1
|
Liu S, Chao H, He D, Wang Y, Yang Y. Biomimetic co-immobilization of β-glucosidase, glucose oxidase, and horseradish peroxidase to construct a multi-enzyme biosensor for determination of amygdalin. Int J Biol Macromol 2025; 297:139868. [PMID: 39814275 DOI: 10.1016/j.ijbiomac.2025.139868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 01/03/2025] [Accepted: 01/12/2025] [Indexed: 01/18/2025]
Abstract
Accurate, specific, and cost-effective detection of toxic cyanogenic glycosides is crucial for ensuring biological health and food safety. In this study, a novel biosensor based on co-immobilized multi-enzyme system was constructed by artificial antibody-antigen-directed immobilization for the colorimetric detection of amygdalin through a cascade reaction catalyzed by β-glucosidase, glucose oxidase, and horseradish peroxidase. Artificial antibodies and antigens were prepared using catechol and 3,4-dihydroxybenzaldehyde, respectively, to generate mutual affinity recognition ability for enzyme immobilization. On this basis, the biosensing system showed a complete response to amygdalin within 4 min, with a linear range from 2 to 10 μM, a detection limit of 0.18 μM, and a quantification limit of 0.6 μM. In addition, this sensor had good precision, reproducibility, stability, and reusability. This study proposed a method for detecting cyanogenic glycosides, providing a successful case for the application of cascade biosensors in food safety detection.
Collapse
Affiliation(s)
- Shuo Liu
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Hongli Chao
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Dajun He
- Analysis and Testing Centre, Shihezi University, Shihezi 832003, China
| | - Yi Wang
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Yi Yang
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
2
|
Feng J, Huang QY, Zhang C, Ramakrishna S, Dong YB. Review of covalent organic frameworks for enzyme immobilization: Strategies, applications, and prospects. Int J Biol Macromol 2023; 248:125729. [PMID: 37422245 DOI: 10.1016/j.ijbiomac.2023.125729] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/10/2023]
Abstract
Efficient enzyme immobilization systems offer a promising approach for improving enzyme stability and recyclability, reducing enzyme contamination in products, and expanding the applications of enzymes in the biomedical field. Covalent organic frameworks (COFs) possess high surface areas, ordered channels, optional building blocks, highly tunable porosity, stable mechanical properties, and abundant functional groups, making them ideal candidates for enzyme immobilization. Various COF-enzyme composites have been successfully synthesized, with performances that surpass those of free enzymes in numerous ways. This review aims to provide an overview of current enzyme immobilization strategies using COFs, highlighting the characteristics of each method and recent research applications. The future opportunities and challenges of enzyme immobilization technology using COFs are also discussed.
Collapse
Affiliation(s)
- Jie Feng
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China; Centre for Nanotechnology and Sustainability, Department of Mechanical Engineering, National University of Singapore, 117574 Singapore, Singapore
| | - Qing-Yun Huang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China
| | - Ce Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China
| | - Seeram Ramakrishna
- Centre for Nanotechnology and Sustainability, Department of Mechanical Engineering, National University of Singapore, 117574 Singapore, Singapore.
| | - Yu-Bin Dong
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China.
| |
Collapse
|
3
|
Acrylic fabric and nanomaterials to enhance α-amylase-based biocatalytic immobilized systems for industrial food applications. Int J Biol Macromol 2023; 233:123539. [PMID: 36740122 DOI: 10.1016/j.ijbiomac.2023.123539] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
An innovative approach for immobilizing α-amylase was used in this investigation. The acrylic fabric was first treated with hexamethylene diamine (HMDA) and then coated with copper ions that were later reduced to copper nanoparticles (CuNPs). The corresponding materials obtained, Cu(II)@HMDA-TA and CuNPs@HMDA-TA, were employed as carriers for α-amylase, respectively. The structural and morphological characteristics of the produced support matrices before and after immobilization were assessed using various techniques, including FTIR, SEM, EDX, TG/DTG, DSC, and zeta potential. The immobilized α-amylase exhibited the highest level of activity at pH 7.0, with immobilization yields observed for CuNPs@HMDA-TA (81.7 %) (60 unit/g support) followed by Cu(II)@HMDA-TA (71.7 %) (49 unit/g support) and 75 % and 61 % of activity yields, and 91.7 % and 85 % of immobilization efficiency, respectively. Meanwhile, biochemical characterizations of the activity of the soluble and immobilized enzymes were carried out and compared. Optimal temperature, pH, kinetics, storage stability, and reusability parameters were optimized for immobilized enzyme activity. The optimal pH and temperature were recorded as 6.0 and 50 °C for soluble α-amylase while the two forms of immobilized α-amylase exhibit a broad pH of 6.0-7.0 and optimal temperature at 60 °C. After recycling 15 times, the immobilized α-amylase on CuNPs@HMDA-TA and Cu(II)@HMDA-TA preserved 63 % and 52 % of their activities, respectively. The two forms of immobilized α-amylase displayed high stability when stored for 6 weeks and preserved 85 % and 76 % of their activities, respectively. Km values were calculated as 1.22, 1.39, and 1.84 mg/mL for soluble, immobilized enzymes on CuNPs@HMDA-TA, and Cu(II)@HMDA-TA, and Vmax values were calculated as 36.25, 29.68, and 21.57 μmol/mL/min, respectively. The total phenolic contents of maize kernels improved 1.4 ± 0.01 fold after treatment by two immobilized α-amylases.
Collapse
|
4
|
Synthesis, characterization and catalytic application of functionalized polyureas. JOURNAL OF POLYMER RESEARCH 2023. [DOI: 10.1007/s10965-023-03492-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
5
|
Liu Y, Wang K, Zheng H, Ma M, Li S, Ma L. Papain immobilization on interconnected-porous chitosan macroparticles: Application in controllable hydrolysis of egg white for foamability improvement. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
6
|
Bashir MS, Zhou C, Wang C, Sillanpää M, Wang F. Facile strategy to fabricate palladium-based nanoarchitectonics as efficient catalytic converters for water treatment. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
7
|
dos Santos LA, Alnoch RC, Soares GA, Mitchell DA, Krieger N. Immobilization of Pseudomonas fluorescens lipase on chitosan crosslinked with polyaldehyde starch for kinetic resolution of sec-alcohols. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
8
|
Sun C, Wu S, Wu Y, Sun B, Zhang P, Tang K. Lipase AK from Pseudomonas fluorescens immobilized on metal organic frameworks for efficient biosynthesis of enantiopure (S)-1-(4-bromophenyl) ethanol. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.11.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
9
|
Enhanced MOF-immobilized lipase CAL-A with polyethylene glycol for efficient stereoselective hydrolysis of aromatic acid esters. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
10
|
Sun H, Ji Z, He Y, Wang L, Zhan J, Chen L, Zhao Y. Preparation of PAMAM modified PVDF membrane and its adsorption performance for copper ions. ENVIRONMENTAL RESEARCH 2022; 204:111943. [PMID: 34478725 DOI: 10.1016/j.envres.2021.111943] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/13/2021] [Accepted: 08/20/2021] [Indexed: 06/13/2023]
Abstract
As one of the main pollutants of water pollution, the potential toxicity of heavy metal ions always threatens the safety of human and nature. Therefore, how to effectively remove heavy metal ions has become an important research topic in environmental protection. In the existing research, adsorption method is outstanding from many methods because of its high adsorption efficiency and easy operation. In this study, different generations of hyperbranched polyamide-amine (PAMAM) were grafted onto PVDF membrane to obtain the membrane with high adsorption capacity for heavy metal ions. The structure and physicochemical properties of the membranes were evaluated by means of fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (FE-SEM), element analyzer and X-ray photoelectron spectroscopy (EDX). At the same time, various factors affecting the adsorption process were studied, and it was found that the adsorption behavior of copper ion (Cu2+) on the membrane conformed to the pseudo-first-order kinetic model and Langmuir isotherm model. Moreover, after comparing the adsorption effect of the modified membranes grafted with different generations of PAMAM, it was found that the membrane grafted with the third generation PAMAM had the best adsorption when the solution pH was 5, and its maximum adsorption capacity could reach 153.8 mg/g. After five adsorption-desorption cycles, its adsorption capacity can reach 72.83% of the first test, indicating that it has good recycling performance. The results show that the adsorption membrane has good application potential and research value.
Collapse
Affiliation(s)
- Heyu Sun
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Materials Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Zhicheng Ji
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Materials Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Yang He
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Materials Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Lianhuan Wang
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Materials Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Jiang Zhan
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Materials Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Li Chen
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Materials Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Yiping Zhao
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Materials Science and Engineering, Tiangong University, Tianjin, 300387, China.
| |
Collapse
|
11
|
Li S, Kuang R, Zheng Kong X, Zhu X, Jiang X. Immobilization of cobalt oxide nanoparticles on porous nitrogen-doped carbon as electrocatalyst for oxygen evolution. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2021.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
12
|
He B, Tang F, Sun C, Su J, Wu B, Chen Y, Xiao Y, Zhang P, Tang K. Resolution of (R,S)-1-(4-methoxyphenyl)ethanol by lipase-catalyzed stereoselective transesterification and the process optimization. Chirality 2021; 34:438-445. [PMID: 34904761 DOI: 10.1002/chir.23402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/29/2021] [Accepted: 11/24/2021] [Indexed: 11/06/2022]
Abstract
An efficient lipase-catalyzed stereoselective transesterification reaction system was established for resolution of 1-(4-methoxyphenyl)ethanol (MOPE) enantiomers. A series of lipases were tested and compared. The immobilized lipase Novozym 40086 is selected as the best choice. The effects of organic solvent, acyl donor, time and temperature on substrate conversion (c), and optical purity of the remaining substrate (eeS ) were investigated. Response surface methodology and central composite design were employed to evaluate the effect of some important factors and to optimize the process. Under the optimized conditions including solvent of n-hexane, acyl donor of vinyl acetate, temperature of 35°C, substrate molar ratio of 1:6, enzyme dosage of 20 mg, and reaction time of 2.5 h, eeS of 99.87% with c of 56.71% is achieved. The use of alkane solvent and immobilized enzyme, the mild reaction conditions, and the reduced reaction time make the system promising in industrial application.
Collapse
Affiliation(s)
- Bingbing He
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, China
| | - Fengci Tang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, China
| | - Chenrui Sun
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, China
| | - Jiahao Su
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, China
| | - Bingcheng Wu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, China
| | - Yan Chen
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, China
| | - Yuquan Xiao
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, China
| | - Panliang Zhang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, China
| | - Kewen Tang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, China
| |
Collapse
|
13
|
Bashir MS. Benign fabrication process of hierarchal porous polyurea microspheres with tunable pores and porosity: Their Pd immobilization and use for hexavalent chromium reduction. Chem Eng Res Des 2021. [DOI: 10.1016/j.cherd.2021.08.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
14
|
Bashir MS, Jiang X, Yang X, Kong XZ. Porous Polyurea Supported Pd Catalyst: Easy Preparation, Full Characterization, and High Activity and Reusability in Reduction of Hexavalent Chromium in Aqueous System. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c01376] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Xubao Jiang
- College of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Xingjie Yang
- College of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Xiang Zheng Kong
- College of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| |
Collapse
|
15
|
Ou J, Yuan X, Liu Y, Zhang P, Xu W, Tang K. Lipase from pseudomonas cepacia immobilized into ZIF-8 as bio-catalyst for enantioselective hydrolysis and transesterification. Process Biochem 2021. [DOI: 10.1016/j.procbio.2020.12.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
16
|
Fragmented α-Amylase into Microporous Metal-Organic Frameworks as Bioreactors. MATERIALS 2021; 14:ma14040870. [PMID: 33670380 PMCID: PMC7918099 DOI: 10.3390/ma14040870] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 01/27/2021] [Accepted: 02/04/2021] [Indexed: 11/17/2022]
Abstract
This work presents an efficient and facile strategy to prepare an α-amylase bioreactor. As enzymes are quite large to be immobilized inside metal-organic frameworks (MOFs), the tertiary and quaternary structures of α-amylase were first disrupted using a combination of urea, dithiothreitol (DTT), and iodoacetamide (IAA). After losing its tertiary structure, the unfolded proteins can now penetrate into the microporous MOFs, affording fragmented α-amylase@MOF bioreactors. Among the different MOFs evaluated, UiO-66 gave the most promising potential due to the size-matching effect of the α-helix of the fragmented α-amylase with the pore size of UiO-66. The prepared bioreactor exhibited high yields of small carbohydrate (maltose) even when reused up to 15 times (>80% conversion).
Collapse
|
17
|
Chen R, Huang WC, Wang W, Mao X. Characterization of TEMPO-oxidized chitin nanofibers with various oxidation times and its application as an enzyme immobilization support. MARINE LIFE SCIENCE & TECHNOLOGY 2021; 3:85-93. [PMID: 37073388 PMCID: PMC10064359 DOI: 10.1007/s42995-020-00054-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 05/17/2020] [Indexed: 05/03/2023]
Abstract
Chitin nanofibers have recently received increased attention and are considered to be a promising material for a wide range of applications because of their excellent characteristics. In this study, 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-oxidized chitin nanofibers (CNFs) with various oxidation times were prepared and characterized. CNFs with different oxidation times were then utilized for enzyme immobilization, using chymotrypsin as a model enzyme. The effects of oxidation time on enzyme immobilization were explored. Results showed characteristics of chitin nanofibers can be controlled by adjusting oxidation time. CNFs treated with TEMPO for 360 min showed the lowest crystallinity (79.13 ± 1.43%), the shortest length (241.70 ± 74.61 nm), the largest width (12.67 ± 3.43 nm), and the highest transmittance (73.01% at 800 nm). The activity of immobilized enzymes and enzyme loading showed good correlation to the carboxylate content of CNFs. The enzyme efficiency based on CNFs and the content of carboxylate groups peaked at the oxidization time of 60 min. When the additional amount of chymotrypsins (CTs) was 500 or 2000 mg/g carrier, the highest loading amount of CTs was 307.17 ± 4.08 or 726.82 ± 12.05 mg/g carrier, respectively.
Collapse
Affiliation(s)
- Rui Chen
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003 China
| | - Wen-Can Huang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003 China
| | - Wei Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003 China
| | - Xiangzhao Mao
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266200 China
| |
Collapse
|
18
|
Sun H, Wei Y, Kong XZ, Jiang X. Preparation of uniform polyurea microspheres at high yield by precipitation polymerization and their use for laccase immobilization. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123432] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
19
|
Sun B, Li S, Jiang X, Zhu X, Kong XZ. Synthesis of post‐modified poly(ester‐amino) microspheres via
aza‐Michael
precipitation polymerization and its use for enzyme immobilization. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Bo Sun
- College of Chemistry and Chemical Engineering University of Jinan Jinan China
| | - Shusheng Li
- College of Chemistry and Chemical Engineering University of Jinan Jinan China
| | - Xubao Jiang
- College of Chemistry and Chemical Engineering University of Jinan Jinan China
| | - Xiaoli Zhu
- College of Chemistry and Chemical Engineering University of Jinan Jinan China
| | - Xiang Z. Kong
- College of Chemistry and Chemical Engineering University of Jinan Jinan China
| |
Collapse
|
20
|
Phoungtawee P, Crespy D. Shining a new light on the structure of polyurea/polyurethane materials. Polym Chem 2021. [DOI: 10.1039/d1py00649e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Polyurea and polyurethane are widely used in coatings, foams, and micro- and nanocapsules. Investigations of the polymers structure indicate that a significant amount of hydrolyzed isocyanate is incorporated in the macromolecular backbone.
Collapse
Affiliation(s)
- Piangtawan Phoungtawee
- Department of Materials Science and Engineering
- School of Molecular Science and Engineering
- Vidyasirimedhi Institute of Science and Technology (VISTEC)
- Rayong 21210
- Thailand
| | - Daniel Crespy
- Department of Materials Science and Engineering
- School of Molecular Science and Engineering
- Vidyasirimedhi Institute of Science and Technology (VISTEC)
- Rayong 21210
- Thailand
| |
Collapse
|
21
|
Yuan X, Ou J, Zhang P, Xu W, Jiang B, Tang K. PEG-modified lipase immobilized onto NH2-MIL-53 MOF for efficient resolution of 4-fluoromandelic acid enantiomers. Int J Biol Macromol 2020; 165:1793-1802. [DOI: 10.1016/j.ijbiomac.2020.10.076] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/09/2020] [Accepted: 10/10/2020] [Indexed: 12/27/2022]
|
22
|
Cao H, Li B, Jiang X, Zhu X, Kong XZ. Fluorescent linear polyurea based on toluene diisocyanate: Easy preparation, broad emission and potential applications. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2020; 399:125867. [PMID: 32572332 PMCID: PMC7292956 DOI: 10.1016/j.cej.2020.125867] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 06/04/2023]
Abstract
In contrast to conventional fluorescent polymers featured by large conjugation structures, a new class of fluorescent polymers without above conjugations are gaining constant interest owing to their significant academic importance and promising applications in diverse fields. These unconventional fluorescent polymers are in general composed of heteroatoms (e.g. N, O, P, and S) under different forms. Here we report our recent study on polyurea, prepared by a very simple one step precipitation polymerization of toluene diisocyanate in a binary solvent of water-acetone. This polyurea, basically consisting of phenyl ring and urea group, shows fluorescent emission in a broad concentration range, from very low (10-5 mg/mL) to its solubility limit (50 mg/mL), and in a wide range of emission wavelength from UV to visible regions of up to 500 nm under varied excitation wavelength. The emission behaviors were fully studied under different concentrations and excitations. It was concluded that the emission in UV region was intrinsic due to the conjugation between the phenyl and the adjacent urea unit; while the emission in visible region, strongly excitation dependent, was caused by the cluster formation of the molecular chains, in accordance with the cluster-triggered-emission (CTE) mechanism. The formation of the cluster was tested through dynamic light scattering, FTIR and UV absorbance. Tested in presence of different metal ions, Fe3+ demonstrated a quenching effect with high selectivity. Based on this study, different paper-based sensors were designed to detect Fe3+, H2O2 in bioanalysis and for data encryption. This work provides a simple way to prepare a polyurea, a novel type of unconventional fluorescent polymer, with high emission performance distinct from its known analogues.
Collapse
Affiliation(s)
- Hongyan Cao
- College of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
- College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China
| | - Bin Li
- College of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
- Québec Center for Functional Materials, Department of Chemistry, Université de Sherbrooke, Sherbrooke, QC J1K2R1, Canada
| | - Xubao Jiang
- College of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Xiaoli Zhu
- College of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Xiang Zheng Kong
- College of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| |
Collapse
|
23
|
Yuan X, Liu Y, Cao F, Zhang P, Ou J, Tang K. Immobilization of lipase onto metal–organic frameworks for enantioselective hydrolysis and transesterification. AIChE J 2020. [DOI: 10.1002/aic.16292] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Xin Yuan
- Department of Chemistry and Chemical EngineeringHunan Institute of Science and Technology Yueyang Hunan China
| | - Yu Liu
- Department of Chemistry and Chemical EngineeringHunan Institute of Science and Technology Yueyang Hunan China
| | - Fan Cao
- Department of Chemistry and Chemical EngineeringHunan Institute of Science and Technology Yueyang Hunan China
| | - Panliang Zhang
- Department of Chemistry and Chemical EngineeringHunan Institute of Science and Technology Yueyang Hunan China
| | - Jian Ou
- Department of Chemistry and Chemical EngineeringHunan Institute of Science and Technology Yueyang Hunan China
| | - Kewen Tang
- Department of Chemistry and Chemical EngineeringHunan Institute of Science and Technology Yueyang Hunan China
| |
Collapse
|
24
|
Porous polyurea microspheres with Pd immobilized on surface and their catalytic activity in 4-nitrophenol reduction and organic dyes degradation. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109652] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
25
|
Zhang X, Jiang X, Zhu X, Kong XZ. Effective enhancement of Cu ions adsorption on porous polyurea adsorbent by carboxylic modification of its terminal amine groups. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2019.104450] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
26
|
Wang J, Li K, He Y, Wang Y, Yan J, Xu L, Han X, Yan Y. Lipase Immobilized on a Novel Rigid-Flexible Dendrimer-Grafted Hierarchically Porous Magnetic Microspheres for Effective Resolution of ( R, S)-1-Phenylethanol. ACS APPLIED MATERIALS & INTERFACES 2020; 12:4906-4916. [PMID: 31903759 DOI: 10.1021/acsami.9b19940] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
With the rapid development of biotechnological industry, there is an urgent need for exploiting new materials to immobilize enzymes to improve the performance of biocatalysts. In this paper, hierarchically porous magnetic microspheres (PFMMs) were prepared through solvothermal method and rapidly grafted with a novel rigid-flexible dendrimer first synthesized from monomers of trimesoyl chloride (TMC) and 1,6-hexanediamine (HDA) via interfacial polymerization process for covalent immobilization of Pseudomonas fluorescens lipase (PFL). The maximum PFL loading of the synthesized support reaches 87.5 mgprotein/gsupport, and 864% activity recovery of PFMMs-G3.0-PFL can be achieved at pH 9.0. Then, it was used to catalyze the resolution of (R,S)-1-phenylethanol with vinyl acetate. Under the optimized conditions, 50.0% conversion with 99.0% ees can be reached within 1.5 h. In addition, a conversion of 49.2% and ees of 96.9% can be retained after 10 batches of running, displaying an excellent operational stability. Importantly, a further investigation shows that the obviously improved reusability of the immobilized PFL is ascribed to the increased rigidity in comparison to fully flexible dendrimer. Thus, the newly constructed protocol for lipase immobilization exhibits a great prospect in biochemical engineering.
Collapse
Affiliation(s)
- Jianhua Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology , Huazhong University of Science and Technology , Wuhan 430074 , China
| | - Kai Li
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology , Huazhong University of Science and Technology , Wuhan 430074 , China
| | - Yaojia He
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology , Huazhong University of Science and Technology , Wuhan 430074 , China
| | - Yao Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology , Huazhong University of Science and Technology , Wuhan 430074 , China
| | - Jinyong Yan
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology , Huazhong University of Science and Technology , Wuhan 430074 , China
| | - Li Xu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology , Huazhong University of Science and Technology , Wuhan 430074 , China
| | - Xiaotao Han
- Wuhan National High Magnetic Field Center , Huazhong University of Science and Technology , Wuhan 430074 , China
| | - Yunjun Yan
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology , Huazhong University of Science and Technology , Wuhan 430074 , China
| |
Collapse
|
27
|
Sui Y, Cui Y, Xia G, Peng X, Yuan G, Sun G. A facile route to preparation of immobilized cellulase on polyurea microspheres for improving catalytic activity and stability. Process Biochem 2019. [DOI: 10.1016/j.procbio.2019.09.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
28
|
Wei Y, Jiang X, Li S, Kong XZ. Catalysis of isocyanate reaction with water by DMF and its use for fast preparation of uniform polyurea microspheres through precipitation polymerization. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.03.054] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
29
|
Bashir MS, Jiang X, Li S, Kong XZ. Highly Uniform and Porous Polyurea Microspheres: Clean and Easy Preparation by Interface Polymerization, Palladium Incorporation, and High Catalytic Performance for Dye Degradation. Front Chem 2019; 7:314. [PMID: 31139616 PMCID: PMC6518977 DOI: 10.3389/fchem.2019.00314] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 04/23/2019] [Indexed: 11/24/2022] Open
Abstract
Owing to their high specific surface area and low density, porous polymer materials are of great importance in a vast variety of applications, particularly as supports for enzymes and transition metals. Herein, highly uniform and porous polyurea microspheres (PPM), with size between 200 and 500 μm, are prepared by interfacial polymerization of toluene diisocyanate (TDI) in water through a simple microfluidic device composed of two tube lines, in one of which TDI is flowing and merged to the other with flowing aqueous phase, generating therefore TDI droplets at merging. The polymerization starts in the tube while flowing to the reactor and completed therein. This is a simple, easy and effective process for preparation of uniform PPM. Results demonstrate that the presence of polyvinyl alcohol in the aqueous flow is necessary to obtain uniform PPM. The size of PPM is readily adjustable by changing the polymerization conditions. In addition, palladium is incorporated in PPM to get the composite microspheres Pd@PPM, which are used as catalyst in degradation of methylene blue and rhodamine B. High performance and good reusability are demonstrated. Monodispersity, efficient dye degradation, easy recovery, and remarkable reusability make Pd@PPM a promising catalyst for dye degradation.
Collapse
Affiliation(s)
| | - Xubao Jiang
- College of Chemistry and Chemical Engineering, University of Jinan, Jinan, China
| | - Shusheng Li
- College of Chemistry and Chemical Engineering, University of Jinan, Jinan, China
| | - Xiang Zheng Kong
- College of Chemistry and Chemical Engineering, University of Jinan, Jinan, China
| |
Collapse
|
30
|
Easy preparation of porous polyurea through copolymerization of toluene diisocyanate with ethylenediamine and its use as absorbent for copper ions. REACT FUNCT POLYM 2018. [DOI: 10.1016/j.reactfunctpolym.2018.10.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
31
|
Jiang X, Bashir MS, Zhang F, Kong XZ. Formation and shape transition of porous polyurea of exotic forms through interfacial polymerization of toluene diisocyanate in aqueous solution of ethylenediamine and their characterization. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.09.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
32
|
Li K, Wang J, He Y, Abdulrazaq MA, Yan Y. Carbon nanotube-lipase hybrid nanoflowers with enhanced enzyme activity and enantioselectivity. J Biotechnol 2018; 281:87-98. [DOI: 10.1016/j.jbiotec.2018.06.344] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/31/2018] [Accepted: 06/17/2018] [Indexed: 02/07/2023]
|
33
|
NMR Analysis to Identify Biuret Groups in Common Polyureas. CHINESE JOURNAL OF POLYMER SCIENCE 2018. [DOI: 10.1007/s10118-018-2130-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
34
|
Covalently Immobilized Lipase on a Thermoresponsive Polymer with an Upper Critical Solution Temperature as an Efficient and Recyclable Asymmetric Catalyst in Aqueous Media. ChemCatChem 2018. [DOI: 10.1002/cctc.201701512] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
35
|
Han L, Liu Q, Yang L, Ye T, He Z, Jia L. Facile Oriented Immobilization of Histidine-Tagged Proteins on Nonfouling Cobalt Polyphenolic Self-Assembly Surfaces. ACS Biomater Sci Eng 2017; 3:3328-3337. [PMID: 33445373 DOI: 10.1021/acsbiomaterials.7b00691] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this study, a completely green and facile protocol to oriented immobilization of histidine-tagged (His-tagged) proteins based on plant polyphenolic tannic acid (TA) is described. This is the first time that TA has been applied as ionic chelators to immobilize His-tagged proteins. To reduce the nonspecific interactions between the TA and immobilized proteins, we assembled nonfouling zwitterionic poly(sulfobetaine methacrylate) (PSBMA) on the TA surface. The use of PSBMA could maintain the high activity of the His-tagged proteins and inhibit the adsorption of untagged protein to the TA surface. Subsequently, the obtained TA/PSBMA film was further chelated with CoII for specific binding to a His-tagged protein. As CoIII is more stable and inert than CoII, the chelated CoII was oxidized to CoIII. Using this approach, His-tagged Chitinase was anchored to TA/PSBMA/CoIII film as a catalyst for the hydrolysis of chitin. The loading capacity of the film for the His-tagged Chitinase can reach ∼4.0 μg/cm2. Moreover, the oriented immobilized Chitinase had high catalytic activity and excellent thermal and storage stability as well as being more resistant to proteolytic digestion by papain. This low-cost and green protein-oriented immobilization strategy may serve as a versatile platform for a range of applications, such as biomaterials, biocatalysis, sensors, drug delivery, and so on.
Collapse
Affiliation(s)
- Lulu Han
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Life science and Biotechnology, Dalian University of Technology, Dalian 116023, P. R. China
| | - Qi Liu
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Life science and Biotechnology, Dalian University of Technology, Dalian 116023, P. R. China
| | - Liwei Yang
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Life science and Biotechnology, Dalian University of Technology, Dalian 116023, P. R. China
| | - Tong Ye
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Life science and Biotechnology, Dalian University of Technology, Dalian 116023, P. R. China
| | - Zhien He
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Life science and Biotechnology, Dalian University of Technology, Dalian 116023, P. R. China
| | - Lingyun Jia
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Life science and Biotechnology, Dalian University of Technology, Dalian 116023, P. R. China
| |
Collapse
|
36
|
Dwivedee BP, Bhaumik J, Rai SK, Laha JK, Banerjee UC. Development of nanobiocatalysts through the immobilization of Pseudomonas fluorescens lipase for applications in efficient kinetic resolution of racemic compounds. BIORESOURCE TECHNOLOGY 2017; 239:464-471. [PMID: 28538202 DOI: 10.1016/j.biortech.2017.05.050] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 05/08/2017] [Accepted: 05/09/2017] [Indexed: 06/07/2023]
Abstract
The present work reports covalent immobilization of Pseudomonas fluorescens lipase (PFL) on functionalized multiwalled carbon nanotubes (MWCNTs) as a nanobiocatalyst (NBC). This nanobiocatalyst facilitates efficient kinetic resolution of (RS)-1-phenylethanol into (S)-1-phenylethanol [C=49.7%, eep=99.5%, ees=98.1% and E value=191.4]. The immobilized preparation (MWCNTs-PFL) showed ten-fold increase in activity, thermal stability upto 80 °C and recyclability (8 cycles). MWCNTs-PFL nanobioconjugate demonstrated better stability and enhanced activity compared to covalently immobilized PFL on other matrices (silver nanoparticles, gold nanoparticles and chitosan beads) used for the study. A statistical design [response surface methodology (RSM)] employed for the optimization of enzyme immobilization parameters made this study statistically more significant. Overall, the newly developed nanobiocatalyst has applications towards the kinetic resolution of racemic compounds.
Collapse
Affiliation(s)
- Bharat P Dwivedee
- Department of Pharmaceutical Technology (Biotechnology), National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, 160062 Punjab, India
| | - Jayeeta Bhaumik
- Department of Pharmaceutical Technology (Biotechnology), National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, 160062 Punjab, India.
| | - Shushil K Rai
- Department of Pharmaceutical Technology (Biotechnology), National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, 160062 Punjab, India
| | - Joydev K Laha
- Department of Pharmaceutical Technology (Process Chemistry), National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, 160062 Punjab, India
| | - Uttam C Banerjee
- Department of Pharmaceutical Technology (Biotechnology), National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, 160062 Punjab, India.
| |
Collapse
|
37
|
Jiang X, Zhu X, Arnold AA, Kong XZ, Claverie JP. Polyurea Structure Characterization by HR-MAS NMR Spectroscopy. Ind Eng Chem Res 2017. [DOI: 10.1021/acs.iecr.7b00192] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xubao Jiang
- College
of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Xiaoli Zhu
- College
of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Alexandre A. Arnold
- NanoQAM,
Québec Center for Functional Materials, Department of Chemistry, Université du Québec at Montréal, Montréal, Québec H3C3P8, Canada
| | - Xiang Zheng Kong
- College
of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Jerome P. Claverie
- Québec
Center for Functional Materials, Department of Chemistry, Université de Sherbrooke, Sherbrooke, Québec J1K2R1, Canada
| |
Collapse
|