1
|
Wang J, Zong ZA, Huang SF, Muddassir M, Xing ZY, Li NN, Jiang WQ. Sensor with Strong Solid Emission for Fluorescence Colormetric Detection of 1, 4-Dioxane in Water and Vapor Based on the Keto-Enol Isomerisation. J Fluoresc 2025:10.1007/s10895-025-04296-w. [PMID: 40377795 DOI: 10.1007/s10895-025-04296-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 04/03/2025] [Indexed: 05/18/2025]
Abstract
In this work, an easy prepared solid fluorescent sensor 3-(benzo[d]thiazol-2-yl)-1-hydroxy-4-oxo-3,4-dihydrophthalazine-6-carboxylic acid (BPCA) was designed and synthesized and the structure was proved by IR, UV-Vis, NMR, HRMS and elemental analysis, which displayed high selectivity and sensitivity for fluorescence colormetric from green to blue sensing 1, 4-dioxane in water, and the detection limit was obtained 0.009% and the stability constant was 7.4 × 104 M. Also, sensor BPCA was applied for the real-time monitoring 1, 4-dioxane vapor with apparent fluorescent color change from green to blue. The mild and specific chemical interaction between sensor BPCA and 1, 4-dioxane molecule allowed the sensor as portable chips to respond 1, 4-dioxane vapor with good selectivity over other common VOCs at room temperature. Also, the sensing mechanism based on the 1, 4-dioxane-induced keto-enol tautomerization of the phthalazine moiety was found and supported by DFT calculations. This sensor could serve as the basis of gas analyzers for detecting 1, 4-dioxane in the environment.
Collapse
Affiliation(s)
- Jing Wang
- Modern Industrial College of Biomedicine and Great Health, Youjiang Medical University for Nationalities, Baise, 533000, China
| | - Zi-Ao Zong
- Key Laboratory of Research on Environment and Population Health in aluminium mining areas (Youjiang, Medical University for Nationalities), Education Department of Guangxi Zhuang Autonomous Region, Baise, China
| | - Shi-Fu Huang
- Modern Industrial College of Biomedicine and Great Health, Youjiang Medical University for Nationalities, Baise, 533000, China
| | - Mohd Muddassir
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Zhi-Yong Xing
- Modern Industrial College of Biomedicine and Great Health, Youjiang Medical University for Nationalities, Baise, 533000, China
| | - Na-Na Li
- Key Laboratory of Research on Environment and Population Health in aluminium mining areas (Youjiang, Medical University for Nationalities), Education Department of Guangxi Zhuang Autonomous Region, Baise, China.
- Department of Chemistry, Xinzhou Normal University, Xinzhou, Shanxi, 034000, PR China.
| | - Wen-Qiong Jiang
- Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, PR China.
- Key Laboratory of Biomedical Material Research of Guangxi (Cultivation), Baise, Guangxi, 533000, PR China.
| |
Collapse
|
2
|
Zhai SM, Zhang H, Wang Y, Zhang LX, Jiao WY, Zhang YQ, Si Y, Li HY, Zang SQ, Han Z. Stimuli-Responsive Circularly Polarized Luminescence of Gold Clusters Based on Hydrogen-Bond Driven Intercluster Coupling. Angew Chem Int Ed Engl 2025; 64:e202502168. [PMID: 40066768 DOI: 10.1002/anie.202502168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 03/10/2025] [Accepted: 03/10/2025] [Indexed: 03/21/2025]
Abstract
Stimuli-responsive circularly polarized luminescence (CPL) metal clusters hold significant potential in high-security encryption and sensing applications, yet the exploration of hydrogen-bond-driven CPL-active metal clusters remains limited. Here, we report the synthesis of an enantiomeric pair of rhomboid Au4 clusters utilizing chiral R/S-4-hydroxymethyl-5-methyloxazole-2-thione (R/S-HMMT) ligands. Two enantiomeric pairs of self-assembled metal clusters R/S-Au4(HMMT)4-blue and R/S-Au4(HMMT)4-red were obtained, by constructing distinct intercluster hydrogen bonds through the use of different crystalline solvents. In R/S-Au4(HMMT)4-blue, 1,4-dioxane guest molecules were observed to form a hydrogen-bond network with the hydroxyl groups of the cluster surface ligands. In contrast, a different hydrogen-bond network involving the hydroxyl groups of the surface ligands was identified in R/S-Au4(HMMT)4-red, resulting in a distinct stacking pattern. The unique intercluster couplings mediated by hydrogen bonds result in R/S-Au4(HMMT)4-blue exhibiting a blue CPL emission at 466 nm, while R/S-Au4(HMMT)4-red shows a dual CPL emission at 446 and 727 nm. Theoretical calculations reveal that hydrogen-bond driven intercluster couplings in R-Au4(HMMT)4-red are significantly stronger than in R-Au4(HMMT)4-blue. Additionally, both solid R/S-Au4(HMMT)4-blue and R/S-Au4(HMMT)4-red undergo reversible CPL transformations in response to organic vapors, temperature, or mechanical stimuli, due to the destruction and reconstruction of hydrogen-bond networks. These characteristics make them promising materials for information encryption applications.
Collapse
Affiliation(s)
- Si-Meng Zhai
- Henan Key Laboratory of Crystalline Molecular Functional Materials, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Han Zhang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Yan Wang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Li-Xin Zhang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Wen-Yang Jiao
- Henan Key Laboratory of Crystalline Molecular Functional Materials, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Ya-Qing Zhang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Yubing Si
- Henan Key Laboratory of Crystalline Molecular Functional Materials, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Hai-Yang Li
- Henan Key Laboratory of Crystalline Molecular Functional Materials, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Shuang-Quan Zang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Zhen Han
- Henan Key Laboratory of Crystalline Molecular Functional Materials, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
3
|
Parida KN, Yadav C, Jindal S, Tamuly P, Vankar YD, Moorthy JN. Chiral Porous Organic Polymers (CPOPs): Design, Synthesis, and Applications in Asymmetric Catalysis. Chemistry 2025; 31:e202404525. [PMID: 40105896 DOI: 10.1002/chem.202404525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 03/15/2025] [Accepted: 03/19/2025] [Indexed: 03/21/2025]
Abstract
Since the recognition of the area of asymmetric synthesis in 2000, there has been a tremendous focus on the development of heterogeneous catalysts for asymmetric synthesis. Porous organic polymers (POPs) have emerged in recent years as inextricable materials of high physicochemical and hydrolytic stabilities, permitting infinite possibilities to modulate and tune reactivity, engineer porosity, regulate spatial environments and pore attributes, and maneuver material transport. With a diligent design of building blocks and the exploitation of organic reactions judiciously, the synthesis of POPs with BET surface areas of the order of a few thousand cm3/g has been demonstrated. The incorporation of reactive functional groups and chiral centers into the porous matrices of polymers offers opportunities to conduct asymmetric synthesis. Very high enantioselectivities of the order of 99% ee have been exemplified in the reactions mediated by chiral POPs (CPOPs). The design-driven tunability of POPs allows the development of catalytic materials for targeted applications in a tailor-made fashion. This review, while placing the development of chiral materials for asymmetric synthesis in the right perspective, delves into different design principles to pave the way for continued research on futuristic CPOP materials by a creative design, limited by one's imagination, for heretofore unprecedented results.
Collapse
Affiliation(s)
- Keshaba N Parida
- School of Chemistry, IISER Thiruvananthapuram, Vithura, Trivandrum, Kerala, India
- Department of Chemistry, Sreenidhi University, Hyderabad, Telangana, India
| | - Chetna Yadav
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, UP, India
| | - Swati Jindal
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, UP, India
| | - Parag Tamuly
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, UP, India
| | - Yashwant D Vankar
- School of Chemistry, IISER Thiruvananthapuram, Vithura, Trivandrum, Kerala, India
| | - Jarugu N Moorthy
- School of Chemistry, IISER Thiruvananthapuram, Vithura, Trivandrum, Kerala, India
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, UP, India
| |
Collapse
|
4
|
Gogoi M, Kalita SJ, Deb J, Gogoi A, Saikia L. Ligand-triggered antenna effect and dual emissions in Eu(III) MOF and its application in multi-mode sensing of 1,4-dioxane. Dalton Trans 2024; 53:17480-17497. [PMID: 39397532 DOI: 10.1039/d4dt01709a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
A new set of metal-organic frameworks was designed by functionalizing g-C3N4 with benzoic acid and using them as structure-directing ligands during the metal-organic framework (MOF) formation. One such MOF exhibited dual emissions, both metal- and ligand-centered, enabling ratiometric sensing of the carcinogenic industrial solvent dioxane. The fabricated MOFs possessed a unique fluffy spherical morphology that enabled atomic level resolution in transmission electron microscopy-a rarity in MOFs due to the 'Knock-on' effect. Sensor experiments showed a rapid response within 5 s of analyte introduction and achieved a low limit of detection (LOD) of 0.026 ppm, well below the FDA-approved level of 10 ppm. In addition, the sensor exhibited exceptional selectivity, discriminating 1,4-dioxane from a pool of 16 solvents. This increased sensing capability was attributed to the formation of complexes and precise alignment of energy levels between the host and analyte, facilitating photoinduced electron transfer (PET). This material is equally efficient for colorimetric detection of the same solvent under excitation of UV light as well as gas phase detection of this volatile organic compound through I-V characteristics. Density functional theory (DFT) analysis supported the crucial role of Eu and the ligand system in efficiently detecting 1,4-dioxane by fluorescence spectroscopy, as shown in the energy level diagram. Future research could focus on optimizing these metal-organic frameworks for enhanced industrial applications in the detection of dioxane and exploring their potential applications in real-world environmental monitoring and public health safety.
Collapse
Affiliation(s)
- Madhulekha Gogoi
- Advanced Materials Group, Materials Sciences & Technology Division, CSIR-North East Institute of Science and Technology, Jorhat-785006, Assam, India.
- Knowledgepie Private Limited, Bio-NEST, CSIR-North East Institute of Science and Technology, Jorhat-785006, Assam, India
| | - Sanmilan Jyoti Kalita
- Advanced Materials Group, Materials Sciences & Technology Division, CSIR-North East Institute of Science and Technology, Jorhat-785006, Assam, India.
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Jyotirmoy Deb
- Advanced Computational & Data Sciences Division, CSIR-North East Institute of Science and Technology, Jorhat-785006, Assam, India
| | - Ankur Gogoi
- Department of Physics, Jagannath Barooah University, Jorhat-785001, Assam, India
| | - Lakshi Saikia
- Advanced Materials Group, Materials Sciences & Technology Division, CSIR-North East Institute of Science and Technology, Jorhat-785006, Assam, India.
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| |
Collapse
|
5
|
Rajput SK, Mothika VS. Powders to Thin Films: Advances in Conjugated Microporous Polymer Chemical Sensors. Macromol Rapid Commun 2024; 45:e2300730. [PMID: 38407503 DOI: 10.1002/marc.202300730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/06/2024] [Indexed: 02/27/2024]
Abstract
Chemical sensing of harmful species released either from natural or anthropogenic activities is critical to ensuring human safety and health. Over the last decade, conjugated microporous polymers (CMPs) have been proven to be potential sensor materials with the possibility of realizing sensing devices for practical applications. CMPs found to be unique among other porous materials such as metal-organic frameworks (MOFs) and covalent organic frameworks (COFs) due to their high chemical/thermal stability, high surface area, microporosity, efficient host-guest interactions with the analyte, efficient exciton migration along the π-conjugated chains, and tailorable structure to target specific analytes. Several CMP-based optical, electrochemical, colorimetric, and ratiometric sensors with excellent selectivity and sensing performance were reported. This review comprehensively discusses the advances in CMP chemical sensors (powders and thin films) in the detection of nitroaromatic explosives, chemical warfare agents, anions, metal ions, biomolecules, iodine, and volatile organic compounds (VOCs), with simultaneous delineation of design strategy principles guiding the selectivity and sensitivity of CMP. Preceding this, various photophysical mechanisms responsible for chemical sensing are discussed in detail for convenience. Finally, future challenges to be addressed in the field of CMP chemical sensors are discussed.
Collapse
Affiliation(s)
- Saurabh Kumar Rajput
- Department of Chemistry, Indian Institute of Technology (IIT) Kanpur, Kanpur, 208016, India
| | - Venkata Suresh Mothika
- Department of Chemistry, Indian Institute of Technology (IIT) Kanpur, Kanpur, 208016, India
| |
Collapse
|
6
|
Mohan B, Shanmughan A, Krishna AV, Noushija MK, Umadevi D, Shanmugaraju S. Porous organic polymers-based fluorescent chemosensors for Fe(III) ions-a functional mimic of siderophores. Front Chem 2024; 12:1361796. [PMID: 38425658 PMCID: PMC10901996 DOI: 10.3389/fchem.2024.1361796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 02/05/2024] [Indexed: 03/02/2024] Open
Abstract
Extended organic polymers such as amorphous Covalent Organic Polymers (COPs) and crystalline Covalent Organic Frameworks (COFs) are emerging functional polymeric materials that have recently been shown promises as luminescent materials for chemosensing applications. A wide variety of luminescence COPs and COFs have been synthesized and successfully used as fluorescence-sensing materials for hazardous environmental pollutants and toxic contaminants. This review exemplifies various COPs and COFs-based fluorescence sensors for selective sensing of Fe(III) ions. The fluorescence sensors are sorted according to their structural features and each section provides a detailed discussion on the synthesis and fluorescence sensing ability of different COPs and COFs towards Fe(III) ions. Also, this review highlights the limitations of the existing organic polymer-based chemosensors and future perspectives on translating COPs and COFs-based fluorescence sensors for the practical detection of Fe(III) ions.
Collapse
Affiliation(s)
| | | | | | | | - Deivasigamani Umadevi
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad, Kerala, India
| | | |
Collapse
|
7
|
Fajal S, Dutta S, Ghosh SK. Porous organic polymers (POPs) for environmental remediation. MATERIALS HORIZONS 2023; 10:4083-4138. [PMID: 37575072 DOI: 10.1039/d3mh00672g] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Modern global industrialization along with the ever-increasing growth of the population has resulted in continuous enhancement in the discharge and accumulation of various toxic and hazardous chemicals in the environment. These harmful pollutants, including toxic gases, inorganic heavy metal ions, anthropogenic waste, persistent organic pollutants, toxic dyes, pharmaceuticals, volatile organic compounds, etc., are destroying the ecological balance of the environment. Therefore, systematic monitoring and effective remediation of these toxic pollutants either by adsorptive removal or by catalytic degradation are of great significance. From this viewpoint, porous organic polymers (POPs), being two- or three-dimensional polymeric materials, constructed from small organic molecules connected with rigid covalent bonds have come forth as a promising platform toward various leading applications, especially for efficient environmental remediation. Their unique chemical and structural features including high stability, tunable pore functionalization, and large surface area have boosted the transformation of POPs into various macro-physical forms such as thick and thin-film membranes, which led to a new direction in advanced level pollutant removal, separation and catalytic degradation. In this review, our focus is to highlight the recent progress and achievements in the strategic design, synthesis, architectural-engineering and applications of POPs and their composite materials toward environmental remediation. Several strategies to improve the adsorption efficiency and catalytic degradation performance along with the in-depth interaction mechanism of POP-based materials have been systematically summarized. In addition, evolution of POPs from regular powder form application to rapid and more efficient size and chemo-selective, "real-time" applicable membrane-based application has been further highlighted. Finally, we put forward our perspective on the challenges and opportunities of these materials toward real-world implementation and future prospects in next generation remediation technology.
Collapse
Affiliation(s)
- Sahel Fajal
- Department of Chemistry, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pashan, Pune 411008, India.
| | - Subhajit Dutta
- Department of Chemistry, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pashan, Pune 411008, India.
| | - Sujit K Ghosh
- Department of Chemistry, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pashan, Pune 411008, India.
- Centre for Water Research, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pashan, Pune 411008, India
| |
Collapse
|
8
|
Li Y, Lou X, Wang C, Wang Y, Jia Y, Lin Q, Yang Y. Synthesis of stimuli-responsive pillararene-based supramolecular polymer materials for the detection and separation of metal ions. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
9
|
Zhang Y, Mollick S, Tricarico M, Ye J, Sherman DA, Tan JC. Turn-On Fluorescence Chemical Sensing through Transformation of Self-Trapped Exciton States at Room Temperature. ACS Sens 2022; 7:2338-2344. [PMID: 35948422 PMCID: PMC9425555 DOI: 10.1021/acssensors.2c00964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Most of the current fluorescence sensing materials belong to the turn-off type, which make it hard to detect toxic substances such as benzene, toluene, and xylene (BTX) due to the lack of active chemical sites, thereby limiting their development and practical use. Herein, we show a guest-host mechanism stemming from the confined emitter's self-trapped exciton (STE) states or electron-phonon coupling to achieve turn-on fluorescence. We designed a luminescent guest@metal-organic framework (LG@MOF) composite material, termed perylene@MIL-68(In), and established its E-type excimeric emission properties in the solid state. Upon exposure to BTX, especially xylene, we show that the E-excimer readily converts into the Y-excimer due to nanoconfinement of the MOF structure. Such a transformation elevates the fluorescence intensity, thus realizing a turn-on type fluorescent sensor for detecting BTX solvents. Our results further demonstrate that controlling the STE states of perylene at room temperature (vs the previous report of <50 K) is possible via nanoscale confinement, paving the way to enabling turn-on type luminescent sensors for engineering practical applications.
Collapse
|
10
|
A novel hydrolytically stable fluorescent Cd(II) coordination polymer showing solvent-dependent multi-responsive fluorescence sensing to pH and some metal ions. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Wang S, Li H, Huang H, Cao X, Chen X, Cao D. Porous organic polymers as a platform for sensing applications. Chem Soc Rev 2022; 51:2031-2080. [PMID: 35226024 DOI: 10.1039/d2cs00059h] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Sensing analysis is significantly important for human health and environmental safety, and has gained increasing concern. As a promising material, porous organic polymers (POPs) have drawn widespread attention due to the availability of plentiful building blocks and their tunable structures, porosity and functions. Moreover, the permanent porous nature could provide a micro-environment to interact with guest molecules, rendering POPs attractive for application in the sensing field. In this review, we give a comprehensive overview of POPs as a platform for sensing applications. POP-based sensors are mainly divided into five categories, including fluorescence turn-on sensors, fluorescence turn-off sensors, ratiometric fluorescent sensors, colorimetric sensors and chemiresistive sensors, and their various sensing applications in detecting explosives, metal ions, anions, small molecules, biological molecules, pH changes, enantiomers, latent fingerprints and thermosensation are summarized. The different structure-based POPs and their corresponding synthetic strategies as well as the related sensing mechanisms mainly including energy transfer, donor-acceptor electron transfer, absorption competition quenching and inner filter effect are also involved in the discussion. Finally, the future outlook and perspective are addressed briefly.
Collapse
Affiliation(s)
- Shitao Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Hongtao Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Huanan Huang
- School of Chemistry and Environmental Engineering, Jiujiang University, Jiujiang 222005, China
| | - Xiaohua Cao
- School of Chemistry and Environmental Engineering, Jiujiang University, Jiujiang 222005, China
| | - Xiudong Chen
- School of Chemistry and Environmental Engineering, Jiujiang University, Jiujiang 222005, China
| | - Dapeng Cao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
12
|
Mondal U, Bej S, Hazra A, Mandal S, Pal TK, Banerjee P. Amine-substituent induced highly selective and rapid "turn-on" detection of carcinogenic 1,4-dioxane from purely aqueous and vapour phase with novel post-synthetically modified d 10-MOFs. Dalton Trans 2022; 51:2083-2093. [PMID: 35048912 DOI: 10.1039/d1dt03976h] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Herein, an amine decorated Cd(II) metal-organic framework (MOF) with a uninodal 6-c topology was synthesized as a suitable platform for facile post-synthetic modification (PSM). The as-synthesized parent d10-MOF (1) with free -NH2 centers, when functionalized with two different carbonyl substituents (1-naphthaldehyde and benzophenone) of varying conjugation, produces two novel luminescent MOFs (LMOFs) viz.PSM-1 and PSM-2. The judicious incorporation of carbonyl substituents into the skeleton of 1 was rationalized via ESI-MS, 1H-NMR, FT-IR and PXRD analyses. Interestingly, both PSM-1 and PSM-2 show 'turn-on' luminescent behaviour in the presence of 1,4-dioxane with the limit of detection (LOD) as 1.079 ppm and 2.487 ppm, respectively, with prompt response time (∼55 s & ∼58 s, respectively). The inhibition of PET is comprehended to be the prime reason for luminescence enhancement upon interaction with the targeted analyte which was further validated from DFT calculations. In continuation, the PSM-MOFs were equally responsive towards 1,4-dioxane in several complex environmental matrices and cosmetic products. Additionally, vapor phase detection of 1,4-dioxane using PSM-MOFs has also been demonstrated as an additional advantage ensuring propagation of future research endeavour.
Collapse
Affiliation(s)
- Udayan Mondal
- Surface Engineering & Tribology Group, CSIR-Central Mechanical Engineering Research Institute, Mahatma Gandhi Avenue, Durgapur, 713209, India. .,Academy of Scientific and Innovative Research (AcSIR), AcSIR Headquarters CSIR-HRDC Campus, Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad - 201002, Uttar Pradesh, India
| | - Sourav Bej
- Surface Engineering & Tribology Group, CSIR-Central Mechanical Engineering Research Institute, Mahatma Gandhi Avenue, Durgapur, 713209, India. .,Academy of Scientific and Innovative Research (AcSIR), AcSIR Headquarters CSIR-HRDC Campus, Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad - 201002, Uttar Pradesh, India
| | - Abhijit Hazra
- Surface Engineering & Tribology Group, CSIR-Central Mechanical Engineering Research Institute, Mahatma Gandhi Avenue, Durgapur, 713209, India. .,Academy of Scientific and Innovative Research (AcSIR), AcSIR Headquarters CSIR-HRDC Campus, Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad - 201002, Uttar Pradesh, India
| | - Sukdeb Mandal
- Surface Engineering & Tribology Group, CSIR-Central Mechanical Engineering Research Institute, Mahatma Gandhi Avenue, Durgapur, 713209, India. .,Academy of Scientific and Innovative Research (AcSIR), AcSIR Headquarters CSIR-HRDC Campus, Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad - 201002, Uttar Pradesh, India
| | - Tapan K Pal
- Department of Chemistry, School of Technology, Pandit Deendayal Petroleum University, Gandhinagar-382007, India
| | - Priyabrata Banerjee
- Surface Engineering & Tribology Group, CSIR-Central Mechanical Engineering Research Institute, Mahatma Gandhi Avenue, Durgapur, 713209, India. .,Academy of Scientific and Innovative Research (AcSIR), AcSIR Headquarters CSIR-HRDC Campus, Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad - 201002, Uttar Pradesh, India
| |
Collapse
|
13
|
Yang ZY, Chen C, Sang X, Hong YX, Yu H, Ni CY, Lang JP. Assembly of a Zn(II) coordination polymer of tetrapyridyl tetraene ligands for selective sensing of CrO42- and Fe3+ in water via luminescence quenching and enhancement. CrystEngComm 2022. [DOI: 10.1039/d1ce01706c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Four Zn(II)-based coordination polymers (CPs), [Zn(4-tkpvb)(FB)2] (CP1), [Zn(4-tkpvb)(CB)2] (CP2), [Zn(4-tkpvb)(BB)2] (CP3) and [Zn(4-tkpvb)(NTP)]n (CP4), were prepared from solvothermal reactions of Zn(NO3)2•6H2O with 1,2,4,5-tetrakis((E)-2-(pyridin-4-yl)vinyl)benzene (4-tkpvb) in the presence of 3-florobenzoic acid...
Collapse
|
14
|
Sharma N, Ugale B, Kumar S, Kailasam K. Metal-Free Heptazine-Based Porous Polymeric Network as Highly Efficient Catalyst for CO 2 Capture and Conversion. Front Chem 2021; 9:737511. [PMID: 34722455 PMCID: PMC8554583 DOI: 10.3389/fchem.2021.737511] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 08/27/2021] [Indexed: 11/13/2022] Open
Abstract
The capture and catalytic conversion of CO2 into value-added chemicals is a promising and sustainable approach to tackle the global warming and energy crisis. The nitrogen-rich porous organic polymers are excellent materials for CO2 capture and separation. Herein, we present a nitrogen-rich heptazine-based microporous polymer for the cycloaddition reaction of CO2 with epoxides in the absence of metals and solvents. HMP-TAPA, being rich in the nitrogen site, showed a high CO2 uptake of 106.7 mg/g with an IAST selectivity of 30.79 toward CO2 over N2. Furthermore, HMP-TAPA showed high chemical and water stability without loss of any structural integrity. Besides CO2 sorption, the catalytic activity of HMP-TAPA was checked for the cycloaddition of CO2 and terminal epoxides, resulting in cyclic carbonate with high conversion (98%). They showed remarkable recyclability up to 5 cycles without loss of activity. Overall, this study represents a rare demonstration of the rational design of POPs (HMP-TAPA) for multiple applications.
Collapse
Affiliation(s)
- Neha Sharma
- Advanced Functional Nanomaterials, Energy and Environment Unit, Institute of Nano Science and Technology (INST), Mohali, India
| | - Bharat Ugale
- Advanced Functional Nanomaterials, Energy and Environment Unit, Institute of Nano Science and Technology (INST), Mohali, India
| | - Sunil Kumar
- Advanced Functional Nanomaterials, Energy and Environment Unit, Institute of Nano Science and Technology (INST), Mohali, India
| | - Kamalakannan Kailasam
- Advanced Functional Nanomaterials, Energy and Environment Unit, Institute of Nano Science and Technology (INST), Mohali, India
| |
Collapse
|
15
|
Wang C, Tang R, Pan L, Wu W, Ma S, Wei Y, Ou J. Preparation of core-shell microporous organic polymer-coated silica microspheres for chromatographic separation and N-glycopeptides enrichment. J Sep Sci 2021; 45:1458-1468. [PMID: 34559936 DOI: 10.1002/jssc.202100466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 09/14/2021] [Accepted: 09/17/2021] [Indexed: 11/10/2022]
Abstract
Through a "one-pot" strategy, a layer of microporous organic polymer was coated onto the surface of monodisperse amino-functionalized silica microsphere via amino-aldehyde condensation reaction with core-shell structure. The change in chemical structure of material before and after modification was determined by Fourier-transform infrared spectroscopy and X-ray photoelectron spectroscopy. Due to existence of a large number of amino and aldehyde groups in microporous organic polymer shell, the water contact angle decreased from 56.8° (silica microspheres) to 34.7° (microporous organic polymer-coated silica microspheres). Based on these properties, microporous organic polymer-coated silica microspheres were employed as the stationary phase for capillary liquid chromatography and successfully offered baseline separation of polar small molecules. Additionally, the material could also be served as the sorbent of hydrophilic interaction chromatography to enrich glycopeptides from human serum digest. A total of 470 unique N-glycopeptides and 342 N-glycosylation sites mapped to 112 N-glycosylated proteins were unambiguously identified from 2 μL of human serum, exhibiting a promising application prospect of microporous organic polymer-coated silica microspheres in the pretreatment of proteomics samples.
Collapse
Affiliation(s)
- Chenyang Wang
- Key Laboratory of Synthetic and Natural Function Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, P. R. China.,Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, P. R. China
| | - Ruizhi Tang
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, P. R. China
| | - Lei Pan
- Key Laboratory of Synthetic and Natural Function Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, P. R. China.,Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, P. R. China
| | - Wenrui Wu
- Key Laboratory of Synthetic and Natural Function Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, P. R. China.,Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, P. R. China
| | - Shujuan Ma
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, P. R. China
| | - Yinmao Wei
- Key Laboratory of Synthetic and Natural Function Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, P. R. China
| | - Junjie Ou
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, P. R. China.,University of Chinese Academy of Sciences, Beijing, P. R. China
| |
Collapse
|
16
|
Covalent organic frameworks for fluorescent sensing: Recent developments and future challenges. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213957] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
17
|
Kumar S, Battula VR, Sharma N, Samanta S, Kailasam K. Understanding the role of soft linkers in designing hepatzine-based polymeric frameworks as heterogeneous (photo)catalyst. J Colloid Interface Sci 2021; 588:138-146. [PMID: 33388579 DOI: 10.1016/j.jcis.2020.12.040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 11/30/2020] [Accepted: 12/14/2020] [Indexed: 11/24/2022]
Abstract
The emerging class of heptazine-based polymeric materials has shown potential candidature as photocatalyst materials for hydrogen evolution. At the same time, they have shown promising application as solid base materials to catalyse various organic transformations. Thus, the material design rationale needs to be developed around the heptazine-based polymeric frameworks in order to specifically design task specific materials. Herein, we utilised controlled reaction conditions to synthesize the desired polymeric networks with trichloroheptazine as precursor. Material design strategy employed nitrogen rich [tris(2-aminoethylamine) and hydrazine] as soft linkers to understand the effect on band structure of developed heptazine-based polymeric networks. The developed polymeric networks were explored as platform to study systematically the effect on their respective photophysical properties and understand their surface basicity. The framework having aminoalkyl linker showed superior activity in photocatalysis as well as heterogeneous base catalysis. Further, model catalysts revealed the importance of N-atoms as active basic sites in these systems.
Collapse
Affiliation(s)
- Sunil Kumar
- Advanced Functional Nanomaterials, Institute of Nano Science and Technology, Knowledge City, Sector 81, Manauli, SAS Nagar 140306, Punjab, India.
| | - Venugopala Rao Battula
- Advanced Functional Nanomaterials, Institute of Nano Science and Technology, Knowledge City, Sector 81, Manauli, SAS Nagar 140306, Punjab, India
| | - Neha Sharma
- Advanced Functional Nanomaterials, Institute of Nano Science and Technology, Knowledge City, Sector 81, Manauli, SAS Nagar 140306, Punjab, India
| | - Soumadri Samanta
- Advanced Functional Nanomaterials, Institute of Nano Science and Technology, Knowledge City, Sector 81, Manauli, SAS Nagar 140306, Punjab, India
| | - Kamalakannan Kailasam
- Advanced Functional Nanomaterials, Institute of Nano Science and Technology, Knowledge City, Sector 81, Manauli, SAS Nagar 140306, Punjab, India.
| |
Collapse
|
18
|
Wang DY, Wang WJ, Wang R, Xi SC, Dong B. A fluorescent covalent triazine framework consisting of donor–acceptor structure for selective and sensitive sensing of Fe3+. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110297] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
19
|
Zhang Y, Wu L, Feng M, Wang D, Li C. Assembly of two-dimension LMOF materials with excellent detection of Fe3+ ion in water based on overlap mechanism. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2020.121868] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
20
|
Audebert P, Kroke E, Posern C, Lee SH. State of the Art in the Preparation and Properties of Molecular Monomeric s-Heptazines: Syntheses, Characteristics, and Functional Applications. Chem Rev 2021; 121:2515-2544. [PMID: 33449621 DOI: 10.1021/acs.chemrev.0c00955] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This review gives an account on the fast expanding field of monomeric (or molecular) heptazines, at the exclusion of their various polymeric forms, often referred to as carbon nitrides. While examples of monomeric heptazines were extremely limited until the beginning of this century, the field has started expanding quickly since then, as has the number of reports on polymeric materials, though previous reviews did not separate these fields. We provide here a detailed report on the synthetic procedures for molecular heptazines. We also extensively report on the different achievements realized from these new molecules, in the fields of physical chemistry, spectroscopy, materials preparation, (photo)catalysis, and devices. After a comprehensive summary and discussion on heptazines syntheses and characteristics, we show that starting from well-defined molecules allows a versatility of approaches and a wide tunability of the expected properties. It comes out that the field of monomeric heptazines is now emerging and possibly heading toward maturity, while diverging from the one of polymeric carbon nitrides. It is likely that this area of research will quickly surge to the forefront of the search for active organic molecules, with special attention to the domains of catalysis and organic-based functional materials and devices.
Collapse
Affiliation(s)
- Pierre Audebert
- PPSM, ENS Paris-Saclay, CNRS UMR 8531, 61, Avenue du Président Wilson, 94235 Cachan cedex, France.,XLIM Institute, CNRSUMR 7252, 123 Av Albert Thomas, Limoges 87000, France
| | - Edwin Kroke
- Institute for Inorganic Chemistry, Department of Chemistry and Physics, TU Bergakademie Freiberg, Leipziger Strasse 29, 09596 Freiberg, Germany
| | - Christian Posern
- Institute for Inorganic Chemistry, Department of Chemistry and Physics, TU Bergakademie Freiberg, Leipziger Strasse 29, 09596 Freiberg, Germany
| | - Sung-Ho Lee
- PPSM, ENS Paris-Saclay, CNRS UMR 8531, 61, Avenue du Président Wilson, 94235 Cachan cedex, France
| |
Collapse
|
21
|
Wei C, Wu J, Feng X, Yang Z, Zhang J, Ji H. A spirobifluorene-based water-soluble imidazolium polymer for luminescence sensing. NEW J CHEM 2021. [DOI: 10.1039/d1nj02358f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A water-soluble luminescent sensor based on a spirobifluorene-based imidazolium polymer is developed for the selective sensing of Fe3+ and Cr2O72−.
Collapse
Affiliation(s)
- Caifeng Wei
- Sun Yat-Sen University
- School of Chemical Engineering and Technology
- MOE Laboratory of Polymeric Composite and Functional Materials
- School of Materials Science and Engineering
- Guangzhou 510275
| | - Jinyi Wu
- Sun Yat-Sen University
- School of Chemical Engineering and Technology
- MOE Laboratory of Polymeric Composite and Functional Materials
- School of Materials Science and Engineering
- Guangzhou 510275
| | - Xiying Feng
- Sun Yat-Sen University
- School of Chemical Engineering and Technology
- MOE Laboratory of Polymeric Composite and Functional Materials
- School of Materials Science and Engineering
- Guangzhou 510275
| | - Zujin Yang
- Sun Yat-Sen University
- School of Chemical Engineering and Technology
- MOE Laboratory of Polymeric Composite and Functional Materials
- School of Materials Science and Engineering
- Guangzhou 510275
| | - Jianyong Zhang
- Sun Yat-Sen University
- School of Chemical Engineering and Technology
- MOE Laboratory of Polymeric Composite and Functional Materials
- School of Materials Science and Engineering
- Guangzhou 510275
| | - Hongbing Ji
- Sun Yat-Sen University
- School of Chemical Engineering and Technology
- MOE Laboratory of Polymeric Composite and Functional Materials
- School of Materials Science and Engineering
- Guangzhou 510275
| |
Collapse
|
22
|
Sun Y, Lu Z, Ma W, Wang R, Zhang C, Liu J. A porous organic polymer nanosphere-based fluorescent biosensing platform for simultaneous detection of multiplexed DNA via electrostatic attraction and π–π stacking interactions. RSC Adv 2021; 11:38820-38828. [PMID: 35493231 PMCID: PMC9044239 DOI: 10.1039/d1ra07435k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/29/2021] [Indexed: 11/21/2022] Open
Abstract
One key challenge in oligonucleotide sequence sensing is to achieve multiplexed DNA detection in one sensor. Herein, a simple and efficient fluorescent biosensing platform is constructed to simultaneously detect multiplexed DNA depending on porous organic polymer (POP) nanospheres. The developed sensor is based on the concept that the POP nanospheres can efficiently quench the fluorescence emission of dye-labeled single-stranded DNA (ssDNA). Fluorescence quenching is achieved by the non-covalent assembly of multiple probes on the surface of POP nanospheres through electrostatic attraction and π–π stacking interactions, in which the electrostatic attraction plays a more critical role than π–π stacking. The formed dsDNA could be released off the surface of POP via hybridizing with the target DNA. Consequently, the target DNA can be quickly detected by fluorescence recovery. The biosensor could sensitively and specifically identify three target DNAs in the range of 0.1 to 36 nM, and the lowest detection limits are 50 pM, 100 pM, and 50 pM, respectively. It is noteworthy that the proposed platform is successfully applied to detect DNA in human serum. We perceive that the proposed sensing system represents a simple and sensitive strategy towards simultaneous and multiplexed assays for DNA monitoring and early clinical diagnosis. This communication reports a simple and efficient fluorescent biosensing platform to simultaneously detect multiplexed DNA depending on porous organic polymer (POP) nanospheres by electrostatic attraction and π–π stacking interaction.![]()
Collapse
Affiliation(s)
- Yujie Sun
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Zhenzhong Lu
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Wenlin Ma
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Rui Wang
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Chengwu Zhang
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Jinhua Liu
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| |
Collapse
|
23
|
Kim DH, Kim DW, Jang JY, Lee N, Ko YJ, Lee SM, Kim HJ, Na K, Son SU. Fe 3O 4@Void@Microporous Organic Polymer-Based Multifunctional Drug Delivery Systems: Targeting, Imaging, and Magneto-Thermal Behaviors. ACS APPLIED MATERIALS & INTERFACES 2020; 12:37628-37636. [PMID: 32814391 DOI: 10.1021/acsami.0c12237] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Multifunctional drug delivery systems were designed and engineered by template synthesis of a microporous organic polymer (MOP) and by postsynthetic modification. Hollow MOP spheres bearing Fe3O4 yolks (Fe3O4@Void@MOP) were prepared by the synthesis of MOP on Fe3O4@SiO2 nanoparticles and by successive silica etching. In addition to the magneto-thermal function of Fe3O4 yolks, an aggregation-induced emission (AIE) feature was incorporated into the Fe3O4@Void@MOP through a homocoupling of tetra(4-ethynylphenyl)ethylene to form Fe3O4@Void@MOP-TE. Folate groups were further introduced into Fe3O4@Void@MOP-TE through the postsynthetic modification based on the thiol-yne click reaction. The resultant Fe3O4@Void@MOP-TE-FA showed multifunctionality in antitumoral therapy via folate receptor targeting, doxorubicin delivery, AIE-based imaging, and the magneto-thermal feature.
Collapse
Affiliation(s)
- Da Hye Kim
- Department of Biomedical-Chemical Engineering, The Catholic University of Korea, Bucheon 14662, Korea
| | - Dong Wook Kim
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Korea
| | - June Young Jang
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Korea
| | - Nahyun Lee
- Center of Correlated Electron Systems, Institute for Basic Science, Seoul National University, Seoul 08826, Korea
| | - Yoon-Joo Ko
- Laboratory of Nuclear Magnetic Resonance, National Center for Inter-University Research Facilities (NCIRF), Seoul National University, Seoul 08826, Korea
| | | | - Hae Jin Kim
- Korea Basic Science Institute, Daejeon 34133, Korea
| | - Kun Na
- Department of Biomedical-Chemical Engineering, The Catholic University of Korea, Bucheon 14662, Korea
| | - Seung Uk Son
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Korea
| |
Collapse
|
24
|
Yin ZY, Hu JH, Gui K, Fu QQ, Yao Y, Zhou FL, Ma LL, Zhang ZP. AIE based colorimetric and “turn-on” fluorescence Schiff base sensor for detecting Fe3+ in an aqueous media and its application. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112542] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
25
|
Geng T, Ma L, Chen G, Zhang C, Zhang W, Niu Q. Fluorescent conjugated microporous polymers containing pyrazine moieties for adsorbing and fluorescent sensing of iodine. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:20235-20245. [PMID: 32239401 DOI: 10.1007/s11356-019-06534-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 09/12/2019] [Indexed: 06/11/2023]
Abstract
Two kinds of fluorescent conjugated microporous polymers containing pyrazine moieties were prepared by the polymerization reaction of 2,5-di-triphenylamine-yl-pyrazine (DTPAPz) and N,N,N',N'-tetrapheny-2,5-(diazyl) pyrazine (TDPz) with 2,4,6-trichloro-1,3,5-triazine (TCT) through Friedel-Crafts reaction using the methanesulfonic acid as a catalysts. Both CMPs have high thermal stability and decomposition temperature reaches above 596 and 248 °C under nitrogen atmosphere, respectively. By right of porous morphology and electron-donating nitrogen, as well as electron-rich π-conjugated structures, the adsorption performance for iodine vapor on the CMPs is very excellent, which can reach 441% and 312%. In addition, fluorescence studies showed that the two CMPs exhibited high fluorescence sensitivity to electron-deficient iodine, o-nitrophenol (o-NP), and picric acid (PA) via fluorescence quenching.
Collapse
Affiliation(s)
- Tongmou Geng
- AnHui Province Key Laboratory of Optoelectronic and Magnetism Functional Materials, School of Chemistry and Chemical Engineering, Anqing Normal University, Anqing, 246011, China.
| | - Lanzhen Ma
- AnHui Province Key Laboratory of Optoelectronic and Magnetism Functional Materials, School of Chemistry and Chemical Engineering, Anqing Normal University, Anqing, 246011, China
| | - Guofeng Chen
- AnHui Province Key Laboratory of Optoelectronic and Magnetism Functional Materials, School of Chemistry and Chemical Engineering, Anqing Normal University, Anqing, 246011, China
| | - Can Zhang
- AnHui Province Key Laboratory of Optoelectronic and Magnetism Functional Materials, School of Chemistry and Chemical Engineering, Anqing Normal University, Anqing, 246011, China
| | - Weiyong Zhang
- AnHui Province Key Laboratory of Optoelectronic and Magnetism Functional Materials, School of Chemistry and Chemical Engineering, Anqing Normal University, Anqing, 246011, China
| | - Qingyuan Niu
- School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002, People's Republic of China
| |
Collapse
|
26
|
Kumar R, Rajpoot A, Roy A, Shunmugam R. Engineering biodegradable polymeric network for the efficient removal of organo‐amphiphilic toxicants. POLYM ADVAN TECHNOL 2020. [DOI: 10.1002/pat.4829] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Rajan Kumar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata (IISER K)Polymer Research Centre (PRC), Centre for Advanced Functional Materials (CAFM) Mohanpur West Bengal India
| | - Anubhav Rajpoot
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata (IISER K)Polymer Research Centre (PRC), Centre for Advanced Functional Materials (CAFM) Mohanpur West Bengal India
| | - Amritangshu Roy
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata (IISER K)Polymer Research Centre (PRC), Centre for Advanced Functional Materials (CAFM) Mohanpur West Bengal India
| | - Raja Shunmugam
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata (IISER K)Polymer Research Centre (PRC), Centre for Advanced Functional Materials (CAFM) Mohanpur West Bengal India
| |
Collapse
|
27
|
Liang L, Sun N, Yu Y, Ren S, Wu A, Zheng L. Photoluminescent polymer hydrogels with stimuli-responsiveness constructed from Eu-containing polyoxometalate and imidazolium zwitterions. SOFT MATTER 2020; 16:2311-2320. [PMID: 32051977 DOI: 10.1039/d0sm00082e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Inorganic-organic co-assembly of anionic polyoxometalates (POMs) with zwitterions provides a facile way to fabricate functional soft materials. In this paper, a translucent, photoluminescent polymer hydrogel was fabricated from Weakley-type POM Na9EuW10O36 (EuW10) and polymerizable imidazole-type zwitterion 3-(1-vinyl-3-imidazolio)propanesulfonate (VIPS) via a one-step synthesis method. Detailed characterization indicated that the polymerization of double bonds in VIPS and electrostatic interactions between EuW10 and VIPS play important roles in the formation of the hydrogels. Additionally, the introduction of non-polymerizable zwitterions 3-(1-methyl-3-imidazolio)propanesulfonate (MIPS) or 3-(1-decyl-3-imidazolio)propanesulfonate (C10IPS) can improve the mechanical and luminous performances of the hydrogels. Especially, C10IPS with a long alkyl chain would more significantly alter the coordination environment of EuW10, and consequently resulted in a more efficient energy transfer process. Further investigations revealed that the chemical environment around the Eu3+ can be highly influenced by organic solvents with stronger coordination abilities than water molecules, such as acetone. The translucency and luminescence intensity of the hydrogels can be reversibly transformed after alternately immersing in acetone or H2O for several minutes. Our results provided a useful strategy for the fabrication of luminescent hydrogels by regulating the noncovalent interactions between POMs and zwitterions.
Collapse
Affiliation(s)
- Liwen Liang
- Key Laboratory of Colloid and Interface Chemistry, Shandong University, Ministry of Education, Jinan, 250100, P. R. China.
| | - Na Sun
- Key Laboratory of Colloid and Interface Chemistry, Shandong University, Ministry of Education, Jinan, 250100, P. R. China.
| | - Yang Yu
- Key Laboratory of Colloid and Interface Chemistry, Shandong University, Ministry of Education, Jinan, 250100, P. R. China.
| | - Shujing Ren
- Key Laboratory of Colloid and Interface Chemistry, Shandong University, Ministry of Education, Jinan, 250100, P. R. China.
| | - Aoli Wu
- Key Laboratory of Colloid and Interface Chemistry, Shandong University, Ministry of Education, Jinan, 250100, P. R. China.
| | - Liqiang Zheng
- Key Laboratory of Colloid and Interface Chemistry, Shandong University, Ministry of Education, Jinan, 250100, P. R. China.
| |
Collapse
|
28
|
Geng TM, Zhang C, Hu C, Liu M, Fei YT, Xia HY. Synthesis of 1,6-disubstituted pyrene-based conjugated microporous polymers for reversible adsorption and fluorescence sensing of iodine. NEW J CHEM 2020. [DOI: 10.1039/c9nj05509f] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Four 1,6-disubstituted pyrene-based fluorescent conjugated microporous polymers were synthesized by Sonogashira–Hagihara reaction, trimerization reaction of –CN, and Friedel–Crafts reaction, respectively, which can efficient capture and sense I2.
Collapse
Affiliation(s)
- Tong-Mou Geng
- AnHui Province Key Laboratory of Optoelectronic and Magnetism Functional Materials
- School of Chemistry and Chemical Engineering
- Anqing Normal University
- Anqing 246011
- China
| | - Can Zhang
- AnHui Province Key Laboratory of Optoelectronic and Magnetism Functional Materials
- School of Chemistry and Chemical Engineering
- Anqing Normal University
- Anqing 246011
- China
| | - Chen Hu
- AnHui Province Key Laboratory of Optoelectronic and Magnetism Functional Materials
- School of Chemistry and Chemical Engineering
- Anqing Normal University
- Anqing 246011
- China
| | - Min Liu
- AnHui Province Key Laboratory of Optoelectronic and Magnetism Functional Materials
- School of Chemistry and Chemical Engineering
- Anqing Normal University
- Anqing 246011
- China
| | - Ya-Ting Fei
- AnHui Province Key Laboratory of Optoelectronic and Magnetism Functional Materials
- School of Chemistry and Chemical Engineering
- Anqing Normal University
- Anqing 246011
- China
| | - Hong-Yu Xia
- AnHui Province Key Laboratory of Optoelectronic and Magnetism Functional Materials
- School of Chemistry and Chemical Engineering
- Anqing Normal University
- Anqing 246011
- China
| |
Collapse
|
29
|
Godri Pollitt KJ, Kim JH, Peccia J, Elimelech M, Zhang Y, Charkoftaki G, Hodges B, Zucker I, Huang H, Deziel NC, Murphy K, Ishii M, Johnson CH, Boissevain A, O'Keefe E, Anastas PT, Orlicky D, Thompson DC, Vasiliou V. 1,4-Dioxane as an emerging water contaminant: State of the science and evaluation of research needs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 690:853-866. [PMID: 31302550 DOI: 10.1016/j.scitotenv.2019.06.443] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/26/2019] [Accepted: 06/26/2019] [Indexed: 06/10/2023]
Abstract
1,4-Dioxane has historically been used to stabilize chlorinated solvents and more recently has been found as a contaminant of numerous consumer and food products. Once discharged into the environment, its physical and chemical characteristics facilitate migration in groundwater, resulting in widespread contamination of drinking water supplies. Over one-fifth of U.S. public drinking water supplies contain detectable levels of 1,4-dioxane. Remediation efforts using common adsorption and membrane filtration techniques have been ineffective, highlighting the need for alternative removal approaches. While the data evaluating human exposure and health effects are limited, animal studies have shown chronic exposure to cause carcinogenic responses in the liver across multiple species and routes of exposure. Based on this experimental evidence, the U.S. Environmental Protection Agency has listed 1,4-dioxane as a high priority chemical and classified it as a probable human carcinogen. Despite these health concerns, there are no federal or state maximum contaminant levels for 1,4-dioxane. Effective public health policy for this emerging contaminant requires additional information about human health effects, chemical interactions, environmental fate, analytical detection, and treatment technologies. This review highlights the current state of knowledge, key uncertainties, and data needs for future research on 1,4-dioxane.
Collapse
Affiliation(s)
- Krystal J Godri Pollitt
- Department of Environmental Health Sciences, School of Public Health, Yale University, New Haven, CT 06510, United States.
| | - Jae-Hong Kim
- Department of Chemical & Environmental Engineering, School of Engineering & Applied Science, Yale University, New Haven, CT 06520, United States
| | - Jordan Peccia
- Department of Chemical & Environmental Engineering, School of Engineering & Applied Science, Yale University, New Haven, CT 06520, United States
| | - Menachem Elimelech
- Department of Chemical & Environmental Engineering, School of Engineering & Applied Science, Yale University, New Haven, CT 06520, United States
| | - Yawei Zhang
- Department of Environmental Health Sciences, School of Public Health, Yale University, New Haven, CT 06510, United States; Department of Surgery, School of Medicine, Yale University, New Haven, CT 06520, United States
| | - Georgia Charkoftaki
- Department of Environmental Health Sciences, School of Public Health, Yale University, New Haven, CT 06510, United States
| | - Brenna Hodges
- Department of Chemical & Environmental Engineering, School of Engineering & Applied Science, Yale University, New Haven, CT 06520, United States
| | - Ines Zucker
- Department of Chemical & Environmental Engineering, School of Engineering & Applied Science, Yale University, New Haven, CT 06520, United States
| | - Huang Huang
- Department of Environmental Health Sciences, School of Public Health, Yale University, New Haven, CT 06510, United States
| | - Nicole C Deziel
- Department of Environmental Health Sciences, School of Public Health, Yale University, New Haven, CT 06510, United States
| | - Kara Murphy
- Northeast States for Coordinated Air Use Management (NESCAUM), Boston, MA 02111, United States
| | - Momoko Ishii
- Department of Environmental Health Sciences, School of Public Health, Yale University, New Haven, CT 06510, United States
| | - Caroline H Johnson
- Department of Environmental Health Sciences, School of Public Health, Yale University, New Haven, CT 06510, United States
| | | | - Elaine O'Keefe
- Office of Public Health Practice, School of Public Health, Yale University, New Haven, CT 06510, United States
| | - Paul T Anastas
- Department of Environmental Health Sciences, School of Public Health, Yale University, New Haven, CT 06510, United States; Center for Green Chemistry and Green Engineering, Department of Chemistry, Yale School of Forestry & Environmental Studies, New Haven, CT 06511, United States
| | - David Orlicky
- Department of Pathology, University of Colorado School of Medicine, Aurora, CO 80045, United States
| | - David C Thompson
- Department of Clinical Pharmacy, University of Colorado School of Pharmacy, Aurora, CO 80045, United States
| | - Vasilis Vasiliou
- Department of Environmental Health Sciences, School of Public Health, Yale University, New Haven, CT 06510, United States.
| |
Collapse
|
30
|
Zhu S, Wang S, Xia M, Wang B, Huang Y, Zhang D, Zhang X, Wang G. Intracellular Imaging of Glutathione with MnO 2 Nanosheet@Ru(bpy) 32+-UiO-66 Nanocomposites. ACS APPLIED MATERIALS & INTERFACES 2019; 11:31693-31699. [PMID: 31339687 DOI: 10.1021/acsami.9b11025] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Fluorescent detection of glutathione (GSH) in the living system has attracted much attention, but current fluorescent probes are usually exposed to the exterior environment, leading to photobleaching and premature leakage and subsequently limiting the sensitivity and photostability. Herein, luminescent metal-organic frameworks [Ru(bpy)32+ encapsulated in UiO-66] coated with manganese dioxide nanosheets [MnO2 NS@Ru(bpy)32+-UiO-66] were prepared by an in situ growth method and further explored to construct a GSH-switched fluorescent sensing platform. Because of the splendid fluorescence quenching ability, special probe leakage blocking role and distinguished recognition of the MnO2 NS, and the improved fluorescence of Ru(bpy)32+ by UiO-66, a low background, highly sensitive and selective detection of GSH with a low limit of detection as 0.28 μM was realized. At the same time, the preparation of MnO2 NS@Ru(bpy)32+-UiO-66 nanocomposites is simple and less toxic, and there was no notable loss of cell survivability after being exposed to MnO2 NS@Ru(bpy)32+-UiO-66 below the concentrations of 120 μg mL-1 for 24 h. Consequently, the results coming from this effort suggest that the new sensing platform will have a great potential in the detection of GSH in living cells.
Collapse
|
31
|
Geng T, Chen G, Zhang C, Ma L, Zhang W, Xia H. A Superacid-catalyzed Synthesis of Fluorescent Covalent Triazine Based Framework Containing Perylene Tetraanhydride Bisimide for Sensing to O-nitrophenol with Ultrahigh Sensitivity. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2019. [DOI: 10.1080/10601325.2019.1640064] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Tongmou Geng
- AnHui Province Key Laboratory of Optoelectronic and Magnetism Functional Materials; Key Laboratory of Functional Coordination Compounds of Anhui Higher Education Institutes; School of Chemistry and Chemical Engineering, Anqing Normal University, Anqing, P. R. China
| | - Guofeng Chen
- AnHui Province Key Laboratory of Optoelectronic and Magnetism Functional Materials; Key Laboratory of Functional Coordination Compounds of Anhui Higher Education Institutes; School of Chemistry and Chemical Engineering, Anqing Normal University, Anqing, P. R. China
| | - Can Zhang
- AnHui Province Key Laboratory of Optoelectronic and Magnetism Functional Materials; Key Laboratory of Functional Coordination Compounds of Anhui Higher Education Institutes; School of Chemistry and Chemical Engineering, Anqing Normal University, Anqing, P. R. China
| | - Lanzhen Ma
- AnHui Province Key Laboratory of Optoelectronic and Magnetism Functional Materials; Key Laboratory of Functional Coordination Compounds of Anhui Higher Education Institutes; School of Chemistry and Chemical Engineering, Anqing Normal University, Anqing, P. R. China
| | - Weiyong Zhang
- AnHui Province Key Laboratory of Optoelectronic and Magnetism Functional Materials; Key Laboratory of Functional Coordination Compounds of Anhui Higher Education Institutes; School of Chemistry and Chemical Engineering, Anqing Normal University, Anqing, P. R. China
| | - Hongyu Xia
- AnHui Province Key Laboratory of Optoelectronic and Magnetism Functional Materials; Key Laboratory of Functional Coordination Compounds of Anhui Higher Education Institutes; School of Chemistry and Chemical Engineering, Anqing Normal University, Anqing, P. R. China
| |
Collapse
|
32
|
Poly[1,3,6,8-tetra(2-thiophenyl)pyrene] and poly[1,3,6,8-tetra(3-thiophenyl)pyrene] conjugated microporous polymers for reversible adsorbing and fluorescent sensing iodine. JOURNAL OF POLYMER RESEARCH 2019. [DOI: 10.1007/s10965-019-1766-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
33
|
Goswami R, Mandal SC, Pathak B, Neogi S. Guest-Induced Ultrasensitive Detection of Multiple Toxic Organics and Fe 3+ Ions in a Strategically Designed and Regenerative Smart Fluorescent Metal-Organic Framework. ACS APPLIED MATERIALS & INTERFACES 2019; 11:9042-9053. [PMID: 30717599 DOI: 10.1021/acsami.8b20013] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Luminescent metal-organic frameworks (LMOFs) are promising functional materials for sustainable applications, where an analyte-induced multiresponsive system with good recyclability is beneficial for detecting numerous lethal pollutants. We designed and built the dual-functionalized, three-dimensional Zn(II)-framework [Zn3( bpg)1.5( azdc)3]·(DMF)5.9·(H2O)1.05 (CSMCRI-1) using an -OH group-integrated bpg linker and a -N═N- moiety containing H2 azdc ligand, which functions as a unique tetrasensoric fluorescent probe. The activated CSMCRI-1 (1') represents the hitherto unreported pillar-layer framework for extremely selective fluorescence quenching by nitrofurazone antibiotics as well as explosive nitro-aromatic 2,4,6-trinitrophenol, where ultrasensitive detection is achieved for both the electron-lacking analytes. Impressively, 1' represents the first ever MOF for significant fluorescence "turn-on" detection of toxic and electron-rich 4-aminophenol in the concurrent presence of isomeric analogues. Density functional theory calculations highlight the specific importance of pillar functionalization in the "turn-on" or "turn-off" responses of 1' by electronically divergent toxic organics and provide further proof of supramolecular interactions between the framework and analytes. The fluorescence intensity of 1' dramatically quenches by a trace amount of Fe3+ ions over other competing metal ions, alongside visible colorimetric change of the framework in solid and solution phase upon Fe3+ encapsulation. The sensing ability of 1' remains unaltered for multiple cycles toward all lethal pollutants. The sensing mechanism is attributed to both dynamic and static quenching as well as resonance energy transfer, which strongly comply with the predictions of theoretical simulations. Considering the long-term and real-time monitoring, AND as well as OR molecular logic gates are constructed based on the discriminative fluorescence response for each analyte that provides a platform to fabricate smart LMOFs with multimode logic operations.
Collapse
Affiliation(s)
| | - Shyama Charan Mandal
- Discipline of Chemistry , Indian Institute of Technology (IIT) Indore , Indore , Madhya Pradesh 453552 , India
| | - Biswarup Pathak
- Discipline of Chemistry , Indian Institute of Technology (IIT) Indore , Indore , Madhya Pradesh 453552 , India
| | | |
Collapse
|
34
|
Shanmugaraju S, Umadevi D, González-Barcia LM, Delente JM, Byrne K, Schmitt W, Watson GW, Gunnlaugsson T. “Turn-on” fluorescence sensing of volatile organic compounds using a 4-amino-1,8-naphthalimide Tröger's base functionalised triazine organic polymer. Chem Commun (Camb) 2019; 55:12140-12143. [DOI: 10.1039/c9cc05585a] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The 4-amino-1,8-naphthalimide Tröger's base functionalized triazine covalent organic polymer was synthesised and employed as a “turn-on” fluorescent sensor for the discriminative sensing of volatile organic compounds (VOCs).
Collapse
Affiliation(s)
- Sankarasekaran Shanmugaraju
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI)
- Trinity College Dublin
- The University of Dublin
- Dublin 2
- Ireland
| | - Deivasigamani Umadevi
- School of Chemistry and Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN)
- Trinity College Dublin
- The University of Dublin
- Dublin 2
- Ireland
| | - Luis M. González-Barcia
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI)
- Trinity College Dublin
- The University of Dublin
- Dublin 2
- Ireland
| | - Jason M. Delente
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI)
- Trinity College Dublin
- The University of Dublin
- Dublin 2
- Ireland
| | - Kevin Byrne
- School of Chemistry and Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN)
- Trinity College Dublin
- The University of Dublin
- Dublin 2
- Ireland
| | - Wolfgang Schmitt
- School of Chemistry and Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN)
- Trinity College Dublin
- The University of Dublin
- Dublin 2
- Ireland
| | - Graeme W. Watson
- School of Chemistry and Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN)
- Trinity College Dublin
- The University of Dublin
- Dublin 2
- Ireland
| | - Thorfinnur Gunnlaugsson
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI)
- Trinity College Dublin
- The University of Dublin
- Dublin 2
- Ireland
| |
Collapse
|
35
|
Abstract
Porous organic polymers (POPs), which are built from pure organic building blocks through strong covalent bonds, are intriguing platforms with multiple functionalities.
Collapse
Affiliation(s)
- Dongyang Chen
- College of Chemistry and Chemical Engineering
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety
- Central South University
- Changsha 410005
- China
| | - Cheng Liu
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian 116012
- China
| | - Juntao Tang
- College of Chemistry and Chemical Engineering
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety
- Central South University
- Changsha 410005
- China
| | - Linfeng Luo
- College of Chemistry and Chemical Engineering
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety
- Central South University
- Changsha 410005
- China
| | - Guipeng Yu
- College of Chemistry and Chemical Engineering
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety
- Central South University
- Changsha 410005
- China
| |
Collapse
|
36
|
Das D, Mitra A, Chatterjee R, Sain S, Chattopadhyay KK. A morphology-tailored triazine-based crystalline organic polymer for efficient mercury sensing. NEW J CHEM 2019. [DOI: 10.1039/c8nj06119j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A melamine-based crystalline organic polymer as a highly efficient ultra-trace Hg2+ ion sensor with a detection limit of 0.03 ppb.
Collapse
Affiliation(s)
- Dimitra Das
- School of Materials Science and Nanotechnology
- Jadavpur University
- Kolkata 700032
- India
| | - Anuradha Mitra
- Department of Physics
- Jadavpur University
- Kolkata 700032
- India
| | - Rituparna Chatterjee
- School of Materials Science and Nanotechnology
- Jadavpur University
- Kolkata 700032
- India
| | - Sumanta Sain
- Department of Materials Science
- Indian Association for the Cultivation of Science
- Kolkata 700 032
- India
| | - Kalyan Kumar Chattopadhyay
- School of Materials Science and Nanotechnology
- Jadavpur University
- Kolkata 700032
- India
- Department of Physics
| |
Collapse
|
37
|
Razzaque S, Wang K, Hussain I, Tan B. Facile Synthesis of Hypercrosslinked Hollow Microporous Organic Capsules for Electrochemical Sensing of Cu II Ions. Chemistry 2018; 25:548-555. [PMID: 30270511 DOI: 10.1002/chem.201803643] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 09/13/2018] [Indexed: 11/08/2022]
Abstract
A very simple and facile methodology is used to prepare dithiocarbamate-functionalized hollow microporous organic capsules (HMOCs-DTC), which exhibit excellent stability, a high surface area, and appropriate microporous architecture. In this strategy, SiO2 particles are used as templates to construct PS-DVB-MAA microspheres, and then dithiocarbamate groups are grafted onto them. The dithiocarbamate-functionalized hypercrosslinked microporous organic capsules (HMOCs-DTC/GC) are then used as an electrode material for the detection of CuII ions. Cyclic voltammetry (CV) and electron impedance spectroscopy (EIS) are exploited to study the electrochemical potential of the designed material. The placement of functional groups (dithiocarbamate) at the mesopore interface effectively enhances the mass transfer, which facilitates the more selective detection of CuII ions. The high sensitivity of the modified electrode is expressed in terms of current (Ip ) enhancement at extremely low concentrations of CuII ions. Thus, a functional and robust porous material (HMOCs-DTC) presents a sensitive sensing ability, displaying the calibration response over a wide linear range (2.50×10-11 -3.50×10-10 m), with a lowest limit of detection of 1.02×10-11 m. Indeed, these HMOCs present a new class of porous polymers possessing extraordinarily high scalability but avoiding complex and expensive synthetic methodologies, promoting its practical utilization.
Collapse
Affiliation(s)
- Shumaila Razzaque
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering Huazhong, University of Science and Technology, Wuhan, 430074, P.R. China
| | - Kewei Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering Huazhong, University of Science and Technology, Wuhan, 430074, P.R. China
| | - Irshad Hussain
- Department of Chemistry, SBA School of Science and Engineering (SSE), Lahore University of Management Sciences (LUMS), Lahore Cantt 54792 (Pakistan) and US-Pakistan Centre for, Advanced Studies in Energy (USPCAS-E), University of, Engineering & Technology (UET), Peshawar, Pakistan
| | - Bien Tan
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering Huazhong, University of Science and Technology, Wuhan, 430074, P.R. China
| |
Collapse
|
38
|
Miri MG, Khajeh M, Oveisi AR, Bohlooli M. Urea-based porous organic polymer/graphene oxide hybrid as a new sorbent for highly efficient extraction of bovine serum albumin prior to its spectrophotometric determination. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 205:200-206. [PMID: 30015026 DOI: 10.1016/j.saa.2018.07.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 07/08/2018] [Accepted: 07/10/2018] [Indexed: 06/08/2023]
Abstract
A 3D urea-based porous organic polymer (Urea-POP) was prepared via the reaction of tetrakis(4-aminophenyl)methane and 1,4-Phenylene diisocyanate. The polymer was subsequently reacted with 2D layered nanosheets of graphene oxide (GO) to prepare Urea-POP/GO as a novel and highly efficient sorbent for pre-concentration and extraction of serum albumin samples, prior to spectrophotometric determination. The hybrid material combines advantages of both POP and GO such as hydrophilicity, high dispersion stability, porosity, and having a large number of nitrogen- and oxygen-containing functional groups. Parameters which influence the extraction efficiency such as the amount of the adsorbent, pH of sample solution, ionic strength, adsorption and desorption time were investigated and optimized. For the method, detection limit of 0.068 mg L-1 and determination coefficient (R2) of 0.9991 were obtained. The intra- and inter-day was calculated with five replicates in the same day and seven consecutive days, respectively. Intra-day and inter-day precisions were 1.7% and 5.9%, respectively. The maximum sorption capacity was 357.1 mg g-1, which is higher than the other reported sorbents. The proposed method was demonstrated to be sensitive enough for determination of serum albumin from bio-samples.
Collapse
Affiliation(s)
| | - Mostafa Khajeh
- Department of Chemistry, University of Zabol, Zabol, Iran.
| | | | | |
Collapse
|
39
|
Zhang Q, Xiong Y, Liu J, Zhang T, Liu L, Huang Y. Porous coordination/covalent hybridized polymers synthesized from pyridine-zinc coordination compound and their CO 2 capture ability, fluorescence and selective response properties. Chem Commun (Camb) 2018; 54:12025-12028. [PMID: 30298158 DOI: 10.1039/c8cc05930f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Currently, porous polymers are mainly synthesized by linking coordination or organic covalent bonds. In this study, we propose the synthesis of a porous coordination/covalent hybridized polymer from di(4-vinylpyridine)-dichloro-zinc (ZnVP2) by "coordination-polymerization" method. The resulting porous polymer demonstrated CO2 capture ability and multi-responsive properties.
Collapse
Affiliation(s)
- Quanli Zhang
- State Key Laboratory of Environmental-friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621010, China.
| | | | | | | | | | | |
Collapse
|
40
|
Bhunia S, Dey N, Pradhan A, Bhattacharya S. A conjugated microporous polymer based visual sensing platform for aminoglycoside antibiotics in water. Chem Commun (Camb) 2018; 54:7495-7498. [PMID: 29922790 DOI: 10.1039/c8cc02865f] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A donor-acceptor based conjugated microporous polymer, PER@NiP-CMOP-1, has been synthesized which can achieve highly sensitive stereo-specific "Turn ON" biosensing of an aminoglycoside up to the ppb level. The coordination-driven inhibition of photo-induced electron transfer (d-PET) for d-electrons and the rotational freezing are the key factors for the recovery of the emission.
Collapse
Affiliation(s)
- Subhajit Bhunia
- Director's Research Unit, Indian Association for the Cultivation of Science, Kolkata, 700032, India.
| | | | | | | |
Collapse
|
41
|
Luo Y, Duan L, Chen R, Wang H, Cheng X. Facile Preparation of Micro/Mesoporous Conjugated Polymers for Multifunctional Sensing and Separation Applications. ChemistrySelect 2018. [DOI: 10.1002/slct.201702707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yanmei Luo
- School of Chemistry and Environmental Engineering; Wuhan Institute of Technology; Wuhan, P. R. China 430074
- School of Textiles and Garments; Southwest University, Chongqing, P. R.; China 400715
| | - Lian Duan
- School of Textiles and Garments; Southwest University, Chongqing, P. R.; China 400715
| | - Rong Chen
- School of Chemistry and Environmental Engineering; Wuhan Institute of Technology; Wuhan, P. R. China 430074
| | - Hua Wang
- School of Textiles and Garments; Southwest University, Chongqing, P. R.; China 400715
| | - Xinjian Cheng
- School of Chemistry and Environmental Engineering; Wuhan Institute of Technology; Wuhan, P. R. China 430074
| |
Collapse
|
42
|
Guo L, Wang M, Cao D. A Novel Zr-MOF as Fluorescence Turn-On Probe for Real-Time Detecting H 2 S Gas and Fingerprint Identification. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1703822. [PMID: 29611284 DOI: 10.1002/smll.201703822] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 12/19/2017] [Indexed: 05/26/2023]
Abstract
The development of fluorescence turn-on probes for selectively sensing toxic gases and visualization identification of fingerprints is significantly important for society security and human health. Here, Zr is used as the metal center and 1,3,6,8-tetra (4-carboxylphenyl) pyrene (TBAPy) and tetrakis(4-carboxyphenyl)porphyrin (TCPP) as double linkers to synthesize a novel Zr(TBAPy)5 (TCPP) material. Results indicate that Zr(TBAPy)5 (TCPP) can be used as a fluorescence turn-on probe for highly selective and sensitive detection of H2 S gas and its derivatives S2- in aqueous solutions with an extremely low concentration (≈1 ppb) and fast response time (<10 s). Moreover, by tailoring the particle size of samples, it is found that Zr(TBAPy)5 (TCPP) can efficiently achieve the visualization identification of fingerprints due to the fluorescence turn-on effect. All the results indicate that the Zr(TBAPy)5 (TCPP) is a promising multifunctional fluorescence turn-on probe.
Collapse
Affiliation(s)
- Lin Guo
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Meng Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Dapeng Cao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
43
|
Wang X, Wang J, Jiao C, Hao L, Wu Q, Wang C, Wang Z. RETRACTED: Preparation of magnetic mesoporous poly-melamine-formaldehyde composite for efficient extraction of chlorophenols. Talanta 2018; 179:676-684. [DOI: 10.1016/j.talanta.2017.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 11/22/2017] [Accepted: 12/01/2017] [Indexed: 12/24/2022]
|
44
|
Bhanja P, Mishra S, Manna K, Das Saha K, Bhaumik A. Porous Polymer Bearing Polyphenolic Organic Building Units as a Chemotherapeutic Agent for Cancer Treatment. ACS OMEGA 2018; 3:529-535. [PMID: 30023782 PMCID: PMC6045373 DOI: 10.1021/acsomega.7b01672] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 01/02/2018] [Indexed: 05/05/2023]
Abstract
Cancer is one of the most deadly diseases worldwide. Although several chemotherapeutic agents are available at present for its treatment, they have their own limitations. The main problems of these chemotherapeutic agents are cost involvement and severe life-threatening antagonistic effects. Here, we report a new biodegradable N-rich porous organic polymer methylenedianiline-triformyl phloroglucinol (MDTFP-1) synthesized via a Schiff base condensation reaction between two reactive monomers, that is, 4,4'-methylenedianiline and 2,4,6-triformyl phloroglucinol under inert atmosphere. Because this porous polymer contains polyphenolic building units and has a high Brunauer-Emmett-Teller surface area (283 m2 g-1), it has been explored in the anticancer activity using HCT 116, A549, and MIA PaCa-2 cell lines. We have carried out the flow cytometric assessment using Annexin-V-FITC/PI staining through the exposed level of phosphatidylserine in the outer membrane of cells with MDTFP-1-induced apoptosis. Our results suggested that apoptosis of cells have been enhanced in a time-dependent manner in the presence of this novel porous polymer.
Collapse
Affiliation(s)
- Piyali Bhanja
- Department
of Materials Science, Indian Association
for the Cultivation of Science, Jadavpur, Kolkata 700 032, India
| | - Snehasis Mishra
- Cancer
& Inflammatory Disorder Division, CSIR-Indian
Institute of Chemical Biology, Kolkata 700032, India
| | - Krishnendu Manna
- Cancer
& Inflammatory Disorder Division, CSIR-Indian
Institute of Chemical Biology, Kolkata 700032, India
| | - Krishna Das Saha
- Cancer
& Inflammatory Disorder Division, CSIR-Indian
Institute of Chemical Biology, Kolkata 700032, India
| | - Asim Bhaumik
- Department
of Materials Science, Indian Association
for the Cultivation of Science, Jadavpur, Kolkata 700 032, India
| |
Collapse
|
45
|
Chen Z, Mi X, Lu J, Wang S, Li Y, Dou J, Li D. From 2D → 3D interpenetration to packing: N coligand-driven structural assembly and tuning of luminescent sensing activities towards Fe3+ and Cr2O72− ions. Dalton Trans 2018; 47:6240-6249. [DOI: 10.1039/c8dt00909k] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Three complexes were hydrothermally synthesized and exhibited excellent selectivity towards Fe3+ and Cr2O72−.
Collapse
Affiliation(s)
- Zhiwei Chen
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology
- School of Chemistry and Chemical Engineering
- Liaocheng University
- Liaocheng
- PR China
| | - Xiuna Mi
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology
- School of Chemistry and Chemical Engineering
- Liaocheng University
- Liaocheng
- PR China
| | - Jing Lu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology
- School of Chemistry and Chemical Engineering
- Liaocheng University
- Liaocheng
- PR China
| | - Suna Wang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology
- School of Chemistry and Chemical Engineering
- Liaocheng University
- Liaocheng
- PR China
| | - Yunwu Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology
- School of Chemistry and Chemical Engineering
- Liaocheng University
- Liaocheng
- PR China
| | - Jianmin Dou
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology
- School of Chemistry and Chemical Engineering
- Liaocheng University
- Liaocheng
- PR China
| | - Dacheng Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology
- School of Chemistry and Chemical Engineering
- Liaocheng University
- Liaocheng
- PR China
| |
Collapse
|
46
|
Xu N, Wang RL, Li DP, Meng X, Mu JL, Zhou ZY, Su ZM. A new triazine-based covalent organic polymer for efficient photodegradation of both acidic and basic dyes under visible light. Dalton Trans 2018; 47:4191-4197. [DOI: 10.1039/c8dt00148k] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
COP-NT can be used as an efficient photocatalyst for the degradation of methyl orange (MO), rhodamine B (RhB) and methylene blue (MB).
Collapse
Affiliation(s)
- Ning Xu
- School of Chemistry and Chemical Engineering
- Shandong University of Technology
- Zibo 255049
- People's Republic of China
| | - Rui-Lei Wang
- School of Chemistry and Chemical Engineering
- Shandong University of Technology
- Zibo 255049
- People's Republic of China
| | - Dong-Peng Li
- School of Chemistry and Chemical Engineering
- Shandong University of Technology
- Zibo 255049
- People's Republic of China
| | - Xing Meng
- School of Chemistry and Chemical Engineering
- Shandong University of Technology
- Zibo 255049
- People's Republic of China
| | - Jing-Lin Mu
- School of Chemistry and Chemical Engineering
- Shandong University of Technology
- Zibo 255049
- People's Republic of China
| | - Zi-Yan Zhou
- School of Chemistry and Chemical Engineering
- Shandong University of Technology
- Zibo 255049
- People's Republic of China
| | - Zhong-Min Su
- Institute of Functional Material Chemistry
- Faculty of Chemistry
- Northeast Normal University
- Changchun 130024
- People's Republic of China
| |
Collapse
|
47
|
Wang J, Jiao C, Li M, Wang X, Wang C, Wu Q, Wang Z. Porphyrin based porous organic polymer modified with Fe 3O 4 nanoparticles as an efficient adsorbent for the enrichment of benzoylurea insecticides. Mikrochim Acta 2017; 185:36. [PMID: 29594549 DOI: 10.1007/s00604-017-2542-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 11/09/2017] [Indexed: 12/25/2022]
Abstract
Porphyrin-based porous organic polymers (P-POPs) are amorphous polymers linked by strong covalent bonds between the porphyrin subunits that act as building blocks. The authors describe a magnetic P-POP that possesses high surface area, a highly porous structure, and strong magnetism. The MP-POP was employed as a magnetic sorbent for the extraction of benzoylurea insecticides from cucumber and tomato samples prior to their determination by HPLC. The sorbent has a typical sorption capacity of 1.90-2.00 mg∙g-1. The method exhibits a good linear range (0.8-160 ng·g-1), low limits of detection (0.08-0.2 ng·g-1), and high method recoveries (81.8-103.5%) for cucumber and tomato samples. The MP-POP has different adsorption capabilities for the benzoylurea insecticides, phenylurea herbicides and phenols compounds, and the adsorption mechanism is found to be based on π-stacking, hydrogen-bonding, and hydrophobic interactions. Graphical abstract A novel magnetic porphyrin-based porous organic polymer was fabricated and used as the adsorbent for the efficient extraction of benzoylurea insecticides.
Collapse
Affiliation(s)
- Juntao Wang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, China
| | - Caina Jiao
- College of Science, Hebei Agricultural University, Baoding, Hebei, 071001, China
| | - Menghua Li
- College of Science, Hebei Agricultural University, Baoding, Hebei, 071001, China
| | - Xiaolan Wang
- College of Science, Hebei Agricultural University, Baoding, Hebei, 071001, China
| | - Chun Wang
- College of Science, Hebei Agricultural University, Baoding, Hebei, 071001, China.
| | - Qiuhua Wu
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, China.,College of Science, Hebei Agricultural University, Baoding, Hebei, 071001, China
| | - Zhi Wang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, China. .,College of Science, Hebei Agricultural University, Baoding, Hebei, 071001, China.
| |
Collapse
|
48
|
Selective sensing of two novel coordination polymers based on tris(4-carboxylphenyl)phosphine oxide for organic molecules and Fe 3+ and Hg 2+ ions. J SOLID STATE CHEM 2017. [DOI: 10.1016/j.jssc.2017.09.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
49
|
Deng G, Wang Z. Triptycene-Based Microporous Cyanate Resins for Adsorption/Separations of Benzene/Cyclohexane and Carbon Dioxide Gas. ACS APPLIED MATERIALS & INTERFACES 2017; 9:41618-41627. [PMID: 29140674 DOI: 10.1021/acsami.7b15050] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Triptycene-based cyanate monomers 2,6,14-tricyanatotriptycene (TPC) and 2,6,14-tris(4-cyanatophenyl)triptycene (TPPC) that contain different numbers of benzene rings per molecule were synthesized, from which two microporous cyanate resins PCN-TPC and PCN-TPPC were prepared. Of interest is the observation that the two polymers have very similar porosity parameters, but PCN-TPPC uptakes considerably higher benzene (77.8 wt %) than PCN-TPC (17.6 wt %) at room temperature since the higher concentration of phenyl groups in PCN-TPPC enhances the π-π interaction with benzene molecules. Besides, the adsorption capacity of benzene in PCN-TPPC is dramatically 7 times as high as that of cyclohexane. Contrary to the adsorption of organic vapors, at 273 K and 1.0 bar, PCN-TPC with more heteroatoms in the network skeleton displays larger uptake of CO2 and higher CO2/N2 selectivity (16.4 wt %, 60) than those of PCN-TPPC (14.0 wt %, 39). The excellent and unique adsorption properties exhibit potential applications in the purification of small molecular organic hydrocarbons, e.g., separation of benzene from benzene/cyclohexane mixture as well as CO2 capture from flue gas. Moreover, the results are helpful for deeply understanding the effect of porous and chemical structures on the adsorption properties of organic hydrocarbons and CO2 gas.
Collapse
Affiliation(s)
- Gaoyang Deng
- State Key Laboratory of Fine Chemicals, Department of Polymer Science and Materials, School of Chemical Engineering, Dalian University of Technology , Dalian 116024, China
| | - Zhonggang Wang
- State Key Laboratory of Fine Chemicals, Department of Polymer Science and Materials, School of Chemical Engineering, Dalian University of Technology , Dalian 116024, China
| |
Collapse
|
50
|
Liu P, Xing L, Lin H, Wang H, Zhou Z, Su Z. Construction of porous covalent organic polymer as photocatalysts for RhB degradation under visible light. Sci Bull (Beijing) 2017; 62:931-937. [PMID: 36659463 DOI: 10.1016/j.scib.2017.05.031] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 04/28/2017] [Accepted: 05/18/2017] [Indexed: 01/21/2023]
Abstract
In the present work, a novel porous, and chemically stable amine-based covalent organic polymer (POP-1) was designed and synthesized under solvothermal conditions. The porosity, crystallinity, chemical stability, electrochemical properties, and diffuse reflectance of POP-1 were investigated via N2 sorption experiment, power X-ray diffraction, thermogravimetric analysis, cyclic voltammetry, and ultraviolet visible near infrared spectrometry, respectively. POP-1 exhibits good chemical stability in both acidic and alkaline aqueous solutions, as well as in organic solvents. Undoped POP-1 can be directly used as a photocatalyst for rhodamine B irradiation degradation under light-emitting diode and natural light. The Ea of POP-1 for RhB degradation is 82.37kJ/mol. Furthermore, POP-1 can be reused as a catalyst in RhB degradation without degraded catalytic activity.
Collapse
Affiliation(s)
- Pingxiao Liu
- School of Chemical Engineering, Shandong University of Technology, Zibo 255049, China
| | - Lingbao Xing
- School of Chemical Engineering, Shandong University of Technology, Zibo 255049, China
| | - Hongtao Lin
- School of Chemical Engineering, Shandong University of Technology, Zibo 255049, China
| | - Haining Wang
- School of Chemical Engineering, Shandong University of Technology, Zibo 255049, China
| | - Ziyan Zhou
- School of Chemical Engineering, Shandong University of Technology, Zibo 255049, China.
| | - Zhongmin Su
- College of Chemistry, Northeast Normal University, Changchun 133000, China.
| |
Collapse
|