1
|
Jin H, Liu M, Wang L, You W, Pei K, Cheng HW, Che R. Design and fabrication of 1D nanomaterials for electromagnetic wave absorption. Natl Sci Rev 2025; 12:nwae420. [PMID: 39830391 PMCID: PMC11737396 DOI: 10.1093/nsr/nwae420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/25/2024] [Accepted: 11/20/2024] [Indexed: 01/22/2025] Open
Abstract
The design and fabrication of high-performance electromagnetic wave (EMW) absorbing materials are essential in developing electronic communication technology for defense and civilian applications. These materials function by interacting with EMWs, creating various effects such as polarization relaxation, magnetic resonance, and magnetic hysteresis in order to absorb EMWs. Significant progress has been made to improve the dimensional performance of such materials, emphasizing the 'thin, light, broad, and strong' functional specifications. One-dimensional (1D) nanostructures are characterized by high surface area, low density, and unique electromagnetic properties, providing promising solutions to address some of the challenges in facilitating multiple reflections and wideband resonances, which are crucial for effective EMW attenuation. This paper provides an overview of recent advances in exploring 1D structures for enhancing EMW absorption and their controllability. The design and fabrication of nanofibers, nanowires, and other 1D nanostructures are highlighted. The advantages of 1D nanomaterials in EMW absorption are also described. Challenges and future directions are discussed, focusing on developing new design concepts and fabrication methods for achieving high-performance and lightweight EMW absorbers and enhancing fundamental understanding of EMW absorption mechanisms.
Collapse
Affiliation(s)
- Hongdu Jin
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Department of Materials Science, Academy for Engineering & Technology, Fudan University, Shanghai 200438, China
| | - Min Liu
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Department of Materials Science, Academy for Engineering & Technology, Fudan University, Shanghai 200438, China
| | - Lei Wang
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Department of Materials Science, Academy for Engineering & Technology, Fudan University, Shanghai 200438, China
| | - Wenbin You
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Department of Materials Science, Academy for Engineering & Technology, Fudan University, Shanghai 200438, China
| | - Ke Pei
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Department of Materials Science, Academy for Engineering & Technology, Fudan University, Shanghai 200438, China
| | - Han-Wen Cheng
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Department of Materials Science, Academy for Engineering & Technology, Fudan University, Shanghai 200438, China
| | - Renchao Che
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Department of Materials Science, Academy for Engineering & Technology, Fudan University, Shanghai 200438, China
- College of Physics, Donghua University, Shanghai 201620, China
- School of Materials Science & Engineering, Tongji University, Shanghai 201804, China
| |
Collapse
|
2
|
Zhang S, Zhang S, Zhu P, Li J, Li Y, Zhou C, Qiu Q, Jing X, Paik KW, He P. Recent achievements and performance of nanomaterials in microwave absorption and electromagnetic shielding. Adv Colloid Interface Sci 2024; 335:103336. [PMID: 39547126 DOI: 10.1016/j.cis.2024.103336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 10/03/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024]
Abstract
Due to the swift advancement of the electronic industry and information technology, electromagnetic wave absorption materials are gaining significance in the field of intelligent equipment and weaponry. Nanomaterials were developed to investigate wave absorbing materials that can achieve both impedance matching and attenuation balance. Nanomaterials possess the properties of being thin, lightweight, and capable of absorbing microwave radiation across a wide range of frequencies. This work aims to present a systematic overview of the recent advancements in core-shell materials, specifically carbon, oxide, and sulfide nanomaterials, with regards to their applications in electromagnetic absorption and electromagnetic shielding. This review intends to emphasize the core principles of electromagnetic interference (EMI) shielding and microwave absorption in different systems documented in the literature, along with diverse methods of synthesis and fabrication for creating effective wideband electromagnetic absorbers/shields. Lastly, we also endeavor to offer a comprehensive view and insight into the areas where future research will thrive. This study provides a comprehensive assessment of the current advancements in the field of microwave absorption and electromagnetic shielding of nanomaterials.
Collapse
Affiliation(s)
- Shuai Zhang
- State Key Laboratory of Precision Welding & Joining of Materials and Structures, Harbin Institute of Technology, Harbin 150001, China
| | - Shuye Zhang
- State Key Laboratory of Precision Welding & Joining of Materials and Structures, Harbin Institute of Technology, Harbin 150001, China; Chongqing Research Institute, Harbin Institute of Technology, Chongqing 401135, China.
| | - Pengyu Zhu
- State Key Laboratory of Precision Welding & Joining of Materials and Structures, Harbin Institute of Technology, Harbin 150001, China
| | - Jiayi Li
- State Key Laboratory of Precision Welding & Joining of Materials and Structures, Harbin Institute of Technology, Harbin 150001, China
| | - Yifei Li
- State Key Laboratory of Precision Welding & Joining of Materials and Structures, Harbin Institute of Technology, Harbin 150001, China
| | - Chenglong Zhou
- State Key Laboratory of Precision Welding & Joining of Materials and Structures, Harbin Institute of Technology, Harbin 150001, China
| | - Qingyang Qiu
- State Key Laboratory of Precision Welding & Joining of Materials and Structures, Harbin Institute of Technology, Harbin 150001, China
| | - Xinyi Jing
- State Key Laboratory of Precision Welding & Joining of Materials and Structures, Harbin Institute of Technology, Harbin 150001, China
| | - Kyung-Wook Paik
- Department of Materials Science and Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 305-338, Republic of Korea
| | - Peng He
- State Key Laboratory of Precision Welding & Joining of Materials and Structures, Harbin Institute of Technology, Harbin 150001, China; Chongqing Research Institute, Harbin Institute of Technology, Chongqing 401135, China.
| |
Collapse
|
3
|
Malakar A, Mandal S, Sen Gupta R, Kashyap V, Raj R, Manna K, Bose S. 'Donor-acceptor', 'interpenetrating polymer network' and 'electrostatic self-assembly' work in tandem to achieve extraordinary specific shielding effectiveness. NANOSCALE 2024; 16:15343-15357. [PMID: 39087876 DOI: 10.1039/d4nr02008a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
The exploration of 'electrostatic self-assembly' on solid surfaces has garnered significant interest across various fields. With the sophistication of gadgets, managing electromagnetic interference (EMI) from stray signals, especially in stealth applications, necessitates materials that can absorb microwaves. A promising approach involves integrating lightweight self-healing polymeric materials. This study employs electrostatic self-assembly to design a carbon nanotube structure on an interpenetrating polymer network (IPN) made of PVDF and bismaleimide (BMI)-grafted dopamine hydrochloride, enhancing mechanical integrity through well-formed IPNs. Graphene oxide (GO) is introduced before IPN formation to facilitate an 'acceptor-donor' interaction via the Diels-Alder adduct between BMI and GO, which binds with multi-walled carbon nanotubes (MWCNTs). MWCNTs, modified with PQ7 or PDDA for a positive charge, self-assemble onto the IPN-GO construct, creating a lightweight and chemically stable structure capable of absorbing electromagnetic radiation. The 21 μm thick construct exhibits enhanced microwave absorption within the X-band (8.2-12.4 GHz), with a specific shielding effectiveness of 8637 dB cm2 g-1 and a green index (gs ≈ 1.41). The construct is coated with self-healable polyetherimide (PEI) containing exchangeable disulfide bonds to address maintenance challenges, providing heat-triggered self-healing properties. These innovative structures offer solutions for 5G and IoT applications where lightweight, durable, and multifunctional properties are essential for effectively shielding electronic devices from stray signals.
Collapse
Affiliation(s)
- Amit Malakar
- Department of Materials Engineering, Indian Institute of Science, Bengaluru - 560012, India.
| | - Samir Mandal
- Department of Materials Engineering, Indian Institute of Science, Bengaluru - 560012, India.
| | - Ria Sen Gupta
- Department of Materials Engineering, Indian Institute of Science, Bengaluru - 560012, India.
| | - Vinod Kashyap
- Department of Materials Engineering, Indian Institute of Science, Bengaluru - 560012, India.
| | - Rishi Raj
- Department of Materials Engineering, Indian Institute of Science, Bengaluru - 560012, India.
| | - Kunal Manna
- Department of Materials Engineering, Indian Institute of Science, Bengaluru - 560012, India.
| | - Suryasarathi Bose
- Department of Materials Engineering, Indian Institute of Science, Bengaluru - 560012, India.
| |
Collapse
|
4
|
Guo S, Yu S, Chen F, Wang L, Guo M, Ren T, Zhang C, Li C. Direct methanol fuel cell with enhanced oxygen reduction performance enabled by CoFe alloys embedded into N-doped carbon nanofiber and bamboo-like carbon nanotube. J Colloid Interface Sci 2023; 652:429-439. [PMID: 37604054 DOI: 10.1016/j.jcis.2023.08.104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/12/2023] [Accepted: 08/16/2023] [Indexed: 08/23/2023]
Abstract
The exploration of cost-effective electrocatalysts with high catalytic activity and methanol tolerance to replace precious metal catalysts in the oxygen reduction reaction (ORR) is highly desirable for direct methanol fuel cells (DMFCs). Herein, we report a novel complex composed of a CoFe alloy with a modulated electronic structure confined to nitrogen-doped carbon nanofiber (NCNF) and bamboo-like carbon nanotube (BCNT) by tuning the molar ratio of Co and Fe (CoFe@NCNF/BCNT). The synthetized catalysts possess one-dimensional (1D) mesoporous structure, high specific surface area, and rich pyridinic-N content. Notably, the Co1Fe1@NCNF/BCNT and Co1Fe3@NCNF/BCNT (Co:Fe ≈ 1:1 and 1:3) exhibited enhanced oxygen reduction activity and methanol tolerance, compared to unmodified samples. In addition, alkaline DMFCs containing Co1Fe1@NCNF/BCNT and Co1Fe3@NCNF/BCNT presented high power density (29.10 and 31.11 mW cm-2), exceeding that of Pt/C-modified DMFC (27.23 mW cm-2). Furthermore, the Co1Fe1@NCNF/BCNT-catalyzed DMFC exhibited high stability. This improved catalytic activity can be attributed to the rich surface area, controllable alloy composition, optimized N configuration, and favorable electronic interaction. The as-developed CoFe@NCNF/BCNT with multifunctional components may open a new avenue for designing highly active cathode catalysts for various fuel cells.
Collapse
Affiliation(s)
- Shiquan Guo
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial pollutants, Beijing 100083, China; Energy Conservation and Environmental Protection Engineering Research Center in Universities of Beijing, Beijing 100083, China
| | - Shuyan Yu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial pollutants, Beijing 100083, China; Energy Conservation and Environmental Protection Engineering Research Center in Universities of Beijing, Beijing 100083, China
| | - Fei Chen
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial pollutants, Beijing 100083, China; Energy Conservation and Environmental Protection Engineering Research Center in Universities of Beijing, Beijing 100083, China
| | - Le Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial pollutants, Beijing 100083, China; Energy Conservation and Environmental Protection Engineering Research Center in Universities of Beijing, Beijing 100083, China
| | - Man Guo
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial pollutants, Beijing 100083, China; Energy Conservation and Environmental Protection Engineering Research Center in Universities of Beijing, Beijing 100083, China
| | - Tingli Ren
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial pollutants, Beijing 100083, China; Energy Conservation and Environmental Protection Engineering Research Center in Universities of Beijing, Beijing 100083, China
| | - Chong Zhang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial pollutants, Beijing 100083, China; Energy Conservation and Environmental Protection Engineering Research Center in Universities of Beijing, Beijing 100083, China
| | - Congju Li
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial pollutants, Beijing 100083, China; Energy Conservation and Environmental Protection Engineering Research Center in Universities of Beijing, Beijing 100083, China.
| |
Collapse
|
5
|
Nivedhitha DM, Jeyanthi S. Polyvinylidene fluoride—An advanced smart polymer for electromagnetic interference shielding applications—A novel review. POLYM ADVAN TECHNOL 2023. [DOI: 10.1002/pat.6015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
6
|
Malakar A, Mandal S, Sen Gupta R, Islam SS, Manna K, Bose S. Polyoxometalate-immobilized carbon nanotube constructs triggered by host-guest assembly result in excellent electromagnetic interference shielding. NANOSCALE 2023; 15:3805-3822. [PMID: 36723254 DOI: 10.1039/d2nr05428k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
In the era of fifth-generation networks and the Internet of Things, new classes of lightweight, ultrathin, and multifunctional electromagnetic interference (EMI) shielding materials have become inevitable prerequisites for the protection of electronics from stray electromagnetic signals. In the present study, for the first time, we have designed a unique nanohybrid composed of a copper-based polyoxometalate (Cu-POM)-immobilized carbon nanotube construct, having a micron (∼100 μm)-level thickness, through a facile vacuum-assisted filtration technique. In this course of study, a total of four Cu-POMs, two from each category of Keggin and Anderson bearing opposite charges, i.e., positive and negative, have been rationally selected to investigate the effects of the host-guest electrostatic interaction between CNT and POMs in the EMI shielding performance. This approach of the host-guest electrostatic assembly between Cu-based polyanionic oxo clusters and counter-charged CNTs in the construct synergistically enhances the EMI shielding performance compared to the individual components dominated by 90% absorption in the X-band (8.2-12.4 GHz) frequency regime. Further, mutable EMI SE can be achieved by tuning the concentration of POMs and CNTs with different weight ratios. Such Cu-POM-immobilized CNT constructs demonstrating excellent shielding (∼45 dB) are not amenable via any other conventional routes, including flakes and dispersion.
Collapse
Affiliation(s)
- Amit Malakar
- Department of Materials Engineering, Indian Institute of Science, Bangalore, India.
| | - Samir Mandal
- Department of Materials Engineering, Indian Institute of Science, Bangalore, India.
| | - Ria Sen Gupta
- Department of Materials Engineering, Indian Institute of Science, Bangalore, India.
| | - Sk Safikul Islam
- Department of Materials Engineering, Indian Institute of Science, Bangalore, India.
| | - Kunal Manna
- Department of Materials Engineering, Indian Institute of Science, Bangalore, India.
| | - Suryasarathi Bose
- Department of Materials Engineering, Indian Institute of Science, Bangalore, India.
| |
Collapse
|
7
|
Manna K, Sen Gupta R, Bose S. A universal approach to 'host' carbon nanotubes on a charge triggered 'guest' interpenetrating polymer network for excellent 'green' electromagnetic interference shielding. NANOSCALE 2023; 15:1373-1391. [PMID: 36594198 DOI: 10.1039/d2nr05626g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The widespread use of miniaturized electronic gadgets today faces stiff reliability obstacles from factors like stray electromagnetic signals. The challenge is to design lightweight shielding materials that combine small volume and high-frequency operations to reliably reduce/eliminate electromagnetic interference. Herein, in the first of its kind, a sequential interpenetrating polymeric network (IPN) membrane was used to host a CNT construct through a stimuli-responsive trigger. The proposed construct besides being robust, sustainable, and scalable is a universal approach to fabricate a CNT construct where conventional strategies are not amenable. This approach of self-assembling counter-charged CNTs also maximizes the number of CNTs in the final construct, thereby greatly enhancing the shielding performance dominated by 90% absorption in a wide frequency band of 8.2-26.5 GHz. The IPN-CNT construct achieves specific shielding effectiveness in the range of ca. 1607-5715 dB cm2 g-1 by tuning the thickness of the CNT construct with an endearing green index (gs ≈ 1.8). The performance of such an ultra-thin, light-weight IPN-CNT construct remained unchanged when subjected to 10 000 bending cycles and on exposure to different chemical environments, indicating outstanding mechanical/chemical stability.
Collapse
Affiliation(s)
- Kunal Manna
- Department of Materials Engineering, Indian Institute of Science, Bangalore, India.
| | - Ria Sen Gupta
- Department of Materials Engineering, Indian Institute of Science, Bangalore, India.
| | - Suryasarathi Bose
- Department of Materials Engineering, Indian Institute of Science, Bangalore, India.
| |
Collapse
|
8
|
Kim IY, Kim JW, Lee BJ, Lim JH. Fabrication and Characteristics of a Conductive FeCo@Au Nanowire Alloy for Semiconductor Test Socket Connectors. MATERIALS (BASEL, SWITZERLAND) 2022; 16:381. [PMID: 36614721 PMCID: PMC9821946 DOI: 10.3390/ma16010381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/26/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
The most promising approach for improving the electrical performance of connectors used in semiconductor test sockets involves increasing their electrical conductivity by incorporating one-dimensional (1D) conductive materials between zero-dimensional (0D) conductive materials. In this study, FeCo nanowires were synthesized by electroplating to prepare a material in which 1D materials could be magnetically aligned. Moreover, the nanowires were coated with highly conductive Au. The magnetization per unit mass of the synthesized FeCo and FeCo@Au nanowires was 167.2 and 13.9 emu/g, respectively. The electrical performance of rubber-based semiconductor connectors before and after the introduction of synthetic nanowires was compared, and it was found that the resistance decreased by 14%. The findings reported herein can be exploited to improve the conductivity of rubber-type semiconductor connectors, thereby facilitating the development of connectors using 0D and 1D materials.
Collapse
Affiliation(s)
- In Yea Kim
- Department of Materials Science and Engineering, Gachon University, 1342 Seongnamdearo 13120, Republic of Korea
| | - Jong Won Kim
- ISC Co., Ltd., 215 Galmachi-ro, Jungwon-gu, Seongnam-si 13217, Gyeonggi-do, Republic of Korea
| | - Byeung Ju Lee
- ISC Co., Ltd., 215 Galmachi-ro, Jungwon-gu, Seongnam-si 13217, Gyeonggi-do, Republic of Korea
| | - Jae-Hong Lim
- Department of Materials Science and Engineering, Gachon University, 1342 Seongnamdearo 13120, Republic of Korea
| |
Collapse
|
9
|
Zheng J, Zhang J, Lu F, Du Y, Cao D, Hu S, Yang Y, Yuan Z. Visualization of Polymer–Surfactant Interaction by Dual-Emissive Gold Nanocluster Labeling. BIOSENSORS 2022; 12:bios12090686. [PMID: 36140071 PMCID: PMC9496207 DOI: 10.3390/bios12090686] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022]
Abstract
Polymer-surfactant interaction decides the performance of corresponding complexes, making its rapid and intuitionistic visualization important for enhancing the performance of products and/or processing in related fields. In this study, the fluorescence visualization of the interaction between cationic hyperbranched polyethyleneimine and anionic sodium dodecyl sulfonate surfactant was realized by dual-emissive gold nanocluster labeling. The sensing mechanism was due to the interaction-induced polymer conformation change, which regulated the molecular structure and subsequent photoradiation process of the gold nanoclusters. All three inflection points of the interactions between the polymers and the surfactants were obtained by the change in fluorescence emission ratio of the designed dual-emissive gold nanoclusters. Moreover, these inflection points are verified by the hydrodynamic diameter and zeta potential measurements.
Collapse
Affiliation(s)
- Jiaojiao Zheng
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, College of Material Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jing Zhang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, College of Material Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Fengniu Lu
- Department of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yi Du
- Analysis Center, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Ding Cao
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, College of Material Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shui Hu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, College of Material Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yang Yang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
- Correspondence: (Y.Y.); (Z.Y.)
| | - Zhiqin Yuan
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, College of Material Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Correspondence: (Y.Y.); (Z.Y.)
| |
Collapse
|
10
|
Fallah R, Hosseinabadi S, Pourtaghi G. Influence of Fe 3O 4 and Carbon Black on the Enhanced Electromagnetic Interference (EMI) Shielding Effectiveness in the Epoxy Resin Matrix. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2022; 20:113-122. [PMID: 35669823 PMCID: PMC9163220 DOI: 10.1007/s40201-021-00759-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 11/08/2021] [Indexed: 05/14/2023]
Abstract
The present study aims to investigate the shielding properties of the electromagnetic interference of polymer nanocomposites with different weight percentages of magnetite nanoparticles and cost-effective carbon black nanoparticle (CBN) on different thicknesses. X-ray diffraction test, Raman spectroscopy, the scanning electron microscopy, and the transmission electron microscope analysis were used for investigating the crystallographic structure, morphology and microstructure of the material. The nanocomposites were successfully prepared using a simple mixing and casting. Their shielding efficiency was measured by a vector network analyzer (VNA) in the frequency range of 8.2 ~ 12.4 GHz. The maximum total shielding efficiency was 36.6 dB at 8.2 GHz for a weight percentage of 15% Fe3O4 composite and 50% CBN (0.7 mm thickness). The results showed that with an increase of nanocomposite thickness, there is a shift of absorption shielding efficiency peak toward a higher frequency. In addition, nanocomposites had the greatest shielding effectiveness in the low-frequency range. It was found that the proper combination of electrical and magnetic losses causes excellent wave absorption. These findings indicated that epoxy resin with a combination of optimal weight percentage of magnetite and carbon black nanoparticle can be used as a suitable shielding in low thickness.
Collapse
Affiliation(s)
- Rohollah Fallah
- Health Research Center, Lifestyle Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Sedigheh Hosseinabadi
- Research Center for Health Sciences and Technologies, School of Health, Semnan University of Medical Sciences, Semnan, Iran
| | - Gholamhossein Pourtaghi
- Health Research Center, Lifestyle Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Samireddi S, Aishwarya V, Shown I, Muthusamy S, Unni SM, Wong KT, Chen KH, Chen LC. Synergistic Dual-Atom Molecular Catalyst Derived from Low-Temperature Pyrolyzed Heterobimetallic Macrocycle-N4 Corrole Complex for Oxygen Reduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2103823. [PMID: 34665522 DOI: 10.1002/smll.202103823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 08/21/2021] [Indexed: 06/13/2023]
Abstract
A heterobimetallic corrole complex, comprising oxygen reduction reaction (ORR) active non-precious metals Co and Fe with a corrole-N4 center (PhFCC), is successfully synthesized and used to prepare a dual-atom molecular catalyst (DAMC) through subsequent low-temperature pyrolysis. This low-temperature pyrolyzed electrocatalyst exhibited impressive ORR performance, with onset potentials of 0.86 and 0.94 V, and half-wave potentials of 0.75 and 0.85 V, under acidic and basic conditions, respectively. During potential cycling, this DAMC displayed half-wave potential losses of only 25 and 5 mV under acidic and alkaline conditions after 3000 cycles, respectively, demonstrating its excellent stability. Single-cell Nafion-based proton exchange membrane fuel cell performance using this DAMC as the cathode catalyst showed a maximum power density of 225 mW cm-2 , almost close to that of most metal-N4 macrocycle-based catalysts. The present study showed that preservation of the defined CoN4 structure along with the cocatalytic Fe-Cx site synergistically acted as a dual ORR active center to boost overall ORR performance. The development of DAMC from a heterobimetallic CoN4-macrocyclic system using low-temperature pyrolysis is also advantageous for practical applications.
Collapse
Affiliation(s)
- Satyanarayana Samireddi
- CSIR-Central Electrochemical Research Institute, CSIR Madras Complex, Chennai, 600113, India
- Center for Condensed Matter Sciences, National Taiwan University, Taipei, 10617, Taiwan
| | - V Aishwarya
- CSIR-Central Electrochemical Research Institute, CSIR Madras Complex, Chennai, 600113, India
| | - Indrajit Shown
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 10617, Taiwan
- Department of Chemistry, Hindustan Institute of Technology and Science, Chennai, 603103, India
| | - Saravanakumar Muthusamy
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 10617, Taiwan
- Sustainable Chemical Science and Technology, Taiwan International Graduate Program, Academia Sinica, Taipei, 11529, Taiwan
| | - Sreekuttan M Unni
- CSIR-Central Electrochemical Research Institute, CSIR Madras Complex, Chennai, 600113, India
| | - Ken-Tsung Wong
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 10617, Taiwan
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan
| | - Kuei-Hsien Chen
- Center for Condensed Matter Sciences, National Taiwan University, Taipei, 10617, Taiwan
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 10617, Taiwan
| | - Li-Chyong Chen
- Center for Condensed Matter Sciences, National Taiwan University, Taipei, 10617, Taiwan
- Center of Atomic Initiative for New Materials, National Taiwan University, Taipei, 10617, Taiwan
| |
Collapse
|
12
|
Bhattacharjee Y, Bapari S, Bose S. Mechanically robust, UV screener core-double-shell nanostructures provide enhanced shielding for EM radiations over wide angle of incidence. NANOSCALE 2020; 12:15775-15790. [PMID: 32729884 DOI: 10.1039/d0nr02654a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Herein, we have designed and synthesized first of its kind core-double shell nano heterostructured materials in which primitive ferrite (Fe3O4) acts as a diffused shell around an amorphous conducting core (carbon nanosphere, CNS), separated by a dielectric spacer (SiO2). This material when composited with polyvinylidene difluoride (PVDF) showed an excellent electromagnetic interference (EMI) shielding effectiveness of -42 dB (>99.99% attenuation) having a 600 μm thick film and interestingly, shielding effectiveness remained unaltered even after repeated heat cycles at various service temperatures. Moreover, far-field testing revealed that over the 10-18 GHz range the antenna radiated ca. 85% of electromagnetic power even if it was shielded with the composite film containing the heterostructure, which indicated low-performance degradation of the antenna due to the presence of the shield. Intriguingly, these composites also showed excellent UV blocking (>99.996% blocking) performance. These core-double shell heterostructure nanocomposites showed enhanced Young's modulus (344%) and proof strength (173.6%) as compared to neat PVDF. Besides, these films are fairly durable as the shielding performance was not affected after being subjected to heating (up to high service temperature of 90 degrees), bending (10 000 cycles), and stretching cycles (200 cycles).
Collapse
Affiliation(s)
- Yudhajit Bhattacharjee
- Department of Materials Engineering, Indian Institute of Science, Bangalore - 560012, India.
| | - Sambit Bapari
- Department of Materials Engineering, Indian Institute of Science, Bangalore - 560012, India.
| | - Suryasarathi Bose
- Department of Materials Engineering, Indian Institute of Science, Bangalore - 560012, India.
| |
Collapse
|
13
|
Does the Type of Polymer and Carbon Nanotube Structure Control the Electromagnetic Shielding in Melt-Mixed Polymer Nanocomposites? JOURNAL OF COMPOSITES SCIENCE 2020. [DOI: 10.3390/jcs4010009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A suitable polymer matrix and well dispersed conducting fillers forming an electrically conducting network are the prime requisites for modern age electromagnetic shield designing. An effective polymer-based shield material is designed that can attenuate 99.9% of incident electromagnetic (EM) radiation at a minimum thickness of <0.5 mm. This is accomplished by the choice of a suitable partially crystalline polymer matrix while comparing non-polar polypropylene (PP) with polar polyvinylidene fluoride (PVDF) and a best suited filler nanomaterial by comparing different types of carbon nanotubes such as; branched, single-walled and multi-walled carbon nanotubes, which were added in only 2 wt %. Different types of interactions (polar-polar and CH-π and donor-acceptor) make b-MWCNT more dispersible in the PVDF matrix, which together with high crystallinity resulted in the best electrical conductivity and electromagnetic shielding ability of this composite. This investigation additionally conceals the issues related to the thickness of the shield material just by stacking individual thin nanocomposite layers containing different carbon nanotube (CNT) types with 0.3 mm thickness in a simple manner and finally achieves 99.999% shielding efficiency at just 0.9 mm thickness when using a suitable order of the different PVDF based nanocomposites.
Collapse
|
14
|
Pal R, Goyal SL, Gupta V, Rawal I. MnO
2
‐Magnetic Core‐Shell Structured Polyaniline Dependent Enhanced EMI Shielding Effectiveness: A Study of VRH Conduction. ChemistrySelect 2019. [DOI: 10.1002/slct.201901199] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Rishi Pal
- Department of PhysicsGuru Jambheshwar University of Science and Technology, Hisar Haryana-125001 India
| | - Sneh Lata Goyal
- Department of PhysicsGuru Jambheshwar University of Science and Technology, Hisar Haryana-125001 India
| | - Vinay Gupta
- Department of Physics and AstrophysicsUniversity of Delhi Delhi-110007 India
| | - Ishpal Rawal
- Department of PhysicsKirori Mal CollegeUniversity of Delhi Delhi-110007 India
| |
Collapse
|
15
|
Mayeen A, M. S. K, M. S. J, Thomas S, Philip J, Rouxel D, Bhowmik RN, Kalarikkal N. Flexible and self-standing nickel ferrite–PVDF-TrFE cast films: promising candidates for high-end magnetoelectric applications. Dalton Trans 2019; 48:16961-16973. [DOI: 10.1039/c9dt02856k] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Polymer-based magnetoelectrics are identified as a newly emerging area of research due to their profound potential applications centered on spintronic technology.
Collapse
Affiliation(s)
- Anshida Mayeen
- School of Pure and Applied Physics
- Mahatma Gandhi University
- Kottayam
- India-686 560
- Department of Physics
| | - Kala M. S.
- Department of Physics
- St. Teresa's College
- Ernakulum
- India-682 011
| | - Jayalakshmy M. S.
- International and Inter University Centre for Nanoscience and Nanotechnology
- Mahatma Gandhi University
- Kottayam
- India-686 560
| | - Sabu Thomas
- International and Inter University Centre for Nanoscience and Nanotechnology
- Mahatma Gandhi University
- Kottayam
- India-686 560
| | - Jacob Philip
- Amal Jyothi College of Engineering
- Kottayam
- India-686518
| | - Didier Rouxel
- Institut Jean Lamour-UMR CNRS 7198
- Faculté des Sciences et Techniques
- Vandoeuvre-les-Nancy Cedex
- France
| | - R. N. Bhowmik
- Department of Physics
- Pondicherry University
- Kalapet
- India-605014
| | - Nandakumar Kalarikkal
- School of Pure and Applied Physics
- Mahatma Gandhi University
- Kottayam
- India-686 560
- International and Inter University Centre for Nanoscience and Nanotechnology
| |
Collapse
|
16
|
Bhattacharjee Y, Chatterjee D, Bose S. Core-Multishell Heterostructure with Excellent Heat Dissipation for Electromagnetic Interference Shielding. ACS APPLIED MATERIALS & INTERFACES 2018; 10:30762-30773. [PMID: 30106274 DOI: 10.1021/acsami.8b10819] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Herein, we report high electromagnetic interference (EMI) shielding effectiveness of -40 dB in the Ku-band (for a 600 μm thick film) through a unique core-shell heterostructure consisting of a ferritic core (Fe3O4) and a conducting shell (multiwalled carbon nanotubes, MWCNTs) supported onto a dielectric spacer (here SiO2). In recent times, materials with good flexibility, heat dissipation ability, and sustainability together with efficient EMI shielding at minimal thickness are highly desirable, especially if they can be easily processed into thin films. The resulting composites here shielded EM radiation mostly through absorption driven by multiple interfaces provided by the heterostructure. The shielding value obtained here is fairly superior among the different polymer nanocomposite-based EMI shielding materials. In addition to EMI shielding capability, this composite material exhibits outstanding heat dissipation ability (72 °C to room temperature in less than 90 s) as well as high heat sustainability. The composite material retained its EMI shielding property even after repeated heat cycles, thereby opening new avenues in the design of lightweight, flexible, and sustainable EMI shielding materials.
Collapse
|
17
|
Prussian blue analogues derived magnetic FeCo alloy/carbon composites with tunable chemical composition and enhanced microwave absorption. J Colloid Interface Sci 2018; 514:10-20. [DOI: 10.1016/j.jcis.2017.12.013] [Citation(s) in RCA: 182] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 12/02/2017] [Accepted: 12/04/2017] [Indexed: 11/18/2022]
|
18
|
Datt G, Kotabage C, Datar S, Abhyankar AC. Correlation between the magnetic-microstructure and microwave mitigation ability of MxCo(1−x)Fe2O4 based ferrite–carbon black/PVA composites. Phys Chem Chem Phys 2018; 20:26431-26442. [DOI: 10.1039/c8cp05235b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This work reports on the correlation between the magnetic-domain structure and microwave mitigation properties of ferrite–Carbon black/PVA Composites. Distorted co-ordination of Fe3+ along with unique single axis oriented magnetic domains plays a crucial role in magnetic losses and hence, in mitigation of microwaves.
Collapse
Affiliation(s)
- Gopal Datt
- Department of Materials Engineering
- Defence Institute of Advanced Technology
- Girinagar
- Pune 411025
- India
| | - Chetan Kotabage
- Department of Physics
- KLS Gogte Institute of Technology
- Belagavi 590008
- India
| | - Suwarna Datar
- Department of Applied Physics
- Defence Institute of Advanced Technology
- Girinagar
- Pune 411025
- India
| | - Ashutosh C. Abhyankar
- Department of Materials Engineering
- Defence Institute of Advanced Technology
- Girinagar
- Pune 411025
- India
| |
Collapse
|
19
|
Microwave properties of the single-layer periodic structure composites composed of ethylene-vinyl acetate and polycrystalline iron fibers. Sci Rep 2017; 7:11331. [PMID: 28900262 PMCID: PMC5596011 DOI: 10.1038/s41598-017-11884-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 08/25/2017] [Indexed: 11/09/2022] Open
Abstract
A single-layer microwave absorbing structure composed of the ethylene-vinyl acetate (EVA) powders and polycrystalline iron fibers (PIFs) with thickness of 2 mm, which has a periodic array of circular hole, is designed and fabricated using the mechanical method. We show that the reflection loss (RL) can be easily adjusted by changing the geometric parameters. The maximum RL is 18.7 dB at 15 GHz, and the effective absorption bandwidth of 1.7 GHz for the diameter of circular hole is 10 mm, and enhanced to be 23.7 dB at 15.1 GHz with the corresponding bandwidth of 7.2 GHz when the diameter decreases to 5 mm. The measured absorption of the composite is in good accordance with the simulation results. Furthermore, the possible absorption mechanism of the composite has been discussed. Our results illustrate that the integration of frequency selective surface (FSS) with traditional PIFs can achieve a wide frequency range of a strong absorption.
Collapse
|
20
|
Arief I, Biswas S, Bose S. Graphene analogues as emerging materials for screening electromagnetic radiations. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.nanoso.2017.07.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
21
|
Arief I, Biswas S, Bose S. FeCo-Anchored Reduced Graphene Oxide Framework-Based Soft Composites Containing Carbon Nanotubes as Highly Efficient Microwave Absorbers with Excellent Heat Dissipation Ability. ACS APPLIED MATERIALS & INTERFACES 2017; 9:19202-19214. [PMID: 28520409 DOI: 10.1021/acsami.7b04053] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Conducting polymer composites containing ferromagnetic grafted-graphene derivatives are already appreciated for their lightweight, flexibility, and cost effectiveness in terms of microwave absorption. To further leverage the said properties of this wonder material, we propose a highly efficient replacement by blending conducting multiwall carbon nanotube (MWCNT) and FeCo anchored covalent cross-linked reduced graphene oxide (rGO) with poly(vinylidene fluoride) (PVDF). Interconnected conducting network of MWCNTs introduces higher electrical conductivity in the blend which is essential for microwave absorption. FeCo-anchored porous interconnected rGO framework was designed via solvent-mediated in situ coreduction in the presence of Fe(II) and Co(II) precursors. Resulting cross-linked-rGO/FeCo displays fascinating coexistence of ferromagnetism and conducting-dielectric behavior, while largely preserving the robust 3D porous interconnected structure. Coupled with conducting MWCNTs, diamine cross-linked rGO/FeCo in a soft polymer matrix yields remarkably high total shielding effectiveness (SET) of -41.2 dB at 12 GHz, for a meager 10 wt % filler content. In addition, the composite materials display efficient heat dissipation abilities in conjunction with the trend in their thermal conductivities. This new-age microwave-absorbing material, powered by multifunctionality and tunable magnetodielectric properties, henceforth offers an amendable, cost-effective replacement to the existing solutions.
Collapse
Affiliation(s)
- Injamamul Arief
- Department of Materials Engineering, Indian Institute of Science , Bangalore, India 560012
| | - Sourav Biswas
- Department of Chemistry, National Institute of Technology Durgapur 713209, West Bengal, India
| | - Suryasarathi Bose
- Department of Materials Engineering, Indian Institute of Science , Bangalore, India 560012
| |
Collapse
|
22
|
Biswas S, Bhattacharjee Y, Panja SS, Bose S. Rational Design of Multilayer Ultrathin Nano-Architecture by Coupling of Soft Conducting Nanocomposite with Ferrites and Porous Structures for Screening Electromagnetic Radiation. ChemistrySelect 2017. [DOI: 10.1002/slct.201601713] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Sourav Biswas
- Department of Chemistry; National Institute of Technology Durgapur-; 713209 West Bengal India
| | - Yudhajit Bhattacharjee
- Department of Materials Engineering; Indian Institute of Science Bangalore-; 560012 Karnataka. India
| | - Sujit Sankar Panja
- Department of Chemistry; National Institute of Technology Durgapur-; 713209 West Bengal India
| | - Suryasarathi Bose
- Department of Materials Engineering; Indian Institute of Science Bangalore-; 560012 Karnataka. India
| |
Collapse
|
23
|
Biswas S, Arief I, Panja SS, Bose S. Absorption-Dominated Electromagnetic Wave Suppressor Derived from Ferrite-Doped Cross-Linked Graphene Framework and Conducting Carbon. ACS APPLIED MATERIALS & INTERFACES 2017; 9:3030-3039. [PMID: 28036170 DOI: 10.1021/acsami.6b14853] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
To minimize electromagnetic (EM) pollution, two key parameters, namely, intrinsic wave impedance matching and intense absorption of incoming EM radiation, must satisfy the utmost requirements. To target these requirements, soft conducting composites consisting of binary blends of polycarbonate (PC) and poly(vinylidene fluoride) (PVDF) were designed with doped multiwalled carbon nanotubes (MWCNTs) and a three-dimensional cross-linked graphene oxide (GO) framework doped with ferrite nanoparticles. The doping of α-MnO2 onto the MWCNTs ensured intrinsic wave impedance matching in addition to providing conducting pathways, and the ferrite-doped cross-linked GO facilitated the enhanced attenuation of the incoming EM radiation. This unique combination of magnetodielectric coupling led to a very high electromagnetic shielding efficiency (SE) of -37 dB at 18 GHz, dominated by absorption-driven shielding. The promising results from the composites further motivated us to rationally stack individual composites into a multilayer architecture following an absorption-multiple reflection-absorption pathway. This resulted in an impressive SE of -57 dB for a thin shield of 0.9-mm thickness. Such a high SE indicates >99.999% attenuation of the incoming EM radiation, which, together with the improvement in structural properties, validates the potential of these materials in terms of applications in cost-effective and tunable solutions.
Collapse
Affiliation(s)
- Sourav Biswas
- Department of Chemistry, National Institute of Technology , Durgapur, WB India 713209
| | - Injamamul Arief
- Department of Materials Engineering, Indian Institute of Science , Bangalore, India 560012
| | - Sujit Sankar Panja
- Department of Chemistry, National Institute of Technology , Durgapur, WB India 713209
| | - Suryasarathi Bose
- Department of Materials Engineering, Indian Institute of Science , Bangalore, India 560012
| |
Collapse
|