1
|
Niu G, Wang Y, Yang Z, Cao S, Liu H, Wang J. Graphdiyne and Its Derivatives as Efficient Charge Reservoirs and Transporters in Semiconductor Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2212159. [PMID: 36724887 DOI: 10.1002/adma.202212159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Indexed: 05/09/2023]
Abstract
2D graphdiyne (GDY), which is composed of sp and sp2 hybridized carbon atoms, is a promising semiconductor material with a unique porous lamellar structure. It has high carrier mobility, tunable bandgap, high density of states, and strong electrostatic interaction ability with ions and organic functional units. In recent years, interests in applying GDYs (GDY and its derivatives) in semiconductor devices have been growing rapidly, and great achievements have been made. Attractively, GDYs could act as efficient reservoirs and transporters for both carriers and ions, which endows them with enormous potential in future novel optoelectronics. In this review, the progress in this field is systematically summarized, aiming to bring an in-depth insight into the GDYs' intrinsic uniqueness. Particularly, the effects of GDYs on carrier dynamics and ionic interactions in various semiconductor devices are succinctly described, analyzed, and concluded.
Collapse
Affiliation(s)
- Guosheng Niu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Yadong Wang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Zhichao Yang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Shaokui Cao
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Huibiao Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Jizheng Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
2
|
He S, Xia H, Chang F. Enzyme free electrochemical determination of bisphenol A using screen-printed electrode modified by graphdiyne and carbon nanotubes. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
3
|
Graphdiyne Reinforced Multifunctional Cu/Ni Bimetallic Phosphides-Graphdiyne Hybrid nanostructure as High Performance Electrocatalyst for Water Splitting. J Colloid Interface Sci 2022; 628:508-518. [DOI: 10.1016/j.jcis.2022.07.150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/15/2022] [Accepted: 07/25/2022] [Indexed: 11/23/2022]
|
4
|
Lin H, Jiang A, Xing S, Li L, Cheng W, Li J, Miao W, Zhou X, Tian L. Advances in Self-Powered Ultraviolet Photodetectors Based on P-N Heterojunction Low-Dimensional Nanostructures. NANOMATERIALS 2022; 12:nano12060910. [PMID: 35335723 PMCID: PMC8953703 DOI: 10.3390/nano12060910] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 02/04/2023]
Abstract
Self-powered ultraviolet (UV) photodetectors have attracted considerable attention in recent years because of their vast applications in the military and civil fields. Among them, self-powered UV photodetectors based on p-n heterojunction low-dimensional nanostructures are a very attractive research field due to combining the advantages of low-dimensional semiconductor nanostructures (such as large specific surface area, excellent carrier transmission channel, and larger photoconductive gain) with the feature of working independently without an external power source. In this review, a selection of recent developments focused on improving the performance of self-powered UV photodetectors based on p-n heterojunction low-dimensional nanostructures from different aspects are summarized. It is expected that more novel, dexterous, and intelligent photodetectors will be developed as soon as possible on the basis of these works.
Collapse
Affiliation(s)
- Haowei Lin
- School of Materials Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; (A.J.); (S.X.); (L.L.); (W.C.); (J.L.); (W.M.); (X.Z.); (L.T.)
- Henan International Joint Laboratory of Nano-Photoelectric Magnetic Materials, Henan University of Technology, Zhengzhou 450001, China
- Correspondence:
| | - Ao Jiang
- School of Materials Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; (A.J.); (S.X.); (L.L.); (W.C.); (J.L.); (W.M.); (X.Z.); (L.T.)
| | - Shibo Xing
- School of Materials Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; (A.J.); (S.X.); (L.L.); (W.C.); (J.L.); (W.M.); (X.Z.); (L.T.)
| | - Lun Li
- School of Materials Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; (A.J.); (S.X.); (L.L.); (W.C.); (J.L.); (W.M.); (X.Z.); (L.T.)
| | - Wenxi Cheng
- School of Materials Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; (A.J.); (S.X.); (L.L.); (W.C.); (J.L.); (W.M.); (X.Z.); (L.T.)
| | - Jinling Li
- School of Materials Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; (A.J.); (S.X.); (L.L.); (W.C.); (J.L.); (W.M.); (X.Z.); (L.T.)
| | - Wei Miao
- School of Materials Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; (A.J.); (S.X.); (L.L.); (W.C.); (J.L.); (W.M.); (X.Z.); (L.T.)
| | - Xuefei Zhou
- School of Materials Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; (A.J.); (S.X.); (L.L.); (W.C.); (J.L.); (W.M.); (X.Z.); (L.T.)
| | - Li Tian
- School of Materials Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; (A.J.); (S.X.); (L.L.); (W.C.); (J.L.); (W.M.); (X.Z.); (L.T.)
| |
Collapse
|
5
|
Li J, Wang C, Zhang B, Wang Z, Yu W, Chen Y, Liu X, Guo Z, Zhang H. Artificial Carbon Graphdiyne: Status and Challenges in Nonlinear Photonic and Optoelectronic Applications. ACS APPLIED MATERIALS & INTERFACES 2020; 12:49281-49296. [PMID: 33100013 DOI: 10.1021/acsami.0c13030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The creative integration of sp-hybridized carbon atoms into artificial carbon graphdiyne has led to graphdiyne with superior properties in terms of uniformly distributed pores, ambipolar carrier transport, natural bandgap, and broadband absorption. Consequently, graphdiyne, regarded as a promising carbon material, has garnered particular attention in light-matter interactions. Light-matter interactions play an important role in optical information technology and meet the increasing demand for various energy sources. Herein, the status and challenges in nonlinear photonic and optoelectronic applications of graphdiyne, which are still in the infancy stage, are summarized. Furthermore, the bottleneck and perspective of graphdiyne in these aspects are discussed. It is therefore anticipated that this review could promote the development of graphdiyne in photonic and optoelectronic fields.
Collapse
Affiliation(s)
- Jiaofu Li
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Cong Wang
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Bin Zhang
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Zhenhong Wang
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Wenjie Yu
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, CAS, 865 Chang Ning Road, Shanghai 200050, P. R. China
| | - Yong Chen
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Xinke Liu
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Zhongyi Guo
- School of Electrical Engineering and Intelligentization, Dongguan University of Technology, Dongguan 523808, China
| | - Han Zhang
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| |
Collapse
|
6
|
|
7
|
Yu H, Xue Y, Li Y. Graphdiyne and its Assembly Architectures: Synthesis, Functionalization, and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1803101. [PMID: 31119816 DOI: 10.1002/adma.201803101] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 07/02/2018] [Indexed: 06/09/2023]
Abstract
Graphdiyne (GDY), a novel one-atom-thick carbon allotrope that features assembled layers of sp- and sp2 -hybridized carbon atoms, has attracted great interest from both science and industry due to its unique and fascinating structural, physical, and chemical properties. GDY-based materials with different morphologies, such as nanowires, nanotube arrays, nanosheets, and ordered stripe arrays, have been applied in various areas such as catalysis, solar cells, energy storage, and optoelectronic devices. After an introduction to the fundamental properties of GDY, recent advances in the fabrication of GDY-based nanostructures and their applications, and corresponding mechanisms, are covered, and future critical perspectives are also discussed.
Collapse
Affiliation(s)
- Huidi Yu
- Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yurui Xue
- Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yuliang Li
- Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
8
|
Sakamoto R, Fukui N, Maeda H, Matsuoka R, Toyoda R, Nishihara H. The Accelerating World of Graphdiynes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1804211. [PMID: 31222848 DOI: 10.1002/adma.201804211] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 03/27/2019] [Indexed: 05/08/2023]
Abstract
Graphdiyne (GDY), a 2D allotrope of graphene, is first synthesized in 2010 and has attracted attention as a new low-dimensional carbon material. This work surveys the literature on GDYs. The history of GDYs is summarized, including their relationship with 2D graphyne carbons and yearly publication trends. GDY is a molecule-based nanosheet woven from a molecular monomer, hexaethynylbenzene; thus, it is synthesized by bottom-up approaches, which allow rich variation via monomer design. The GDY family and the synthetic procedures are also described. Highly developed π-conjugated electronic structures are common important features in GDY and graphene; however, the coexistence of sp and sp2 carbons differentiates GDY from graphene. This difference gives rise to unique physical properties, such as high conductivity and large carrier mobility. Next, the theoretical and experimental studies of these properties are described in detail. A wide variety of applications are proposed for GDYs, including electrocatalysts and energy devices, which exploit the carbon-rich nature, porous framework, and expanded π-electron system of these compounds. Finally, potential uses are discussed.
Collapse
Affiliation(s)
- Ryota Sakamoto
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
- JST-PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Naoya Fukui
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Hiroaki Maeda
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Ryota Matsuoka
- Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8571, Japan
| | - Ryojun Toyoda
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Hiroshi Nishihara
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
9
|
Lin H, Chen K, Li M, Ji B, Jia Y, Liu X, Li J, Song W, Guan C. Constructing a Green Light Photodetector on Inorganic/Organic Semiconductor Homogeneous Hybrid Nanowire Arrays with Remarkably Enhanced Photoelectric Response. ACS APPLIED MATERIALS & INTERFACES 2019; 11:10146-10152. [PMID: 30777746 DOI: 10.1021/acsami.8b20340] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We demonstrate that a novel photodetector is constructed by CdS/poly( p-phenylene vinylene) (PPV) homogeneous hybrid nanowire arrays via a simple template-assisted electrochemical codeposition approach. Owing to the well-matched energy levels between CdS and PPV, the recombination of photogenerated electrons and holes in CdS/PPV hybrid nanowire arrays is greatly inhibited. It is found that the homogeneous hybrid nanowire arrays exhibit remarkably enhanced photoelectric response and the ON/OFF ratio by 17 times compared to the individual CdS component. More importantly, the CdS/PPV hybrid nanowire arrays are observed with significant spectral selectivity especially for green light under 545 nm. In addition, a straight linear relationship is obtained between the ON/OFF ratios and the illumination intensities, implying that the quantitative detection of illumination intensity can be achieved. The new as-prepared homogeneous hybrid organic/inorganic semiconductor nanowire arrays have a bright prospect for applications in high-sensitivity and high-speed green photodetectors.
Collapse
Affiliation(s)
- Haowei Lin
- School of Materials Science and Engineering , Henan University of Technology , Zhengzhou 450001 , P. R. China
| | - Kai Chen
- School of Materials Science and Engineering , Henan University of Technology , Zhengzhou 450001 , P. R. China
| | - Mingke Li
- School of Materials Science and Engineering , Henan University of Technology , Zhengzhou 450001 , P. R. China
| | - Beibei Ji
- School of Materials Science and Engineering , Henan University of Technology , Zhengzhou 450001 , P. R. China
| | - Yaohui Jia
- School of Materials Science and Engineering , Henan University of Technology , Zhengzhou 450001 , P. R. China
| | - Xinyu Liu
- School of Materials Science and Engineering , Henan University of Technology , Zhengzhou 450001 , P. R. China
| | - Jinling Li
- School of Materials Science and Engineering , Henan University of Technology , Zhengzhou 450001 , P. R. China
| | - Weiqiang Song
- School of Materials Science and Engineering , Henan University of Technology , Zhengzhou 450001 , P. R. China
| | - Chunlong Guan
- School of Materials Science and Engineering , Henan University of Technology , Zhengzhou 450001 , P. R. China
| |
Collapse
|
10
|
Ge C, Chen J, Tang S, Du Y, Tang N. Review of the Electronic, Optical, and Magnetic Properties of Graphdiyne: From Theories to Experiments. ACS APPLIED MATERIALS & INTERFACES 2019; 11:2707-2716. [PMID: 29701448 DOI: 10.1021/acsami.8b03413] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Graphdiyne (GDY), a two-dimensional artificial-synthesis carbon material, has aroused tremendous interest because of its unique physical properties. The very high activity affords the possibility to chemically dope GDY with metal atoms or lightweight elements such as hydrogen and halogen and so on. Chemical doping has been confirmed to be an effective method to lead to various GDY derivatives with useful physical properties. Thus, this review is intended to provide an overview of the electronic, optical, and magnetic properties of pristine GDY and its derivatives reported from theories to experiments. Because of the importance of pristine GDY and its derivatives in real applications, we also summarize the main physical applications of GDY and its derivatives reported in recent years in this review. We believe that the review will be valuable to all those interested in GDY.
Collapse
Affiliation(s)
- Chuannan Ge
- National Laboratory of Solid State Microstructures, Jiangsu Provincial Key Laboratory for Nanotechnology , Nanjing University , Nanjing 210093 , China
- School of Physics & Electronic Engineering , Jiangsu Second Normal University , Nanjing 210013 , China
| | - Jie Chen
- National Laboratory of Solid State Microstructures, Jiangsu Provincial Key Laboratory for Nanotechnology , Nanjing University , Nanjing 210093 , China
| | - Shaolong Tang
- National Laboratory of Solid State Microstructures, Jiangsu Provincial Key Laboratory for Nanotechnology , Nanjing University , Nanjing 210093 , China
| | - Youwei Du
- National Laboratory of Solid State Microstructures, Jiangsu Provincial Key Laboratory for Nanotechnology , Nanjing University , Nanjing 210093 , China
| | - Nujiang Tang
- National Laboratory of Solid State Microstructures, Jiangsu Provincial Key Laboratory for Nanotechnology , Nanjing University , Nanjing 210093 , China
| |
Collapse
|
11
|
Zhou Y, Hou D, Manzano H, Orozco CA, Geng G, Monteiro PJM, Liu J. Interfacial Connection Mechanisms in Calcium-Silicate-Hydrates/Polymer Nanocomposites: A Molecular Dynamics Study. ACS APPLIED MATERIALS & INTERFACES 2017; 9:41014-41025. [PMID: 29076343 DOI: 10.1021/acsami.7b12795] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Properties of organic/inorganic composites can be highly dependent on the interfacial connections. In this work, molecular dynamics, using pair-potential-based force fields, was employed to investigate the structure, dynamics, and stability of interfacial connections between calcium-silicate-hydrates (C-S-H) and organic functional groups of three different polymer species. The calculation results suggest that the affinity between C-S-H and polymers is influenced by the polarity of the functional groups and the diffusivity and aggregation tendency of the polymers. In the interfaces, the calcium counterions from C-S-H act as the coordination atoms in bridging the double-bonded oxygen atoms in the carboxyl groups (-COOH), and the Ca-O connection plays a dominant role in binding poly(acrylic acid) (PAA) due to the high bond strength defined by time-correlated function. The defective calcium-silicate chains provide significant numbers of nonbridging oxygen sites to accept H-bonds from -COOH groups. As compared with PAA, the interfacial interactions are much weaker between C-S-H and poly(vinyl alcohol) (PVA) or poly(ethylene glycol) (PEG). Predominate percentage of the -OH groups in the PVA form H-bonds with inter- and intramolecule, which results in the polymer intertwining and reduces the probability of H-bond connections between PVA and C-S-H. On the other hand, the inert functional groups (C-O-C) in poly(ethylene glycol) (PEG) make this polymer exhibit unfolded configurations and move freely with little restrictions. The interaction mechanisms interpreted in this organic-inorganic interface can give fundamental insights into the polymer modification of C-S-H and further implications to improving cement-based materials from the genetic level.
Collapse
Affiliation(s)
- Yang Zhou
- School of Materials Science and Engineering, Southeast University , Nanjing 211189, China
- Department of Civil and Environmental Engineering, University of California , Berkeley, California 94720, United States
- State Key Laboratory of High Performance Civil Engineering Materials, Jiangsu Research Institute of Building Science Co. , Nanjing 211103, China
| | - Dongshuai Hou
- School of Civil Engineering, Qingdao Technological University , Qingdao 266033, China
| | - Hegoi Manzano
- Department of Condensed Matter Physics, University of the Basque Country UPV/EHU , Barrio Sarriena s/n, 48960 Leioa, Spain
| | - Carlos A Orozco
- Department of Civil and Environmental Engineering, University of California , Berkeley, California 94720, United States
| | - Guoqing Geng
- Department of Civil and Environmental Engineering, University of California , Berkeley, California 94720, United States
| | - Paulo J M Monteiro
- Department of Civil and Environmental Engineering, University of California , Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States
| | - Jiaping Liu
- School of Materials Science and Engineering, Southeast University , Nanjing 211189, China
| |
Collapse
|
12
|
Dang Y, Guo W, Zhao L, Zhu H. Porous Carbon Materials Based on Graphdiyne Basis Units by the Incorporation of the Functional Groups and Li Atoms for Superior CO 2 Capture and Sequestration. ACS APPLIED MATERIALS & INTERFACES 2017; 9:30002-30013. [PMID: 28809100 DOI: 10.1021/acsami.7b10836] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The graphdiyne family has attracted a high degree of concern because of its intriguing and promising properties. However, graphdiyne materials reported to date represent only a tiny fraction of the possible combinations. In this work, we demonstrate a computational approach to generate a series of conceivable graphdiyne-based frameworks (GDY-Rs and Li@GDY-Rs) by introducing a variety of functional groups (R = -NH2, -OH, -COOH, and -F) and doping metal (Li) in the molecular building blocks of graphdiyne without restriction of experimental conditions and rapidly screen the best candidates for the application of CO2 capture and sequestration (CCS). The pore topology and morphology and CO2 adsorption and separation properties of these frameworks are systematically investigated by combining density functional theory (DFT) and grand canonical Monte Carlo (GCMC) simulations. On the basis of our computer simulations, combining Li-doping and hydroxyl groups strategies offer an unexpected synergistic effect for efficient CO2 capture with an extremely CO2 uptake of 4.83 mmol/g at 298 K and 1 bar. Combined with its superior selectivity (13 at 298 K and 1 bar) for CO2 over CH4, Li@GDY-OH is verified to be one of the most promising materials for CO2 capture and separation.
Collapse
Affiliation(s)
- Yong Dang
- College of Science, China University of Petroleum , Qingdao, Shandong 266580, PR China
| | - Wenyue Guo
- College of Science, China University of Petroleum , Qingdao, Shandong 266580, PR China
| | - Lianming Zhao
- College of Science, China University of Petroleum , Qingdao, Shandong 266580, PR China
| | - Houyu Zhu
- College of Science, China University of Petroleum , Qingdao, Shandong 266580, PR China
| |
Collapse
|