1
|
He Z, Yang J, Liu L. Design of Supported Metal Catalysts and Systems for Propane Dehydrogenation. JACS AU 2024; 4:4084-4109. [PMID: 39610729 PMCID: PMC11600159 DOI: 10.1021/jacsau.4c00730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 11/30/2024]
Abstract
Propane dehydrogenation (PDH) is currently an approach for the production of propylene with high industrial importance, especially in the context of the shale gas revolution and the growing global demands for propylene and downstream commodity chemicals. In this Perspective article, we comprehensively summarize the recent advances in the design of advanced catalysts for PDH and the new understanding of the structure-performance relationship in supported metal catalysts. Furthermore, we discuss the gaps between fundamental research and practical industrial applications in the catalyst developments for the PDH process. In particular, we overview some critical issues regarding catalyst regeneration and the compatibility of the catalyst and reactor design. Finally, we make perspectives on the future directions of PDH research, including the efforts toward achieving a unified understanding of the structure-performance relationship, innovation in reactor engineering, and translation of the knowledge accumulated on PDH studies to other important alkane dehydrogenation reactions.
Collapse
Affiliation(s)
- Zhe He
- Engineering Research Center of Advanced
Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jingnan Yang
- Engineering Research Center of Advanced
Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Lichen Liu
- Engineering Research Center of Advanced
Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
2
|
Wang Q, Chen H, He F, Liu Q, Xu N, Fan L, Wang C, Zhang L, Zhou R. High-Performance FAU Zeolite Membranes Derived from Nano-Seeds for Gas Separation. MEMBRANES 2023; 13:858. [PMID: 37999344 PMCID: PMC10672818 DOI: 10.3390/membranes13110858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/17/2023] [Accepted: 10/21/2023] [Indexed: 11/25/2023]
Abstract
In this study, high-performance FAU (NaY type) zeolite membranes were successfully synthesized using small-sized seeds of 50 nm, and their gas separation performance was systematically evaluated. Employing nano-sized NaY seeds and an ultra-dilute reaction solution with a molar composition of 80 Na2O: 1Al2O3: 19 SiO2: 5000H2O, the effects of synthesis temperature, crystallization time, and porous support (α-Al2O3 or mullite) on the formation of FAU membranes were investigated. The results illustrated that further extending the crystallization time or increasing the synthesis temperature led to the formation of a NaP impurity phase on the FAU membrane layer. The most promising FAU membrane with a thickness of 2.7 µm was synthesized on an α-Al2O3 support at 368 K for 8 h and had good reproducibility. The H2 permeance of the membrane was as high as 5.34 × 10-7 mol/(m2 s Pa), and the H2/C3H8 and H2/i-C4H10 selectivities were 183 and 315, respectively. The C3H6/C3H8 selectivity of the membrane was as high as 46, with a remarkably high C3H6 permeance of 1.35 × 10-7 mol/(m2 s Pa). The excellent separation performance of the membrane is mainly attributed to the thin, defect-free membrane layer and the relatively wide pore size (0.74 nm).
Collapse
Affiliation(s)
- Qing Wang
- School of Energy, Materials and Chemical Engineering, Hefei University, Hefei 230601, China; (H.C.); (F.H.); (Q.L.); (N.X.); (L.F.); (L.Z.)
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Huiyuan Chen
- School of Energy, Materials and Chemical Engineering, Hefei University, Hefei 230601, China; (H.C.); (F.H.); (Q.L.); (N.X.); (L.F.); (L.Z.)
| | - Feiyang He
- School of Energy, Materials and Chemical Engineering, Hefei University, Hefei 230601, China; (H.C.); (F.H.); (Q.L.); (N.X.); (L.F.); (L.Z.)
| | - Qiao Liu
- School of Energy, Materials and Chemical Engineering, Hefei University, Hefei 230601, China; (H.C.); (F.H.); (Q.L.); (N.X.); (L.F.); (L.Z.)
| | - Nong Xu
- School of Energy, Materials and Chemical Engineering, Hefei University, Hefei 230601, China; (H.C.); (F.H.); (Q.L.); (N.X.); (L.F.); (L.Z.)
| | - Long Fan
- School of Energy, Materials and Chemical Engineering, Hefei University, Hefei 230601, China; (H.C.); (F.H.); (Q.L.); (N.X.); (L.F.); (L.Z.)
| | - Chuyan Wang
- School of Biological Food and Environment, Hefei University, Hefei 230601, China;
| | - Lingyun Zhang
- School of Energy, Materials and Chemical Engineering, Hefei University, Hefei 230601, China; (H.C.); (F.H.); (Q.L.); (N.X.); (L.F.); (L.Z.)
| | - Rongfei Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
| |
Collapse
|
3
|
Peng L, Gu P, Du P, Zhang C, Gu X. Hydrogen-permeable DDR zeolite membrane packed with Zn/HZSM-5 catalyst for methane co-aromatization with ethylene. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
4
|
Wu J, Wu H, Wang B, Zhou R, Xing W. One-Step Scalable Fabrication of Highly Selective Monolithic Zeolite MFI Membranes for Efficient Butane Isomer Separation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:21198-21206. [PMID: 35475613 DOI: 10.1021/acsami.2c02456] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The reproducible fabrication of large-area zeolite membranes for gas separation is still a great challenge. We report the scalable fabrication of high-performance zeolite MFI membranes by single-step secondary growth on the 19-channel alumina monoliths for the first time. The packing density and mechanical strength of the monolithic membranes are much higher for these than for tubular ones. Separation performance of the monolithic membranes toward the butane isomer mixture was comparably evaluated using the vacuum and Wicke-Kallenbach modes. The n-butane permeances and n-butane/i-butane separation factors for the three membranes with an effective area of ∼84 cm2 were >1.0 × 10-7 mol (m2 s Pa)-1 and >50 at 343 K for an equimolar n-butane/i-butane mixture, respectively. We succeeded in scaling up the membrane synthesis with the largest area of 270 cm2 to date which has 1.3 times the area of an industrial 1 m long tubular membrane. Monolith supported zeolite MFI membranes show great potential for industrial n-butane/i-butane separation.
Collapse
Affiliation(s)
- Jiyang Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, P. R. China
| | - Haolin Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, P. R. China
| | - Bin Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, P. R. China
| | - Rongfei Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, P. R. China
| | - Weihong Xing
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, P. R. China
| |
Collapse
|
5
|
Rao W, Yuan J, Tang X, Lin K, Xu X, Xia H, Jiang Y, Zheng A, Liu Z. Diffusive Skin Effect in Zeolites. J Phys Chem Lett 2022; 13:2808-2813. [PMID: 35319210 DOI: 10.1021/acs.jpclett.2c00285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Effective contact and collision between reactants and active sites are essential for heterogeneous catalysis. Herein, we investigated molecular diffusion in more than 200 kinds of zeolites, and an intriguing "diffusive skin effect" was observed, whereby molecules migrated along the pore walls of zeolites (i.e., diffusion trajectories) because of the effect of the guest-host interaction and diffusion barrier. Furthermore, it was found that such a "diffusive skin effect" of zeolites would strongly promote the contacts and collisions between reactants and active sites in the reaction process, which might effectively promote the zeolite-catalyzed performance. These new findings will provide some new fundamental understanding of zeolite catalytic mechanisms under confinement effect.
Collapse
Affiliation(s)
- Wei Rao
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 15000, P.R. China
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P.R. China
| | - Jiamin Yuan
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Xiaomin Tang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P.R. China
| | - Kaifeng Lin
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 15000, P.R. China
| | - Xianzhu Xu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 15000, P.R. China
| | - Hongqiang Xia
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan750021, P.R. China
| | - Yanqiu Jiang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 15000, P.R. China
| | - Anmin Zheng
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P.R. China
| | - Zhiqiang Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P.R. China
| |
Collapse
|
6
|
Yuan Y, Lobo RF. Propane dehydrogenation over extra-framework In(i) in chabazite zeolites. Chem Sci 2022; 13:2954-2964. [PMID: 35382476 PMCID: PMC8905846 DOI: 10.1039/d1sc05866e] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 02/03/2022] [Indexed: 11/29/2022] Open
Abstract
Indium on silica, alumina and zeolite chabazite (CHA), with a range of In/Al ratios and Si/Al ratios, have been investigated to understand the effect of the support on indium speciation and its corresponding influence on propane dehydrogenation (PDH). It is found that In2O3 is formed on the external surface of the zeolite crystal after the addition of In(NO3)3 to H-CHA by incipient wetness impregnation and calcination. Upon reduction in H2 gas (550 °C), indium displaces the proton in Brønsted acid sites (BASs), forming extra-framework In+ species (In-CHA). A stoichiometric ratio of 1.5 of formed H2O to consumed H2 during H2 pulsed reduction experiments confirms the indium oxidation state of +1. The reduced indium is different from the indium species observed on samples of 10In/SiO2, 10In/Al2O3 (i.e., 10 wt% indium) and bulk In2O3, in which In2O3 was reduced to In(0), as determined from the X-ray diffraction patterns of the product, H2 temperature-programmed reduction (H2-TPR) profiles, pulse reactor investigations and in situ transmission FTIR spectroscopy. The BASs in H-CHA facilitate the formation and stabilization of In+ cations in extra-framework positions, and prevent the deep reduction of In2O3 to In(0). In+ cations in the CHA zeolite can be oxidized with O2 to form indium oxide species and can be reduced again with H2 quantitatively. At comparable conversion, In-CHA shows better stability and C3H6 selectivity (∼85%) than In2O3, 10In/SiO2 and 10In/Al2O3, consistent with a low C3H8 dehydrogenation activation energy (94.3 kJ mol-1) and high C3H8 cracking activation energy (206 kJ mol-1) in the In-CHA catalyst. A high Si/Al ratio in CHA seems beneficial for PDH by decreasing the fraction of CHA cages containing multiple In+ cations. Other small-pore zeolite-stabilized metal cation sites could form highly stable and selective catalysts for this and facilitate other alkane dehydrogenation reactions.
Collapse
Affiliation(s)
- Yong Yuan
- Center for Catalytic Science and Technology, Department of Chemical and Biomolecular Engineering, University of Delaware Newark Delaware 19716 USA
| | - Raul F Lobo
- Center for Catalytic Science and Technology, Department of Chemical and Biomolecular Engineering, University of Delaware Newark Delaware 19716 USA
| |
Collapse
|
7
|
High-temperature hydrogen/propane separations in asymmetric carbon molecular sieve hollow fiber membranes. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.119978] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
8
|
Jeong Y, Kim S, Lee M, Hong S, Jang MG, Choi N, Hwang KS, Baik H, Kim JK, Yip ACK, Choi J. A Hybrid Zeolite Membrane-Based Breakthrough for Simultaneous CO 2 Capture and CH 4 Upgrading from Biogas. ACS APPLIED MATERIALS & INTERFACES 2022; 14:2893-2907. [PMID: 34985249 DOI: 10.1021/acsami.1c21277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Biogas is an environmentally friendly and sustainable energy resource that can substitute or complement conventional fossil fuels. For practical uses, biogas upgrading, mainly through the effective separation of CO2 (0.33 nm) and CH4 (0.38 nm), is required to meet the approximately 90-95% purity of CH4, while CO2 should be concomitantly purified. In this study, a high CO2 perm-selective zeolite membrane was synthesized by heteroepitaxially growing a chabazite (CHA) zeolite seed layer with a synthetic precursor that allowed the formation of all-silica deca-dodecasil 3 rhombohedral (DDR) zeolite (with a pore size of 0.36 × 0.44 nm2). The resulting hydrophobic DDR@CHA hybrid membrane on an asymmetric α-Al2O3 tube was thin (ca. 2 μm) and continuous, thus providing both high flux and permselectivity for CO2 irrespective of the presence or absence of water vapor (the third largest component in the biogas streams). To the best of our knowledge, the CO2 permeance of (2.9 ± 0.3) × 10-7 mol m-2 s-1 Pa-1 and CO2/CH4 separation factor of ca. 274 ± 73 at a saturated water vapor partial pressure of ca. 12 kPa at 50 °C have the highest CO2/CH4 separation performance yet achieved. Furthermore, we explored the membrane module properties of the hybrid membrane in terms of the recovery and purity of both CO2 and CH4 under dry and wet conditions. Despite the high intrinsic membrane properties of the current hybrid membrane, reflected by the high permeance and SF, the corresponding module properties indicated that high-performance separation of CO2 and CH4 for the desired biogas upgrading was achieved at a limited processing capacity. This supports the importance of understanding the correlation between the membrane and module properties, as this will provide guidance for the optimal operating conditions.
Collapse
Affiliation(s)
- Yanghwan Jeong
- Department of Chemical & Biological Engineering, College of Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Sejin Kim
- Department of Chemical & Biological Engineering, College of Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Minseong Lee
- Department of Chemical & Biological Engineering, College of Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Sungwon Hong
- Department of Chemical & Biological Engineering, College of Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Mun-Gi Jang
- Department of Chemical Engineering, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Nakwon Choi
- Center for BioMicrosystems, Brain Science Institute, Korea Institute of Science and Technology (KIST), Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Kyo Seon Hwang
- Department of Clinical Pharmacology and Therapeutics, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hionsuck Baik
- Korea Basic Science Institute (KBSI), Seoul Center, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Jin-Kuk Kim
- Department of Chemical Engineering, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Alex C K Yip
- Department of Chemical and Process Engineering, University of Canterbury, Christchurch 8140, New Zealand
| | - Jungkyu Choi
- Department of Chemical & Biological Engineering, College of Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| |
Collapse
|
9
|
Ishii K, Nagataki Y, Yoshiura J, Saito Y, Nagataki T, Nomura M. Development of Hydrogen Permselective Membranes for Propylene Production. JOURNAL OF CHEMICAL ENGINEERING OF JAPAN 2021. [DOI: 10.1252/jcej.20we082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Katsunori Ishii
- Department of Applied Chemistry, Shibaura Institute of Technology
| | - Yuhei Nagataki
- Department of Applied Chemistry, Shibaura Institute of Technology
| | - Junko Yoshiura
- Department of Applied Chemistry, Shibaura Institute of Technology
| | - Yuta Saito
- Department of Applied Chemistry, Shibaura Institute of Technology
| | - Takaya Nagataki
- Department of Applied Chemistry, Shibaura Institute of Technology
| | - Mikihiro Nomura
- Department of Applied Chemistry, Shibaura Institute of Technology
| |
Collapse
|
10
|
Miyazaki T, Nagasawa H, Tsuru T, Kanezashi M. Design of a SiOC network structure with oxidation stability and application to hydrogen separation membranes at high temperatures. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
11
|
Chen J, Pan B, Wang B, Ling Y, Fu K, Zhou R, Zhong Z, Xing W. Hydrothermal Synthesis of a Pt/SAPO-34@SiC Catalytic Membrane for the Simultaneous Removal of NO and Particulate Matter. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.9b06300] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jiahao Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, National Engineering Research Center for Special Separation Membrane, Nanjing Tech University, Nanjing 210009, China
- College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Bing Pan
- State Key Laboratory of Materials-Oriented Chemical Engineering, National Engineering Research Center for Special Separation Membrane, Nanjing Tech University, Nanjing 210009, China
- College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Bin Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, National Engineering Research Center for Special Separation Membrane, Nanjing Tech University, Nanjing 210009, China
- College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Yujie Ling
- College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Kai Fu
- College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Rongfei Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, National Engineering Research Center for Special Separation Membrane, Nanjing Tech University, Nanjing 210009, China
| | - Zhaoxiang Zhong
- State Key Laboratory of Materials-Oriented Chemical Engineering, National Engineering Research Center for Special Separation Membrane, Nanjing Tech University, Nanjing 210009, China
| | - Weihong Xing
- State Key Laboratory of Materials-Oriented Chemical Engineering, National Engineering Research Center for Special Separation Membrane, Nanjing Tech University, Nanjing 210009, China
| |
Collapse
|
12
|
Limlamthong M, Yip ACK. Recent advances in zeolite-encapsulated metal catalysts: A suitable catalyst design for catalytic biomass conversion. BIORESOURCE TECHNOLOGY 2020; 297:122488. [PMID: 31796381 DOI: 10.1016/j.biortech.2019.122488] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/09/2019] [Accepted: 11/12/2019] [Indexed: 06/10/2023]
Abstract
Metal clusters and nanoparticles, which have been used to tune the acidity of zeolite support, are beneficial for promoting the catalytic performance of various reaction processes, including biomass conversion. However, catalytic instabilities resulting from metal coalescence, sintering and leaching are major problems that need to be resolved. Therefore, metal encapsulation within the zeolite structure has been proposed as a feasible solution for this issue, particularly for biomass conversions that require high temperatures. In this current review, recent developments in metal confinement techniques are described along with experimental examples of biomass upgrading reactions. The present and future perspectives of zeolite-encapsulated metal catalysts in biomass conversions are also given.
Collapse
Affiliation(s)
- Mutjalin Limlamthong
- Department of Chemical and Process Engineering, The University of Canterbury, Christchurch 8041, New Zealand
| | - Alex C K Yip
- Department of Chemical and Process Engineering, The University of Canterbury, Christchurch 8041, New Zealand.
| |
Collapse
|
13
|
Zeng G, Wang Y, Gong D, Zhang Y, Wu P, Sun Y. Dual-Role Membrane as NH 3 Permselective Reactor and Azeotrope Separator in Urea Alcoholysis. ACS CENTRAL SCIENCE 2019; 5:1834-1843. [PMID: 31807685 PMCID: PMC6891847 DOI: 10.1021/acscentsci.9b00812] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Indexed: 06/10/2023]
Abstract
Urea methanolysis is a green alternative to synthesize dimethyl carbonate (UM-to-DMC). However, it is strongly challenged by the generated NH3 induced thermodynamic equilibrium limitation and the azeotropic products' separation. Herein, these predicaments are well-relieved by introducing membranes in both reaction and product separation. An NH3 permselective membrane reactor (MR) based on modified SAPO-34 membrane is successfully realized for UM-to-DMC. The permselectivity and acidity of the SAPO-34 membrane are significantly adjusted to cater the strict molecular sieving of NH3/methanol and chemical inertness upon the reaction. The MR exhibits excellent reactant conversion and DMC selectivity, resulting in >139% higher DMC yield than that of the nonmembrane reactor, due to in situ removal of NH3 by the membrane. The MR also demonstrates reliable chemical, thermal, and mechanical stability during >2000 h. Moreover, the regular SAPO-34 membrane with controlled thickness presents remarkable separation performance for the methanol-DMC azeotrope, in which the methanol-DMC separation factors and the methanol permeance are 1-2 orders of magnitude higher than those of the polymeric membranes. This study suggests the great potential that integration of such membranes offers for process intensification, energy savings, and efficiency improvement in a series of urea alcoholysis and even other NH3 releasing reactions.
Collapse
Affiliation(s)
- Gaofeng Zeng
- CAS
Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese
Academy of Sciences, 100 Haike Road, Shanghai 201210, China
| | - Yue Wang
- CAS
Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese
Academy of Sciences, 100 Haike Road, Shanghai 201210, China
- School
of Chemical Sciences, University of Chinese
Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Dian Gong
- CAS
Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese
Academy of Sciences, 100 Haike Road, Shanghai 201210, China
- School
of Chemical Sciences, University of Chinese
Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Yanfeng Zhang
- CAS
Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese
Academy of Sciences, 100 Haike Road, Shanghai 201210, China
| | - Ping Wu
- CAS
Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese
Academy of Sciences, 100 Haike Road, Shanghai 201210, China
| | - Yuhan Sun
- CAS
Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese
Academy of Sciences, 100 Haike Road, Shanghai 201210, China
- School
of Physical Science and Technology, ShanghaiTech
University, 393 Mid Huaxia
Road, Shanghai 201210, China
| |
Collapse
|
14
|
General Aspects on Structure and Reactivity of Framework and Extra-framework Metals in Zeolite Materials. STRUCTURE AND BONDING 2018. [DOI: 10.1007/430_2017_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
15
|
Zhu Q, Wang G, Liu J, Su L, Li C. Effect of Sn on Isobutane Dehydrogenation Performance of Ni/SiO 2 Catalyst: Adsorption Modes and Adsorption Energies of Isobutane and Isobutene. ACS APPLIED MATERIALS & INTERFACES 2017; 9:30711-30721. [PMID: 28805375 DOI: 10.1021/acsami.7b09482] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The reaction of isobutane over Ni/SiO2 catalyst changes from hydrogenolysis to dehydrogenation when Sn is introduced. The adsorption modes and energies of isobutane and isobutene over the Ni/SiO2 catalyst with and without Sn addition were determined by in situ FTIR and a novel transient response adsorption approach. In the absence of Sn, isobutane is adsorbed in a double-site mode with H atoms in two methyl groups of isobutane, facilitating hydrogenolysis of isobutane. After the addition of Sn, a single-site adsorption mode with the H atom in the methylidyne group is speculated instead, which is beneficial to the rupture of the C-H bond rather than the C-C bond. Moreover, the double-site adsorption mode of isobutene with the C═C bond and the H atom in a methyl group is turned into single-site mode with the C═C bond after the introduction of Sn. As for the adsorption energy of isobutene, the introduction of Sn leads to an obvious decrease from 74 to 50 kJ mol-1 and facilitates the prompt desorption of isobutene, resulting in a high selectivity of 81.9 wt %.
Collapse
Affiliation(s)
- Qingqing Zhu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum , Qingdao, 266580, China
| | - Guowei Wang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum , Qingdao, 266580, China
| | - Jianwei Liu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum , Qingdao, 266580, China
| | - Lushu Su
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum , Qingdao, 266580, China
| | - Chunyi Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum , Qingdao, 266580, China
| |
Collapse
|