathers the work reported on the synthesis and preparation of membranes containing MOFs and COFs in the last 10 years. Here we give an overview on membranes and their use in separation technology, discussing the essential factors in their synthesis as well as their limitations. A full detailed summary of the preparation and characterization methods used for MOF and COF membranes is given. Finally, applications of these membranes in gas and liquid separation as well as fuel cells are discussed. This review is aimed at both experts in the field and newcomers, including students at both undergraduate and postgraduate levels, who would like to learn about preparation of membranes from crystalline porous materials.
Collapse
Affiliation(s)
| | | | - Mona Semsarilar
- Institut Européen des Membranes—IEM UMR 5635, Univ Montpellier, CNRS, ENSCM, 34095 Montpellier, France;
| |
Collapse
|
13
|
Zhang M, Zou S, Zhang Q, Mo S, Zhong J, Chen D, Fu M, Chen P, Ye D. Macroscopic Hexagonal Co 3O 4 Tubes Derived from Controllable Two-Dimensional Metal-Organic Layer Single Crystals: Formation Mechanism and Catalytic Activity. Inorg Chem 2020; 59:3062-3071. [PMID: 32049505 DOI: 10.1021/acs.inorgchem.9b03396] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Macroscopic Co3O4 hexagonal tubes were successfully synthesized using hollow two-dimensional (2D) MOL (metal-organic layer) single crystals as sacrificial templates. The hollow 2D MOL single crystals were prepared under hydrothermal conditions with acetonitrile (MeCN) as an interference agent. The formation of hollow-structured 2D MOL single crystals was tracked by time-dependent experiments, and two simultaneous paths-namely, the crystal-to-crystal transformation in solution and the dissolution + migration (toward the external surface) of inner crystallites-were identified as playing a key role in the formation of the unique hollow structure. The calculated change in Gibbs free energy (ΔG = -1.18 eV) indicated that the crystal-to-crystal transformation was spontaneous at 393 K. Further addition of MeCN as an interference agent eventually leads to the formation of macroscopic hexagonal tubes. Among all of the as-synthesized Co3O4, Co-MeCN-O with a hexagonal tube morphology exhibited the best catalytic performance in toluene oxidation, it achieved a toluene conversion of 90% (T90) at ∼227 °C (a space velocity of 60 000 mL g-1 h-1) and the activity energy (Ea) is 69.5 kJ mol-1. A series of characterizations were performed to investigate the structure-activity correlation. It was found that there are more structure defects, more adsorbed surface oxygen species, more surface Co3+ species, and higher reducibility at low temperatures on the Co-MeCN-O than on other Co3O4 samples; these factors are responsible for its excellent catalytic performance. The in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) characterization showed that, when there is no oxygen in the atmosphere, the lattice oxygen may be involved in the activation of toluene, and the gas-phase oxygen replenished by the oxygen vacancies was essential for the total oxidation of toluene on the surface of the Co-MeCN-O catalysts, it also proves the importance of oxygen vacancies. Moreover, for the Co-MeCN-O catalysts, no obvious decrease in catalytic performance was observed after 120 h at 220 °C and it is still stable after cycling tests, which indicates that it exhibits excellent stability for toluene oxidation. This study sheds lights on the controllable synthesis of macroporous-microporous materials in single-crystalline form without an external template, and, thus, it may serve as a reference for future design and synthesis of hollow porous materials with outstanding catalytic performance.
Collapse
Affiliation(s)
- Mingyuan Zhang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Sibei Zou
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Qian Zhang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Shengpeng Mo
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Jinping Zhong
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Dongdong Chen
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Mingli Fu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China.,National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, Guangzhou Higher Education Mega Centre, Guangzhou 510006, People's Republic of China.,Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control (SCUT), Guangzhou Higher Education Mega Centre, Guangzhou 510006, People's Republic of China
| | - Peirong Chen
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China.,National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, Guangzhou Higher Education Mega Centre, Guangzhou 510006, People's Republic of China.,Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control (SCUT), Guangzhou Higher Education Mega Centre, Guangzhou 510006, People's Republic of China
| | - Daiqi Ye
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China.,National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, Guangzhou Higher Education Mega Centre, Guangzhou 510006, People's Republic of China.,Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control (SCUT), Guangzhou Higher Education Mega Centre, Guangzhou 510006, People's Republic of China
| |
Collapse
|
14
|
Hu F, Wen-Chin T, Zhong F, Zhang B, Wang J, Liu H, Zheng G, Gong C, Wen S. Enhanced properties of sulfonated polyether ether ketone proton exchange membrane by incorporating carboxylic-contained zeolitic imidazolate frameworks. NEW J CHEM 2020. [DOI: 10.1039/d0nj02532a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Carboxylic-containing zeolitic imidazolate frameworks (ZIF-COOH) showed an obvious improvement in the performance of sulfonated polyether ether ketone (SPEEK)-based proton exchange membranes.
Collapse
Affiliation(s)
- Fuqiang Hu
- Hubei Collaborative Innovation Center for Biomass Conversion and Utilization
- Hubei Engineering & Technology Research Center for Functional Materials from Biomass
- School of Chemistry and Material Science
- Hubei Engineering University
- Xiaogan
| | - Tsen Wen-Chin
- Department of Fashion and Design
- Lee-Ming Institute of Technology
- New Taipei City 243
- Taiwan
| | - Fei Zhong
- Hubei Collaborative Innovation Center for Biomass Conversion and Utilization
- Hubei Engineering & Technology Research Center for Functional Materials from Biomass
- School of Chemistry and Material Science
- Hubei Engineering University
- Xiaogan
| | - Bingqing Zhang
- Hubei Collaborative Innovation Center for Biomass Conversion and Utilization
- Hubei Engineering & Technology Research Center for Functional Materials from Biomass
- School of Chemistry and Material Science
- Hubei Engineering University
- Xiaogan
| | - Jie Wang
- Hubei Collaborative Innovation Center for Biomass Conversion and Utilization
- Hubei Engineering & Technology Research Center for Functional Materials from Biomass
- School of Chemistry and Material Science
- Hubei Engineering University
- Xiaogan
| | - Hai Liu
- Hubei Collaborative Innovation Center for Biomass Conversion and Utilization
- Hubei Engineering & Technology Research Center for Functional Materials from Biomass
- School of Chemistry and Material Science
- Hubei Engineering University
- Xiaogan
| | - Genwen Zheng
- Hubei Collaborative Innovation Center for Biomass Conversion and Utilization
- Hubei Engineering & Technology Research Center for Functional Materials from Biomass
- School of Chemistry and Material Science
- Hubei Engineering University
- Xiaogan
| | - Chunli Gong
- Hubei Collaborative Innovation Center for Biomass Conversion and Utilization
- Hubei Engineering & Technology Research Center for Functional Materials from Biomass
- School of Chemistry and Material Science
- Hubei Engineering University
- Xiaogan
| | - Sheng Wen
- Hubei Collaborative Innovation Center for Biomass Conversion and Utilization
- Hubei Engineering & Technology Research Center for Functional Materials from Biomass
- School of Chemistry and Material Science
- Hubei Engineering University
- Xiaogan
| |
Collapse
|
15
|
Cai ZX, Wang ZL, Kim J, Yamauchi Y. Hollow Functional Materials Derived from Metal-Organic Frameworks: Synthetic Strategies, Conversion Mechanisms, and Electrochemical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1804903. [PMID: 30637804 DOI: 10.1002/adma.201804903] [Citation(s) in RCA: 211] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/25/2018] [Indexed: 05/18/2023]
Abstract
Hollow materials derived from metal-organic frameworks (MOFs), by virtue of their controllable configuration, composition, porosity, and specific surface area, have shown fascinating physicochemical properties and widespread applications, especially in electrochemical energy storage and conversion. Here, the recent advances in the controllable synthesis are discussed, mainly focusing on the conversion mechanisms from MOFs to hollow-structured materials. The synthetic strategies of MOF-derived hollow-structured materials are broadly sorted into two categories: the controllable synthesis of hollow MOFs and subsequent pyrolysis into functional materials, and the controllable conversion of solid MOFs with predesigned composition and morphology into hollow structures. Based on the formation processes of hollow MOFs and the conversion processes of solid MOFs, the synthetic strategies are further conceptually grouped into six categories: template-mediated assembly, stepped dissolution-regrowth, selective chemical etching, interfacial ion exchange, heterogeneous contraction, and self-catalytic pyrolysis. By analyzing and discussing 14 types of reaction processes in detail, a systematic mechanism of conversion from MOFs to hollow-structured materials is exhibited. Afterward, the applications of these hollow structures as electrode materials for lithium-ion batteries, hybrid supercapacitors, and electrocatalysis are presented. Finally, an outlook on the emergent challenges and future developments in terms of their controllable fabrications and electrochemical applications is further discussed.
Collapse
Affiliation(s)
- Ze-Xing Cai
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Zhong-Li Wang
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Jeonghun Kim
- Key Laboratory of Eco-chemical Engineering College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Yusuke Yamauchi
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
- Key Laboratory of Eco-chemical Engineering College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
- Department of Plant & Environmental New Resources, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 446-701, South Korea
| |
Collapse
|
16
|
Phosphoric Acid Doped Polybenzimidazole (PBI)/Zeolitic Imidazolate Framework Composite Membranes with Significantly Enhanced Proton Conductivity under Low Humidity Conditions. NANOMATERIALS 2018; 8:nano8100775. [PMID: 30274316 PMCID: PMC6215102 DOI: 10.3390/nano8100775] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 09/26/2018] [Accepted: 09/26/2018] [Indexed: 11/16/2022]
Abstract
The preparation and characterization of composite polybenzimidazole (PBI) membranes containing zeolitic imidazolate framework 8 (ZIF-8) and zeolitic imidazolate framework 67 (ZIF-67) is reported. The phosphoric acid doped composite membranes display proton conductivity values that increase with increasing temperatures, maintaining their conductivity under anhydrous conditions. The addition of ZIF to the polymeric matrix enhances proton transport relative to the values observed for PBI and ZIFs alone. For example, the proton conductivity of PBI@ZIF-8 reaches 3.1 × 10-3 S·cm-1 at 200 °C and higher values were obtained for PBI@ZIF-67 membranes, with proton conductivities of up to 4.1 × 10-2 S·cm-1. Interestingly, a composite membrane containing a 5 wt.% binary mixture of ZIF-8 and ZIF-67 yielded a proton conductivity of 9.2 × 10-2 S·cm-1, showing a synergistic effect on the proton conductivity.
Collapse
|
17
|
Hydrogen spillover through Matryoshka-type (ZIFs@) n-1ZIFs nanocubes. Nat Commun 2018; 9:3778. [PMID: 30224790 PMCID: PMC6141604 DOI: 10.1038/s41467-018-06269-z] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 08/28/2018] [Indexed: 12/05/2022] Open
Abstract
Hydrogen spillover phenomenon is well-documented in hydrogenation catalysis but still highly disputed in hydrogen storage. Until now, the existence of hydrogen spillover through metal–organic frameworks (MOFs) remains a topic of ongoing debate and how far the split hydrogen atoms diffuse in such materials is unknown. Herein we provide experimental evidence of the occurrence of hydrogen spillover in microporous MOFs at elevated temperatures, and the penetration depths of atomic hydrogen were measured quantitatively. We have made Matryoshka-type (ZIFs@)n−1ZIFs (where ZIFs = ZIF-8 or ZIF-67) nanocubes, together with Pt nanoparticles loaded on their external surfaces to produce atomic hydrogen. Within the (ZIFs@)n−1ZIFs, the ZIF-8 shell served as a ruler to measure the travelling distance of H atoms while the ZIF-67 core as a terminator of H atoms. In addition to the hydrogenolysis at normal pressure, CO2 hydrogenation can also trace the migration of H atoms over the ZIF-8 at high pressure. Hydrogen spillover is well-documented in hydrogenation catalysis, but its existence through metalorganic frameworks (MOFs) remains controversial. Here, the authors provide evidence of the occurrence of hydrogen spillover in microporous MOFs at elevated temperatures, and measure quantitatively the penetration depths of atomic hydrogen.
Collapse
|
18
|
Erkartal M, Durandurdu M. Pressure-Induced Amorphization of MOF-5: A First Principles Study. ChemistrySelect 2018. [DOI: 10.1002/slct.201801381] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Mustafa Erkartal
- Abdullah Gül University; Materials Science & Nanotechnology Engineering, Kayseri; Turkey
| | - Murat Durandurdu
- Abdullah Gül University; Materials Science & Nanotechnology Engineering, Kayseri; Turkey
| |
Collapse
|
19
|
Cheng X, Jiang Z, Cheng X, Yang H, Tang L, Liu G, Wang M, Wu H, Pan F, Cao X. Water-selective permeation in hybrid membrane incorporating multi-functional hollow ZIF-8 nanospheres. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.03.024] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
20
|
Erkartal M, Sen U. Boronic Acid Moiety as Functional Defect in UiO-66 and Its Effect on Hydrogen Uptake Capacity and Selective CO 2 Adsorption: A Comparative Study. ACS APPLIED MATERIALS & INTERFACES 2018; 10:787-795. [PMID: 29256584 DOI: 10.1021/acsami.7b16937] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Herein, we use linker fragmentation approach to introduce boronic acid moieties as functional defects into Zr-based metal-organic frameworks (MOFs, UiO-66). Our findings show that the amount of permanently incorporated boronic acid containing ligand is directly dependent on the synthesis method. The accessible boronic acid moieties in the pore surfaces significantly improve the hydrogen uptake values, which are 3.10 and 3.44 wt % at 21 bar, 77 K for dimethylformamide (DMF)/H2O and DMF/HCI synthesis methods, respectively. Also, CO2 selectivity of the resulting MOFs over N2 and CH4 significantly increases due to the quadrupolar interaction between active surfaces and CO2 molecules. To the best of our knowledge, both hydrogen storage and selectivity of CO2 for UiO-66 are the highest reported values in the literature to date. Furthermore, another striking result that emerged from the high-pressure hydrogen uptake isotherms is the direct correlation between the defects and hysteric adsorption behavior, which may result in the shift from rigidity to flexibility of the framework due to the uncoordinated sites.
Collapse
Affiliation(s)
- Mustafa Erkartal
- Siren Ultrasonik Research and Development , Erciyes Teknopark, 38039 Kayseri, Turkey
| | | |
Collapse
|
21
|
Sun H, Tang B, Wu P. Two-Dimensional Zeolitic Imidazolate Framework/Carbon Nanotube Hybrid Networks Modified Proton Exchange Membranes for Improving Transport Properties. ACS APPLIED MATERIALS & INTERFACES 2017; 9:35075-35085. [PMID: 28952721 DOI: 10.1021/acsami.7b13013] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Metal-organic framework (MOF)/polymer composite proton exchange membranes (PEMs) are being intensively investigated due to their potentials for the systematic design of proton-conducting properties. However, the development of MOF/polymer composite PEMs possessing high selectivity remains exceedingly desirable and challenging for practical application. Herein, two-dimensional (2D) zeolitic imidazolate framework (ZIF-8)/carbon nanotube (CNT) hybrid cross-linked networks (ZCN) were synthesized via the rational design of the physical form of ZIF-8, and then a series of composite PEMs were prepared by hybridizing ZCN with sulfonated poly(ether ether ketone) (SPEEK) matrix. The effect of the incorporation of zero-dimensional (0D) raw ZIF-8 nanoparticles and 2D ZCN on the proton conduction and methanol permeability of the composite membranes was systemically studied. Benefiting from the morphological and compositional advantages of ZCN, the SPEEK/ZCN composite membranes displayed a significant enhancement in proton conductivity under various conditions. In particular, the proton conductivity of SPEEK/ZCN-2.5 membrane was up to 50.24 mS cm-1 at 120 °C-30% RH, which was 11.2 times that of the recast SPEEK membrane (4.50 mS cm-1) and 2.1 times that of SPEEK/ZIF membrane (24.1 mS cm-1) under the same condition. Meanwhile, the methanol permeability of the SPEEK/ZCN composite membranes was greatly reduced. Therefore, novel MOF/polymer composite PEMs with high selectivity were obtained. Our investigation results reveal that the proton conductivity and methanol permeability of the MOF/polymer composite membranes can be effectively tailored via creating more elaborate superstructures of MOFs rather than altering the chemical component. This effective strategy may provide a useful guideline to integrate with other interesting MOFs to design MOF/polymer composite membranes.
Collapse
Affiliation(s)
- Huazhen Sun
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University , Shanghai 200433, People's Republic of China
| | - Beibei Tang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University , Shanghai 200433, People's Republic of China
| | - Peiyi Wu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University , Shanghai 200433, People's Republic of China
| |
Collapse
|
22
|
Du X, Fan R, Qiang L, Xing K, Ye H, Ran X, Song Y, Wang P, Yang Y. Controlled Zn 2+-Triggered Drug Release by Preferred Coordination of Open Active Sites within Functionalization Indium Metal Organic Frameworks. ACS APPLIED MATERIALS & INTERFACES 2017; 9:28939-28948. [PMID: 28776972 DOI: 10.1021/acsami.7b09227] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Drug delivery in target regions could make extraordinary progress in chemoselective therapies. A novel preferred coordination (PC) strategy referring to proactive interacting with open active sites to replace previous occupation by ion-exchange for controlling release of drug molecules is well-constructed. Two topological types of MOF-In1 (Schläfli symbol: (4,8)-connected of (410·615·83)(45·6)2) and MOF-In2 (Schläfli symbol: (4,4)-connected of (66)) show the specific way. Increasing node connectivity as well as the trapping of guest OH- anions, 5-fluorouracil (5-FU) is preferentially captured into the MOF-In1, which exhibits an outstanding loading capacity around 34.32 wt %. 19F NMR spectroscopy was further employed to investigate host-guest interaction and reveal the binding constant (Ka = 3.84 × 102 M-1). Meanwhile, the controlled release of 5-FU in a simulated human body with liquid phosphate-buffered saline solution by biofriendly Zn2+-triggered is realized. With an elevated Zn2+ concentration, the drug release will be enhanced. This efficient strategy for MOFs as multifunctional drug carrier opens a new avenue for biological and medical applications.
Collapse
Affiliation(s)
- Xi Du
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology , Harbin 150001, P. R. China
| | - Ruiqing Fan
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology , Harbin 150001, P. R. China
| | - Liangsheng Qiang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology , Harbin 150001, P. R. China
| | - Kai Xing
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology , Harbin 150001, P. R. China
| | - Haoxin Ye
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology , Harbin 150001, P. R. China
| | - Xinya Ran
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology , Harbin 150001, P. R. China
| | - Yang Song
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology , Harbin 150001, P. R. China
| | - Ping Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology , Harbin 150001, P. R. China
| | - Yulin Yang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology , Harbin 150001, P. R. China
| |
Collapse
|
23
|
Sun H, Tang B, Wu P. Rational Design of S-UiO-66@GO Hybrid Nanosheets for Proton Exchange Membranes with Significantly Enhanced Transport Performance. ACS APPLIED MATERIALS & INTERFACES 2017; 9:26077-26087. [PMID: 28715201 DOI: 10.1021/acsami.7b07651] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Metal-organic frameworks (MOFs) are being intensively explored as filler materials for polymeric proton exchange membranes (PEMs) due to their potentials for the systematic design and modification of proton-conducting properties. S-UiO-66, a stable MOF with functional groups of -SO3H in its ligands, was selected here to prepare S-UiO-66@graphene oxide (GO) hybrid nanosheets via a facile in situ growth procedure, and then a series of composite PEMs were prepared by hybridizing S-UiO-66@GO and sulfonated poly(ether ether ketone) (SPEEK). The resultant hybrid nanosheets not only possessed abundant -SO3H groups derived from the ligands of S-UiO-66 but also yielded a uniform dispersion of S-UiO-66 onto GO nanosheets, thus effectively eliminating the agglomeration of S-UiO-66 in the membrane matrix. Thanks to the well-tailored chemical composition and nanostructure of S-UiO-66@GO, the as-prepared SPEEK/S-UiO-66@GO composite PEMs present a significant increase in their proton conductivity under various conditions. In particular, the proton conductivity of the SPEEK/S-UiO-66@GO-10 membrane was up to 0.268 S·cm-1 and 16.57 mS·cm-1 at 70 °C-95% RH and 100 °C-40% RH (2.6 and 6.0 times that of recast SPEEK under the same condition), respectively. Moreover, the mechanical property of composite membranes was substantially strengthened and the methanol penetration was well-suppressed. Our investigation indicates the great potential of S-UiO-66@GO in fabricating composite PEMs and also reveals that the high proton conductivity of MOFs can be fully utilized by means of MOF/polymer composite membranes.
Collapse
Affiliation(s)
- Huazhen Sun
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University , Shanghai 200433, People's Republic of China
| | - Beibei Tang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University , Shanghai 200433, People's Republic of China
| | - Peiyi Wu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University , Shanghai 200433, People's Republic of China
| |
Collapse
|
24
|
Wang TC, Hod I, Audu CO, Vermeulen NA, Nguyen ST, Farha OK, Hupp JT. Rendering High Surface Area, Mesoporous Metal-Organic Frameworks Electronically Conductive. ACS APPLIED MATERIALS & INTERFACES 2017; 9:12584-12591. [PMID: 28319365 DOI: 10.1021/acsami.6b16834] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We report the design and synthesis of a metal-organic framework (MOF)-polythiophene composite that has comparable electronic conductivity to reported conductive 3-D MOFs, but with display and retention of high porosity, including mesoporosity. A robust zirconium MOF, NU-1000, was rendered electronically conductive by first incorporating, via solvent-assisted ligand incorporation (SALI), a carefully designed pentathiophene derivative at a density of one pentamer per hexa-zirconium node. Using a cast film of the intermediate composite (termed pentaSALI) on conductive glass, the incorporated oligothiophene was electrochemically polymerized to yield the conductive composite, Epoly. Depending on the doping level of the polythiophene in the composite, it can be tuned from an insulating state to a semiconduting state with conductivity of 1.3 × 10-7 (S cm-1), which is comparable to values reported for 3-D conductive MOFs. The porosity of the thin-film MOF-polythiophene composite was assessed using decane vapor uptake as determined by quartz crystal microgravimetry (QCM). The results indicate a porosity (pore volume) for Epoly essentially identical to that of bulk pentaSALI, and ∼74% of that of unmodified NU-1000. PentaSALI, and by inference Epoly, displays both micro- and mesoporosity, and features a BET surface area of nearly 1,600 m2·g-1, i.e., substantially larger than yet reported for any other electronically conductive MOF.
Collapse
Affiliation(s)
- Timothy C Wang
- Department of Chemistry, Northwestern University , Evanston, Illinois 60208, United States
| | - Idan Hod
- Department of Chemistry, Ben-Gurion University of the Negev , Beer Sheva 84105, Israel
| | - Cornelius O Audu
- Department of Chemistry, Northwestern University , Evanston, Illinois 60208, United States
| | - Nicolaas A Vermeulen
- Department of Chemistry, Northwestern University , Evanston, Illinois 60208, United States
| | - SonBinh T Nguyen
- Department of Chemistry, Northwestern University , Evanston, Illinois 60208, United States
| | - Omar K Farha
- Department of Chemistry, Northwestern University , Evanston, Illinois 60208, United States
- Department of Chemistry, Faculty of Science, King Abdulaziz University , Jeddah 22254, Saudi Arabia
| | - Joseph T Hupp
- Department of Chemistry, Northwestern University , Evanston, Illinois 60208, United States
| |
Collapse
|
25
|
Du X, Fan R, Qiang L, Song Y, Xing K, Chen W, Wang P, Yang Y. Unusually Flexible Indium(III) Metal–Organic Polyhedra Materials for Detecting Trace Amounts of Water in Organic Solvents and High Proton Conductivity. Inorg Chem 2017; 56:3429-3439. [DOI: 10.1021/acs.inorgchem.6b02963] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Xi Du
- MIIT Key Laboratory of Critical Materials
Technology for New Energy Conversion and Storage, School of Chemistry
and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Ruiqing Fan
- MIIT Key Laboratory of Critical Materials
Technology for New Energy Conversion and Storage, School of Chemistry
and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Liangsheng Qiang
- MIIT Key Laboratory of Critical Materials
Technology for New Energy Conversion and Storage, School of Chemistry
and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Yang Song
- MIIT Key Laboratory of Critical Materials
Technology for New Energy Conversion and Storage, School of Chemistry
and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Kai Xing
- MIIT Key Laboratory of Critical Materials
Technology for New Energy Conversion and Storage, School of Chemistry
and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Wei Chen
- MIIT Key Laboratory of Critical Materials
Technology for New Energy Conversion and Storage, School of Chemistry
and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Ping Wang
- MIIT Key Laboratory of Critical Materials
Technology for New Energy Conversion and Storage, School of Chemistry
and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Yulin Yang
- MIIT Key Laboratory of Critical Materials
Technology for New Energy Conversion and Storage, School of Chemistry
and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| |
Collapse
|