1
|
Chen Y, Zhang X, Wang M, Liang Y, Zheng Z, Liu M, Lu Q. Bioactive Silk Cryogel Dressing with Multiple Physical Cues to Control Cell Migration and Wound Regeneration. Adv Healthc Mater 2025; 14:e2404304. [PMID: 39831837 DOI: 10.1002/adhm.202404304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 01/12/2025] [Indexed: 01/22/2025]
Abstract
Introducing multiple physical cues to control cell behaviors effectively is considered as a promising strategy in developing bioactive wound dressings. Silk nanofiber-based cryogels are developed to favor angiogenesis and tissue regeneration through tuning hydrated state, microporous structure, and mechanical property, but remained a challenge to endow with more physical cues. Here, β-sheet rich silk nanofibers are used to develop cryogels with nanopore structure. Through optimizing crosslinking time and exposing the reactive group inside the nanofibers, the crosslinking reaction is improved to induce stable cryogel formation. Besides the hydrated state and macroporous structure, the nanopore structure formed on the macroporous walls, providing hierarchical microstructures to improve cell migration. Both in vitro and in vivo results reveal quicker cell migration inside the cryogels, which then accelerates angiogenesis and wound healing. The mechanical properties can further regulate to match with skin regeneration. The wound healing study in vivo reveals lower inflammatory factor secretion in the wounds treated with softer cryogels with nanopores, which then resulted in the best angiogenesis and wound healing with less scar. Therefore, the porous cryogels with multiple physical cues can be fabricated with silk nanofibers to control cell behaviors and tissue regeneration, providing a promising approach for designing bioactive wound dressings.
Collapse
Affiliation(s)
- Yaqian Chen
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, Jiangsu Province, 215123, P. R. China
| | - Xiaoyi Zhang
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, Jiangsu Province, 215123, P. R. China
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR, 999077, P. R. China
- Advanced Biomedical Instrumentation Centre Limited, Hong Kong SAR, 999077, P. R. China
| | - Mengting Wang
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu Province, P. R. China
| | - Yu Liang
- Sanitation & Environment Technology Institute of Soochow University Ltd., No.88, Zhenbei Road, Gaoxin District, Suzhou, Jiangsu Province, 215153, P. R. China
| | - Zhaozhu Zheng
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, Jiangsu Province, 215123, P. R. China
| | - Meng Liu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, Jiangsu Province, 215123, P. R. China
| | - Qiang Lu
- State Key Laboratory of Radiation Medicine and Radiation Protection, Institutes for Translational Medicine, Soochow University, Suzhou, Jiangsu Province, 215123, P. R. China
| |
Collapse
|
2
|
Song P, Zhou D, Wang F, Li G, Bai L, Su J. Programmable biomaterials for bone regeneration. Mater Today Bio 2024; 29:101296. [PMID: 39469314 PMCID: PMC11513843 DOI: 10.1016/j.mtbio.2024.101296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/23/2024] [Accepted: 10/08/2024] [Indexed: 10/30/2024] Open
Abstract
Programmable biomaterials are distinguished by their ability to adjust properties and functions on demand, in a periodic, reversible, or sequential manner. This contrasts with traditional biomaterials, which undergo irreversible, uncontrolled changes. This review synthesizes key advances in programmable biomaterials, examining their design principles, functionalities and applications in bone regeneration. It charts the transition from traditional to programmable biomaterials, emphasizing their enhanced precision, safety and control, which are critical from clinical and biosafety standpoints. We then classify programmable biomaterials into six types: dynamic nucleic acid-based biomaterials, electrically responsive biomaterials, bioactive scaffolds with programmable properties, nanomaterials for targeted bone regeneration, surface-engineered implants for sequential regeneration and stimuli-responsive release materials. Each category is analyzed for its structural properties and its impact on bone tissue engineering. Finally, the review further concludes by highlighting the challenges faced by programmable biomaterials and suggests integrating artificial intelligence and precision medicine to enhance their application in bone regeneration and other biomedical fields.
Collapse
Affiliation(s)
- Peiran Song
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
| | - Dongyang Zhou
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
| | - Fuxiao Wang
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
| | - Guangfeng Li
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
- Department of Orthopedics, Shanghaizhongye Hospital, Shanghai, 200941, China
| | - Long Bai
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
- Wenzhou Institute of Shanghai University, Wenzhou, 325000, China
| | - Jiacan Su
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
3
|
Yang C, Cai W, Xiang P, Liu Y, Xu H, Zhang W, Han F, Luo Z, Liang T. Viscoelastic hydrogel combined with dynamic compression promotes osteogenic differentiation of bone marrow mesenchymal stem cells and bone repair in rats. Regen Biomater 2024; 12:rbae136. [PMID: 39845143 PMCID: PMC11751691 DOI: 10.1093/rb/rbae136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/28/2024] [Accepted: 11/03/2024] [Indexed: 01/24/2025] Open
Abstract
A biomechanical environment constructed exploiting the mechanical property of the extracellular matrix and external loading is essential for cell behaviour. Building suitable mechanical stimuli using feasible scaffold material and moderate mechanical loading is critical in bone tissue engineering for bone repair. However, the detailed mechanism of the mechanical regulation remains ambiguous. In addition, TRPV4 is involved in bone development. Therefore, this study aims to construct a viscoelastic hydrogel combined with dynamic compressive loading and investigate the effect of the dynamic mechanical environment on the osteogenic differentiation of stem cells and bone repair in vivo. The role of TRPV4 in the mechanobiology process was also assessed. A sodium alginate-gelatine hydrogel with adjustable viscoelasticity and good cell adhesion ability was obtained. The osteogenic differentiation of BMSCs was obtained using the fast stress relaxation hydrogel and a smaller compression strain of 1.5%. TRPV4 was activated in the hydrogel with fast stress relaxation time, followed by the increase in intracellular Ca2+ level and the activation of the Wnt/β-catenin pathway. The inhibition of TRPV4 induced a decrease in the intracellular Ca2+ level, down-regulation of β-catenin and reduced osteogenesis differentiation of BMSCs, suggesting that TRPV4 might be the key mechanism in the regulation of BMSC osteogenic differentiation in the viscoelastic dynamic mechanical environment. The fast stress relaxation hydrogel also showed a good osteogenic promotion effect in the rat femoral defect model. The dynamic viscoelastic mechanical environment significantly induced the osteogenic differentiation of BMSCs and bone regeneration, which TRPV4 being involved in this mechanobiological process. Our study not only provided important guidance for the mechanical design of new biomaterials, but also provided a new perspective for the understanding of the interaction between cells and materials, the role of mechanical loading in tissue regeneration and the use of mechanical regulation in tissue engineering.
Collapse
Affiliation(s)
- Chao Yang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, PR China
| | - Wenbin Cai
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, PR China
| | - Pan Xiang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, PR China
| | - Yu Liu
- Medical 3D Printing Center, Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215000, PR China
| | - Hao Xu
- Medical 3D Printing Center, Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215000, PR China
| | - Wen Zhang
- Medical 3D Printing Center, Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215000, PR China
| | - Fengxuan Han
- Medical 3D Printing Center, Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215000, PR China
| | - Zongping Luo
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, PR China
| | - Ting Liang
- Medical 3D Printing Center, Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215000, PR China
| |
Collapse
|
4
|
Xiao M, Yao J, Shao Z, Chen X. Silk-Based 3D Porous Scaffolds for Tissue Engineering. ACS Biomater Sci Eng 2024; 10:2827-2840. [PMID: 38690985 DOI: 10.1021/acsbiomaterials.4c00373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Silk fibroin, extracted from the silk of the Bombyx mori silkworm, stands out as a biomaterial due to its nontoxic nature, excellent biocompatibility, and adjustable biodegradability. Porous scaffolds, a type of biomaterial, are crucial for creating an optimal microenvironment that supports cell adhesion and proliferation, thereby playing an essential role in tissue remodeling and repair. Therefore, this review focuses on 3D porous silk fibroin-based scaffolds, first summarizing their preparation methods and then detailing their regenerative effects on bone, cartilage, tendon, vascular, neural, skin, hepatic, and tracheal epithelial tissue engineering in recent years.
Collapse
Affiliation(s)
- Menglin Xiao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Shanghai Stomatological Hospital & School of Stomatology, Laboratory of Advanced Materials, Fudan University, Shanghai, 200433, People's Republic of China
| | - Jinrong Yao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Shanghai Stomatological Hospital & School of Stomatology, Laboratory of Advanced Materials, Fudan University, Shanghai, 200433, People's Republic of China
| | - Zhengzhong Shao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Shanghai Stomatological Hospital & School of Stomatology, Laboratory of Advanced Materials, Fudan University, Shanghai, 200433, People's Republic of China
| | - Xin Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Shanghai Stomatological Hospital & School of Stomatology, Laboratory of Advanced Materials, Fudan University, Shanghai, 200433, People's Republic of China
| |
Collapse
|
5
|
Liu Y, Shi C, Ming P, Yuan L, Jiang X, Jiang M, Cai R, Lan X, Xiao J, Tao G. Biomimetic fabrication of sr-silk fibroin co-assembly hydroxyapatite based microspheres with angiogenic and osteogenic properties for bone tissue engineering. Mater Today Bio 2024; 25:101011. [PMID: 38445010 PMCID: PMC10912917 DOI: 10.1016/j.mtbio.2024.101011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/05/2024] [Accepted: 02/26/2024] [Indexed: 03/07/2024] Open
Abstract
Bone defects caused by trauma, tumor resection, or developmental abnormalities are important issues in clinical practice. The vigorous development of tissue engineering technology provides new ideas and directions for regenerating bone defects. Hydroxyapatite (HAp), a bioactive ceramic, is extensively used in bone tissue engineering because of its excellent osteoinductive performance. However, its application is challenged by its single function and conventional environment-unfriendly synthesis methods. In this study, we successfully "green" synthesized sr-silk fibroin co-assembly hydroxyapatite nanoparticles (Sr-SF-HA) using silk fibroin (SF) as a biomineralized template, thus enabling it to have angiogenic activity and achieving the combination of organic and inorganic substances. Then, the rough composite microspheres loaded with Sr-SF-HA (CS/Sr-SF-HA) through electrostatic spraying technology and freeze-drying method were prepared. The CCK-8 test and live/dead cell staining showed excellent biocompatibility of CS/Sr-SF-HA. Alkaline phosphatase (ALP) staining, alizarin red staining (ARS), immunofluorescence, western blotting, and qRT-PCR test showed that CS/Sr-SF-HA activated the expression of related genes and proteins, thus inducing the osteogenic differentiation of rBMSCs. Moreover, tube formation experiments, scratch experiments, immunofluorescence, and qRT-PCR detection indicated that CS/Sr-SF-HA have good angiogenic activity. Furthermore, in vivo studies showed that the CS/Sr-SF-HA possesses excellent biocompatibility, vascular activity, as well as ectopic osteogenic ability in the subcutaneous pocket of rats. This study indicates that the construction of CS/Sr-SF-HA with angiogenic and osteogenic properties has great potential for bone tissue engineering.
Collapse
Affiliation(s)
- Yunfei Liu
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, 646000, China
| | - Chengji Shi
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Piaoye Ming
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, 646000, China
- Department of Oral Implantology, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Lingling Yuan
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, 646000, China
| | - Xueyu Jiang
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, 646000, China
- Department of Oral Implantology, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Min Jiang
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, 646000, China
| | - Rui Cai
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, 646000, China
- Institute of Stomatology, Southwest Medical University, Luzhou, 646000, China
| | - Xiaorong Lan
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, 646000, China
- Institute of Stomatology, Southwest Medical University, Luzhou, 646000, China
| | - Jingang Xiao
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, 646000, China
- Department of Oral Implantology, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, China
- Institute of Stomatology, Southwest Medical University, Luzhou, 646000, China
| | - Gang Tao
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, 646000, China
- Institute of Stomatology, Southwest Medical University, Luzhou, 646000, China
| |
Collapse
|
6
|
Xu H, Cui Y, Tian Y, Dou M, Sun S, Wang J, Wu D. Nanoparticle-Based Drug Delivery Systems for Enhancing Bone Regeneration. ACS Biomater Sci Eng 2024; 10:1302-1322. [PMID: 38346448 DOI: 10.1021/acsbiomaterials.3c01643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
The treatment of bone defects has been a long-standing challenge in clinical practice. Among the various bone tissue engineering approaches, there has been substantial progress in the development of drug delivery systems based on functional drugs and appropriate carrier materials owing to technological advances in recent years. A large number of materials based on functional nanocarriers have been developed and applied to improve the complex osteogenic microenvironment, including for promoting osteogenic activity, inhibiting osteoclast activity, and exerting certain antibacterial effects. This Review discusses the physicochemical properties, drug loading mechanisms, advantages and disadvantages of nanoparticles (NPs) used for constructing drug delivery systems. In addition, we provide an overview of the osteogenic microenvironment regulation mechanism of drug delivery systems based on nanoparticle (NP) carriers and the construction strategies of drug delivery systems. Finally, the advantages and disadvantages of NP carriers are summarized along with their prospects and future research trends in bone tissue engineering. This Review thus provides advanced strategies for the design and application of drug delivery systems based on NPs in the treatment of bone defects.
Collapse
Affiliation(s)
- Hang Xu
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, P. R. China
| | - Yutao Cui
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, P. R. China
| | - Yuhang Tian
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, P. R. China
| | - Minghan Dou
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, P. R. China
| | - Shouye Sun
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, P. R. China
| | - Jingwei Wang
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, P. R. China
| | - Dankai Wu
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, P. R. China
| |
Collapse
|
7
|
Cheng W, Yang H, Xiao L, Yang G, Lu Q, Kaplan DL. Nanosized Silk-Magnesium Complexes for Promotion of Angiogenic and Osteogenic Activities. ACS APPLIED MATERIALS & INTERFACES 2024; 16:9880-9889. [PMID: 38359078 DOI: 10.1021/acsami.3c18195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Injectable hydrogels with osteogenic and angiogenetic properties are of interest in bone tissue engineering. Since the bioactivity of ions is concentration-dependent, nanosized silk-magnesium (Mg) complexes were previously developed and assembled into hydrogels with angiogenic capabilities but failed to control both osteogenic and angiogenetic activities effectively. Here, nanosized silk particles with different sizes were obtained by using ultrasonic treatment to control silk-Mg coordination and particle formation, resulting in silk-Mg hydrogels with different types of bioactivity. Fourier transform infrared and X-ray diffraction results revealed that different coordination intensities were present in the different complexes as a basis for the differences in activities. Slow Mg ion release was controlled by these nanosized silk-Mg complexes through degradation. With the same amount of Mg ions, the different silk-Mg complexes exhibited different angiogenic and osteogenic capacities. Complexes with both angiogenic and osteogenic capacities were developed by optimizing the sizes of the silk particles, resulting in faster and improved quality of bone formed in vivo than complexes with the same composition of silk and Mg but only angiogenic or osteogenic capacities. The biological selectivity of silk-Mg complexes should facilitate applications in tissue regeneration.
Collapse
Affiliation(s)
- Weinan Cheng
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Shanghai Sixth People's Hospital, Shanghai 200233, People's Republic of China
- State Key Laboratory of Radiation Medicine and Radiation Protection, Institutes for Translational Medicine, Soochow University, Suzhou 215123, People's Republic of China
| | - Huaxiang Yang
- State Key Laboratory of Radiation Medicine and Radiation Protection, Institutes for Translational Medicine, Soochow University, Suzhou 215123, People's Republic of China
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People's Republic of China
| | - Liying Xiao
- State Key Laboratory of Radiation Medicine and Radiation Protection, Institutes for Translational Medicine, Soochow University, Suzhou 215123, People's Republic of China
| | - Gongwen Yang
- State Key Laboratory of Radiation Medicine and Radiation Protection, Institutes for Translational Medicine, Soochow University, Suzhou 215123, People's Republic of China
| | - Qiang Lu
- State Key Laboratory of Radiation Medicine and Radiation Protection, Institutes for Translational Medicine, Soochow University, Suzhou 215123, People's Republic of China
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
8
|
Fink TD, Funnell JL, Gilbert RJ, Zha RH. One-Pot Assembly of Drug-Eluting Silk Coatings with Applications for Nerve Regeneration. ACS Biomater Sci Eng 2024; 10:482-496. [PMID: 38109315 DOI: 10.1021/acsbiomaterials.3c01042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Clinical use of polymeric scaffolds for tissue engineering often suffers from their inability to promote strong cellular interactions. Functionalization with biomolecules may improve outcomes; however, current functionalization approaches using covalent chemistry or physical adsorption can lead to loss of biomolecule bioactivity. Here, we demonstrate a novel bottom-up approach for enhancing the bioactivity of poly(l-lactic acid) electrospun scaffolds though interfacial coassembly of protein payloads with silk fibroin into nanothin coatings. In our approach, protein payloads are first added into an aqueous solution with Bombyx mori-derived silk fibroin. Phosphate anions are then added to trigger coassembly of the payload and silk fibroin, as well as noncovalent formation of a payload-silk fibroin coating at poly(l-lactic) acid fiber surfaces. Importantly, the coassembly process results in homogeneous distribution of protein payloads, with the loading quantity depending on payload concentration in solution and coating time. This coassembly process yields greater loading capacity than physical adsorption methods, and the payloads can be released over time in physiologically relevant conditions. We also demonstrate that the coating coassembly process can incorporate nerve growth factor and that coassembled coatings lead to significantly more neurite extension than loading via adsorption in a rat dorsal root ganglia explant culture model.
Collapse
Affiliation(s)
- Tanner D Fink
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
- Shirley Ann Jackson, Ph. D. Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| | - Jessica L Funnell
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180, United States
- Shirley Ann Jackson, Ph. D. Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Ryan J Gilbert
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180, United States
- Shirley Ann Jackson, Ph. D. Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - R Helen Zha
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
- Shirley Ann Jackson, Ph. D. Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| |
Collapse
|
9
|
Pei B, Hu M, Wu X, Lu D, Zhang S, Zhang L, Wu S. Investigations into the effects of scaffold microstructure on slow-release system with bioactive factors for bone repair. Front Bioeng Biotechnol 2023; 11:1230682. [PMID: 37781533 PMCID: PMC10537235 DOI: 10.3389/fbioe.2023.1230682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/01/2023] [Indexed: 10/03/2023] Open
Abstract
In recent years, bone tissue engineering (BTE) has played an essential role in the repair of bone tissue defects. Although bioactive factors as one component of BTE have great potential to effectively promote cell differentiation and bone regeneration, they are usually not used alone due to their short effective half-lives, high concentrations, etc. The release rate of bioactive factors could be controlled by loading them into scaffolds, and the scaffold microstructure has been shown to significantly influence release rates of bioactive factors. Therefore, this review attempted to investigate how the scaffold microstructure affected the release rate of bioactive factors, in which the variables included pore size, pore shape and porosity. The loading nature and the releasing mechanism of bioactive factors were also summarized. The main conclusions were achieved as follows: i) The pore shapes in the scaffold may have had no apparent effect on the release of bioactive factors but significantly affected mechanical properties of the scaffolds; ii) The pore size of about 400 μm in the scaffold may be more conducive to controlling the release of bioactive factors to promote bone formation; iii) The porosity of scaffolds may be positively correlated with the release rate, and the porosity of 70%-80% may be better to control the release rate. This review indicates that a slow-release system with proper scaffold microstructure control could be a tremendous inspiration for developing new treatment strategies for bone disease. It is anticipated to eventually be developed into clinical applications to tackle treatment-related issues effectively.
Collapse
Affiliation(s)
- Baoqing Pei
- Beijing Key Laboratory for Design and Evaluation Technology of Advanced Implantable and Interventional Medical Devices, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Mengyuan Hu
- Beijing Key Laboratory for Design and Evaluation Technology of Advanced Implantable and Interventional Medical Devices, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Xueqing Wu
- Beijing Key Laboratory for Design and Evaluation Technology of Advanced Implantable and Interventional Medical Devices, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Da Lu
- Beijing Key Laboratory for Design and Evaluation Technology of Advanced Implantable and Interventional Medical Devices, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Shijia Zhang
- Beijing Key Laboratory for Design and Evaluation Technology of Advanced Implantable and Interventional Medical Devices, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Le Zhang
- Beijing Key Laboratory for Design and Evaluation Technology of Advanced Implantable and Interventional Medical Devices, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Shuqin Wu
- School of Big Data and Information, Shanxi College of Technology, Taiyuan, Shanxi, China
| |
Collapse
|
10
|
Su X, Wei L, Xu Z, Qin L, Yang J, Zou Y, Zhao C, Chen L, Hu N. Evaluation and Application of Silk Fibroin Based Biomaterials to Promote Cartilage Regeneration in Osteoarthritis Therapy. Biomedicines 2023; 11:2244. [PMID: 37626740 PMCID: PMC10452428 DOI: 10.3390/biomedicines11082244] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/27/2023] [Accepted: 07/29/2023] [Indexed: 08/27/2023] Open
Abstract
Osteoarthritis (OA) is a common joint disease characterized by cartilage damage and degeneration. Traditional treatments such as NSAIDs and joint replacement surgery only relieve pain and do not achieve complete cartilage regeneration. Silk fibroin (SF) biomaterials are novel materials that have been widely studied and applied to cartilage regeneration. By mimicking the fibrous structure and biological activity of collagen, SF biomaterials can promote the proliferation and differentiation of chondrocytes and contribute to the formation of new cartilage tissue. In addition, SF biomaterials have good biocompatibility and biodegradability and can be gradually absorbed and metabolized by the human body. Studies in recent years have shown that SF biomaterials have great potential in treating OA and show good clinical efficacy. Therefore, SF biomaterials are expected to be an effective treatment option for promoting cartilage regeneration and repair in patients with OA. This article provides an overview of the biological characteristics of SF, its role in bone and cartilage injuries, and its prospects in clinical applications to provide new perspectives and references for the field of bone and cartilage repair.
Collapse
Affiliation(s)
- Xudong Su
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Laboratory of Orthopedics, Chongqing Medical University, Chongqing 400016, China
| | - Li Wei
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Laboratory of Orthopedics, Chongqing Medical University, Chongqing 400016, China
| | - Zhenghao Xu
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Laboratory of Orthopedics, Chongqing Medical University, Chongqing 400016, China
| | - Leilei Qin
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Laboratory of Orthopedics, Chongqing Medical University, Chongqing 400016, China
| | - Jianye Yang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Laboratory of Orthopedics, Chongqing Medical University, Chongqing 400016, China
| | - Yinshuang Zou
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Laboratory of Orthopedics, Chongqing Medical University, Chongqing 400016, China
| | - Chen Zhao
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Laboratory of Orthopedics, Chongqing Medical University, Chongqing 400016, China
| | - Li Chen
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Laboratory of Orthopedics, Chongqing Medical University, Chongqing 400016, China
| | - Ning Hu
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Laboratory of Orthopedics, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
11
|
Patel M, Dubey DK, Singh SP. Molecular mechanics and failure mechanisms in B. mori Silk Fibroin-hydroxyapatite composite interfaces: Effect of crystal thickness and surface characteristics. J Mech Behav Biomed Mater 2023; 143:105910. [PMID: 37257312 DOI: 10.1016/j.jmbbm.2023.105910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/10/2023] [Accepted: 05/14/2023] [Indexed: 06/02/2023]
Abstract
Bombyx mori Silk Fibroin-hydroxyapatite (B. mori SF-HA) bio-nanocomposite is a prospective biomaterial for tissue engineered graft for bone repair. Here, B. mori SF is primarily a soft and tough organic phase, and HA is a hard and stiff mineral phase. In biomaterial design, an understanding about the nanoscale mechanics of SF-HA interface, such as interfacial interaction and interface debonding mechanisms between the two phases is essential for obtaining required functionality. To investigate such nanoscale behavior, molecular dynamics method is a preferred approach. Present study focuses on understanding of the interface debonding mechanisms at SF-HA interface in B. mori SF-HA bio-nanocomposite at nanometer length scale. For this purpose, nanoscale atomistic models of SF-HA interface are also developed based on the HA crystal size and HA surface type (Ca2+ dominated and OH- dominated) in contact with SF. Mechanical behavior analysis of these SF-HA interface models under pull-out type test were performed using Molecular Dynamics (MD) simulations. Surface pull-off strength values in the range of 0.4-0.8 GPa were obtained for SF-HA interface models, for different HA crystal thicknesses, wherein, the pull-off strength values are found to increase with increase in HA thicknesses. Analyses show that deformation mechanisms in SF-HA interface deformation, is a combination of shear deformation in SF phase followed by disintegration of SF phase from HA block. Furthermore, higher rupture force values were obtained for SF-HA interface with Ca2+ dominated HA surface in contact with SF phase, indicating that SF protein has a higher affinity for Ca2+ dominated surface of HA phase. Current work contributes in developing an understanding of mechanistic interactions between organic and inorganic phases in B. mori SF-HA composite nanostructure.
Collapse
Affiliation(s)
- Mrinal Patel
- Mechanical Engineering Department, Indian Institute of Technology Delhi, New Delhi, 110016, India.
| | - Devendra K Dubey
- Mechanical Engineering Department, Indian Institute of Technology Delhi, New Delhi, 110016, India.
| | - Satinder Paul Singh
- Mechanical Engineering Department, Indian Institute of Technology Delhi, New Delhi, 110016, India
| |
Collapse
|
12
|
Jo YK, Choi B, Zhou C, Jun SH, Cha HJ. Cell recognitive bioadhesive-based osteogenic barrier coating with localized delivery of bone morphogenetic protein-2 for accelerated guided bone regeneration. Bioeng Transl Med 2023; 8:e10493. [PMID: 37206209 PMCID: PMC10189428 DOI: 10.1002/btm2.10493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 12/30/2022] [Accepted: 01/04/2023] [Indexed: 01/19/2023] Open
Abstract
Titanium mesh (Ti-mesh) for guided bone regeneration (GBR) approaches has been extensively considered to offer space maintenance in reconstructing the alveolar ridge within bone defects due to its superb mechanical properties and biocompatibility. However, soft tissue invasion across the pores of the Ti-mesh and intrinsically limited bioactivity of the titanium substrates often hinder satisfactory clinical outcomes in GBR treatments. Here, a cell recognitive osteogenic barrier coating was proposed using a bioengineered mussel adhesive protein (MAP) fused with Alg-Gly-Asp (RGD) peptide to achieve highly accelerated bone regeneration. The fusion bioadhesive MAP-RGD exhibited outstanding performance as a bioactive physical barrier that enabled effective cell occlusion and a prolonged, localized delivery of bone morphogenetic protein-2 (BMP-2). The MAP-RGD@BMP-2 coating promoted in vitro cellular behaviors and osteogenic commitments of mesenchymal stem cells (MSCs) via the synergistic crosstalk effects of the RGD peptide and BMP-2 in a surface-bound manner. The facile gluing of MAP-RGD@BMP-2 onto the Ti-mesh led to a distinguishable acceleration of the in vivo formation of new bone in terms of quantity and maturity in a rat calvarial defect. Hence, our protein-based cell recognitive osteogenic barrier coating can be an excellent therapeutic platform to improve the clinical predictability of GBR treatment.
Collapse
Affiliation(s)
- Yun Kee Jo
- Department of Biomedical Convergence Science and TechnologySchool of Convergence, Kyungpook National UniversityDaeguRepublic of Korea
- Cell and Matrix Research Institute, Kyungpook National UniversityDaeguSouth Korea
| | | | - Cong Zhou
- School of Stomatology, Shandong UniversityJinanChina
| | - Sang Ho Jun
- Department of Oral and Maxillofacial SurgeryKorea University Anam HospitalSeoulRepublic of Korea
| | - Hyung Joon Cha
- Department of Chemical EngineeringPohang University of Science and TechnologyPohangRepublic of Korea
| |
Collapse
|
13
|
Hou J, Ding Z, Zheng X, Shen Y, Lu Q, Kaplan DL. Tough Porous Silk Nanofiber-Derived Cryogels with Osteogenic and Angiogenic Capacity for Bone Repair. Adv Healthc Mater 2023:e2203050. [PMID: 36841910 DOI: 10.1002/adhm.202203050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/30/2023] [Indexed: 02/27/2023]
Abstract
Tough porous cryogels with angiogenesis and osteogenesis features remain a design challenge for utility in bone regeneration. Here, building off of the recent efforts to generate tough silk nanofiber-derived cryogels with osteogenic activity, deferoxamine (DFO) is loaded in silk nanofiber-derived cryogels to introduce angiogenic capacity. Both the mechanical cues (stiffness) and the sustained release of DFO from the gels are controlled by tuning the concentration of silk nanofibers in the system, achieving a modulus above 400 kPa and slow release of the DFO over 60 days. The modulus of the cryogels and the released DFO induce osteogenic and angiogenic activity, which facilitates bone regeneration in vivo in femur defects in rat, resulting in faster regeneration of vascularized bone tissue. The tunable physical and chemical cues derived from these nanofibrous-microporous structures support the potential for silk cryogels in bone tissue regeneration.
Collapse
Affiliation(s)
- Jianwen Hou
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, 215000, P. R. China.,Department of Trauma Orthopedics, The Second People's Hospital of Lianyungang Affiliated to Bengbu Medical College, Lianyungang, 222023, P. R. China
| | - Zhaozhao Ding
- State Key Laboratory of Radiation Medicine and Radiation Protection, Institutes for Translational Medicine, Soochow University, Suzhou, 215123, P. R. China
| | - Xin Zheng
- Department of Orthopedics, Taizhou Municipal Hospital, Taizhou, 318000, P. R. China
| | - Yixin Shen
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, 215000, P. R. China
| | - Qiang Lu
- State Key Laboratory of Radiation Medicine and Radiation Protection, Institutes for Translational Medicine, Soochow University, Suzhou, 215123, P. R. China
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| |
Collapse
|
14
|
Sun L, Lu M, Chen L, Zhao B, Yao J, Shao Z, Chen X, Liu Y. Silk-Inorganic Nanoparticle Hybrid Hydrogel as an Injectable Bone Repairing Biomaterial. J Funct Biomater 2023; 14:jfb14020086. [PMID: 36826885 PMCID: PMC9966230 DOI: 10.3390/jfb14020086] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/24/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Silk fibroin is regarded as a promising biomaterial in various areas, including bone tissue regeneration. Herein, Laponite® (LAP), which can promote osteogenic differentiation, was introduced into regenerated silk fibroin (RSF) to prepare an RSF/LAP hybrid hydrogel. This thixotropic hydrogel is injectable during the operation process, which is favorable for repairing bone defects. Our previous work demonstrated that the RSF/LAP hydrogel greatly promoted the osteogenic differentiation of osteoblasts in vitro. In the present study, the RSF/LAP hydrogel was found to have excellent biocompatibility and significantly improved new bone formation in a standard rat calvarial defect model in vivo. Additionally, the underlying biological mechanism of the RSF/LAP hydrogel in promoting osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) was extensively explored. The results indicate that the RSF/LAP hydrogels provide suitable conditions for the adhesion and proliferation of BMSCs, showing good biocompatibility in vitro. With the increase in LAP content, the alkaline phosphatase (ALP) activity and mRNA and protein expression of the osteogenic markers of BMSCs improved significantly. Protein kinase B (AKT) pathway activation was found to be responsible for the inherent osteogenic properties of the RSF/LAP hybrid hydrogel. Therefore, the results shown in this study firmly suggest such an injectable RSF/LAP hydrogel with good biocompatibility (both in vitro and in vivo) would have good application prospects in the field of bone regeneration.
Collapse
Affiliation(s)
- Liangyan Sun
- Department of Orthodontics, Shanghai Stomatological Hospital & School of Stomatology, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai 200001, China
| | - Minqi Lu
- Department of Orthodontics, Shanghai Stomatological Hospital & School of Stomatology, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China
| | - Ling Chen
- Department of Orthodontics, Shanghai Stomatological Hospital & School of Stomatology, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China
| | - Bingjiao Zhao
- Department of Orthodontics, Shanghai Stomatological Hospital & School of Stomatology, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai 200001, China
| | - Jinrong Yao
- Department of Orthodontics, Shanghai Stomatological Hospital & School of Stomatology, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China
| | - Zhengzhong Shao
- Department of Orthodontics, Shanghai Stomatological Hospital & School of Stomatology, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China
| | - Xin Chen
- Department of Orthodontics, Shanghai Stomatological Hospital & School of Stomatology, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China
- Correspondence: (X.C.); (Y.L.)
| | - Yuehua Liu
- Department of Orthodontics, Shanghai Stomatological Hospital & School of Stomatology, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai 200001, China
- Correspondence: (X.C.); (Y.L.)
| |
Collapse
|
15
|
Chen H, Zhang Y, Yu T, Song G, Xu T, Xin T, Lin Y, Han B. Nano-Based Drug Delivery Systems for Periodontal Tissue Regeneration. Pharmaceutics 2022; 14:2250. [PMID: 36297683 PMCID: PMC9612159 DOI: 10.3390/pharmaceutics14102250] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/12/2022] [Accepted: 10/19/2022] [Indexed: 11/15/2022] Open
Abstract
Periodontitis is a dysbiotic biofilm-induced and host-mediated inflammatory disease of tooth supporting tissues that leads to progressive destruction of periodontal ligament and alveolar bone, thereby resulting in gingival recession, deep periodontal pockets, tooth mobility and exfoliation, and aesthetically and functionally compromised dentition. Due to the improved biopharmaceutical and pharmacokinetic properties and targeted and controlled drug release, nano-based drug delivery systems have emerged as a promising strategy for the treatment of periodontal defects, allowing for increased efficacy and safety in controlling local inflammation, establishing a regenerative microenvironment, and regaining bone and attachments. This review provides an overview of nano-based drug delivery systems and illustrates their practical applications, future prospects, and limitations in the field of periodontal tissue regeneration.
Collapse
Affiliation(s)
- Huanhuan Chen
- Department of Orthodontics, School and Hospital of Stomatology, Peking University, Beijing 100081, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - Yunfan Zhang
- Department of Orthodontics, School and Hospital of Stomatology, Peking University, Beijing 100081, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - Tingting Yu
- Department of Orthodontics, School and Hospital of Stomatology, Peking University, Beijing 100081, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - Guangying Song
- Department of Orthodontics, School and Hospital of Stomatology, Peking University, Beijing 100081, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - Tianmin Xu
- Department of Orthodontics, School and Hospital of Stomatology, Peking University, Beijing 100081, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - Tianyi Xin
- Department of Orthodontics, School and Hospital of Stomatology, Peking University, Beijing 100081, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - Yifan Lin
- Division of Paediatric Dentistry and Orthodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Bing Han
- Department of Orthodontics, School and Hospital of Stomatology, Peking University, Beijing 100081, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| |
Collapse
|
16
|
Khan HM, Liao X, Sheikh BA, Wang Y, Su Z, Guo C, Li Z, Zhou C, Cen Y, Kong Q. Smart biomaterials and their potential applications in tissue engineering. J Mater Chem B 2022; 10:6859-6895. [PMID: 36069198 DOI: 10.1039/d2tb01106a] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Smart biomaterials have been rapidly advancing ever since the concept of tissue engineering was proposed. Interacting with human cells, smart biomaterials can play a key role in novel tissue morphogenesis. Various aspects of biomaterials utilized in or being sought for the goal of encouraging bone regeneration, skin graft engineering, and nerve conduits are discussed in this review. Beginning with bone, this study summarizes all the available bioceramics and materials along with their properties used singly or in conjunction with each other to create scaffolds for bone tissue engineering. A quick overview of the skin-based nanocomposite biomaterials possessing antibacterial properties for wound healing is outlined along with skin regeneration therapies using infrared radiation, electrospinning, and piezoelectricity, which aid in wound healing. Furthermore, a brief overview of bioengineered artificial skin grafts made of various natural and synthetic polymers has been presented. Finally, by examining the interactions between natural and synthetic-based biomaterials and the biological environment, their strengths and drawbacks for constructing peripheral nerve conduits are highlighted. The description of the preclinical outcome of nerve regeneration in injury healed with various natural-based conduits receives special attention. The organic and synthetic worlds collide at the interface of nanomaterials and biological systems, producing a new scientific field including nanomaterial design for tissue engineering.
Collapse
Affiliation(s)
- Haider Mohammed Khan
- Department of Orthopedics, West China Hospital, Sichuan University, 610041, Chengdu, China.
| | - Xiaoxia Liao
- Department of Burn and Plastic Surgery, West China School of Medicine, West China Hospital, Sichuan University, 610041, Chengdu, China.
| | - Bilal Ahmed Sheikh
- Department of Orthopedics, West China Hospital, Sichuan University, 610041, Chengdu, China.
| | - Yixi Wang
- Department of Burn and Plastic Surgery, West China School of Medicine, West China Hospital, Sichuan University, 610041, Chengdu, China.
| | - Zhixuan Su
- College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.,National Engineering Research Centre for Biomaterials, Sichuan University, Chengdu 610064, China.
| | - Chuan Guo
- Department of Orthopedics, West China Hospital, Sichuan University, 610041, Chengdu, China.
| | - Zhengyong Li
- Department of Burn and Plastic Surgery, West China School of Medicine, West China Hospital, Sichuan University, 610041, Chengdu, China.
| | - Changchun Zhou
- College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.,National Engineering Research Centre for Biomaterials, Sichuan University, Chengdu 610064, China.
| | - Ying Cen
- Department of Burn and Plastic Surgery, West China School of Medicine, West China Hospital, Sichuan University, 610041, Chengdu, China.
| | - Qingquan Kong
- Department of Orthopedics, West China Hospital, Sichuan University, 610041, Chengdu, China.
| |
Collapse
|
17
|
Li C, Xu X, Gao J, Zhang X, Chen Y, Li R, Shen J. 3D printed scaffold for repairing bone defects in apical periodontitis. BMC Oral Health 2022; 22:327. [PMID: 35941678 PMCID: PMC9358902 DOI: 10.1186/s12903-022-02362-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/28/2022] [Indexed: 11/30/2022] Open
Abstract
Objectives To investigate the feasibility of the 3D printed scaffold for periapical bone defects. Methods In this study, antimicrobial peptide KSL-W-loaded PLGA sustainable-release microspheres (KSL-W@PLGA) were firstly prepared followed by assessing the drug release behavior and bacteriostatic ability against Enterococcus faecalis and Porphyromonas gingivalis. After that, we demonstrated that KSL-W@PLGA/collagen (COL)/silk fibroin (SF)/nano-hydroxyapatite (nHA) (COL/SF/nHA) scaffold via 3D-printing technique exhibited significantly good biocompatibility and osteoconductive property. The scaffold was characterized as to pore size, porosity, water absorption expansion rate and mechanical properties. Moreover, MC3T3-E1 cells were seeded into sterile scaffold materials and investigated by CCK-8, SEM and HE staining. In the animal experiment section, we constructed bone defect models of the mandible and evaluated its effect on bone formation. The Japanese white rabbits were killed at 1 and 2 months after surgery, the cone beam computerized tomography (CBCT) and micro-CT scanning, as well as HE and Masson staining analysis were performed on the samples of the operation area, respectively. Data analysis was done using ANOVA and LSD tests. (α = 0.05). Results We observed that the KSL-W@PLGA sustainable-release microspheres prepared in the experiment were uniform in morphology and could gradually release the antimicrobial peptide (KSL-W), which had a long-term antibacterial effect for at least up to 10 days. HE staining and SEM showed that the scaffold had good biocompatibility, which was conducive to the adhesion and proliferation of MC3T3-E1 cells. The porosity and water absorption of the scaffold were (81.96 ± 1.83)% and (458.29 ± 29.79)%, respectively. Histological and radiographic studies showed that the bone healing efficacy of the scaffold was satisfactory. Conclusions The KSL-W@PLGA/COL/SF/nHA scaffold possessed good biocompatibility and bone repairing ability, and had potential applications in repairing infected bone defects. Clinical significance The 3D printed scaffold not only has an antibacterial effect, but can also promote bone tissue formation, which provides an alternative therapy option in apical periodontitis. Supplementary Information The online version contains supplementary material available at 10.1186/s12903-022-02362-4.
Collapse
Affiliation(s)
- Cong Li
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin Stomatological Hospital, The Affiliated Stomatological Hospital of Nankai University, No.75, Dagu Road, Heping District, Tianjin, 300041, China
| | - Xiaoyin Xu
- The Affiliated Stomatological Hospital of Soochow University, Suzhou, 215000, Jiangsu Province, China
| | - Jing Gao
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin Stomatological Hospital, The Affiliated Stomatological Hospital of Nankai University, No.75, Dagu Road, Heping District, Tianjin, 300041, China
| | - Xiaoyan Zhang
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin Stomatological Hospital, The Affiliated Stomatological Hospital of Nankai University, No.75, Dagu Road, Heping District, Tianjin, 300041, China
| | - Yao Chen
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin Stomatological Hospital, The Affiliated Stomatological Hospital of Nankai University, No.75, Dagu Road, Heping District, Tianjin, 300041, China
| | - Ruixin Li
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin Stomatological Hospital, The Affiliated Stomatological Hospital of Nankai University, No.75, Dagu Road, Heping District, Tianjin, 300041, China.
| | - Jing Shen
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin Stomatological Hospital, The Affiliated Stomatological Hospital of Nankai University, No.75, Dagu Road, Heping District, Tianjin, 300041, China.
| |
Collapse
|
18
|
López Barreiro D, Martín-Moldes Z, Blanco Fernández A, Fitzpatrick V, Kaplan DL, Buehler MJ. Molecular simulations of the interfacial properties in silk-hydroxyapatite composites. NANOSCALE 2022; 14:10929-10939. [PMID: 35852800 PMCID: PMC9351605 DOI: 10.1039/d2nr01989b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 07/10/2022] [Indexed: 06/02/2023]
Abstract
Biomineralization is a common strategy used in Nature to improve the mechanical strength and toughness of biological materials. This strategy, applied in materials like bone or nacre, serves as inspiration for materials scientists and engineers to design new materials for applications in healthcare, soft robotics or the environment. In this regard, composites consisting of silk and hydroxyapatite have been extensively researched for bone regeneration applications, due to their reported cytocompatibility and osteoinduction capacity that supports bone formation in vivo. Thus, it becomes relevant to understand how silk and hydroxyapatite interact at their interface, and how this affects the overall mechanical properties of these composites. This theoretical-experimental work investigates the interfacial dynamic and structural properties of silk in contact with hydroxyapatite, combining molecular dynamics simulations with analytical characterization. Our data indicate that hydroxyapatite decreases the β-sheets in silk, which are a key load-bearing element of silk. The β-sheets content can usually be increased in silk biomaterials via post-processing methods, such as water vapor annealing. However, the presence of hydroxyapatite appears to reduce also for the formation of β-sheets via water vapor annealing. This work sheds light into the interfacial properties of silk-hydroxyapatite composite and their relevance for the design of composite biomaterials for bone regeneration.
Collapse
Affiliation(s)
- Diego López Barreiro
- Laboratory for Atomistic and Molecular Mechanics (LAMM), 77 Massachusetts Avenue, 1-165, Cambridge, MA 02139, USA.
| | - Zaira Martín-Moldes
- Laboratory for Atomistic and Molecular Mechanics (LAMM), 77 Massachusetts Avenue, 1-165, Cambridge, MA 02139, USA.
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - Adrián Blanco Fernández
- Instituto de Cerámica de Galicia (ICG), Universidade de Santiago de Compostela, Avda. do Mestre Mateo, 25, 15706, Santiago de Compostela, A Coruña, Spain
| | - Vincent Fitzpatrick
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - Markus J Buehler
- Laboratory for Atomistic and Molecular Mechanics (LAMM), 77 Massachusetts Avenue, 1-165, Cambridge, MA 02139, USA.
- Center for Computational Science and Engineering, Schwarzman College of Computing, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA
| |
Collapse
|
19
|
Lei L, Bai Y, Qin X, Liu J, Huang W, Lv Q. Current Understanding of Hydrogel for Drug Release and Tissue Engineering. Gels 2022; 8:301. [PMID: 35621599 PMCID: PMC9141029 DOI: 10.3390/gels8050301] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/06/2022] [Accepted: 05/11/2022] [Indexed: 01/01/2023] Open
Abstract
Due to their good absorption, satisfactory biocompatibility, and high safety, hydrogels have been widely used in the field of biomedicine, including for drug delivery and tissue regeneration. In this review, we introduce the characteristics and crosslinking methods of natural and synthetic hydrogels. Then, we highlight the design and principle of intelligent hydrogels (i.e., responsive hydrogels) used for drug release. Moreover, we introduce the application of the application of hydrogels in drug release and tissue engineering, and the limitations and research directions of hydrogel in drug release and tissue engineering are also considered. We hope that this review can provide a reference for follow-up studies in related fields.
Collapse
Affiliation(s)
- Lanjie Lei
- College of Biology & Pharmacy, Yulin Normal University, Yulin 537000, China; (L.L.); (Y.B.); (X.Q.); (J.L.); (W.H.)
- Key Laboratory of System Bio-Medicine of Jiangxi Province, Jiujiang University, Jiujiang 332000, China
| | - Yujing Bai
- College of Biology & Pharmacy, Yulin Normal University, Yulin 537000, China; (L.L.); (Y.B.); (X.Q.); (J.L.); (W.H.)
| | - Xinyun Qin
- College of Biology & Pharmacy, Yulin Normal University, Yulin 537000, China; (L.L.); (Y.B.); (X.Q.); (J.L.); (W.H.)
| | - Juan Liu
- College of Biology & Pharmacy, Yulin Normal University, Yulin 537000, China; (L.L.); (Y.B.); (X.Q.); (J.L.); (W.H.)
| | - Wei Huang
- College of Biology & Pharmacy, Yulin Normal University, Yulin 537000, China; (L.L.); (Y.B.); (X.Q.); (J.L.); (W.H.)
| | - Qizhuang Lv
- College of Biology & Pharmacy, Yulin Normal University, Yulin 537000, China; (L.L.); (Y.B.); (X.Q.); (J.L.); (W.H.)
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Yulin 537000, China
| |
Collapse
|
20
|
Zhu L, Liu Y, Wang A, Zhu Z, Li Y, Zhu C, Che Z, Liu T, Liu H, Huang L. Application of BMP in Bone Tissue Engineering. Front Bioeng Biotechnol 2022; 10:810880. [PMID: 35433652 PMCID: PMC9008764 DOI: 10.3389/fbioe.2022.810880] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 03/01/2022] [Indexed: 01/15/2023] Open
Abstract
At present, bone nonunion and delayed union are still difficult problems in orthopaedics. Since the discovery of bone morphogenetic protein (BMP), it has been widely used in various studies due to its powerful role in promoting osteogenesis and chondrogenesis. Current results show that BMPs can promote healing of bone defects and reduce the occurrence of complications. However, the mechanism of BMP in vivo still needs to be explored, and application of BMP alone to a bone defect site cannot achieve good therapeutic effects. It is particularly important to modify implants to carry BMP to achieve slow and sustained release effects by taking advantage of the nature of the implant. This review aims to explain the mechanism of BMP action in vivo, its biological function, and how BMP can be applied to orthopaedic implants to effectively stimulate bone healing in the long term. Notably, implantation of a system that allows sustained release of BMP can provide an effective method to treat bone nonunion and delayed bone healing in the clinic.
Collapse
Affiliation(s)
- Liwei Zhu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
- Orthopaedic Research Institute of Jilin Province, Changchun, China
| | - Yuzhe Liu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Ao Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Zhengqing Zhu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Youbin Li
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Chenyi Zhu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Zhenjia Che
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Tengyue Liu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - He Liu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
- Orthopaedic Research Institute of Jilin Province, Changchun, China
- *Correspondence: He Liu, ; Lanfeng Huang,
| | - Lanfeng Huang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
- *Correspondence: He Liu, ; Lanfeng Huang,
| |
Collapse
|
21
|
Xiao Z, Liu H, Zhao Q, Niu Y, Chen Z, Zhao D. Application of microencapsulation technology in silk fibers. J Appl Polym Sci 2022. [DOI: 10.1002/app.52351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Zuobing Xiao
- School of Perfume and Aroma Technology Shanghai Institute of Technology Shanghai China
- School of Agriculture and Biology Shanghai Jiaotong University Shanghai China
| | - Huiqin Liu
- School of Perfume and Aroma Technology Shanghai Institute of Technology Shanghai China
| | - Qixuan Zhao
- School of Perfume and Aroma Technology Shanghai Institute of Technology Shanghai China
| | - Yunwei Niu
- School of Perfume and Aroma Technology Shanghai Institute of Technology Shanghai China
| | - Ziqian Chen
- School of Perfume and Aroma Technology Shanghai Institute of Technology Shanghai China
| | - Di Zhao
- School of Perfume and Aroma Technology Shanghai Institute of Technology Shanghai China
| |
Collapse
|
22
|
Gao X, Cheng W, Zhang X, Zhou Z, Ding Z, Zhou X, Lu Q, Kaplan DL. Nerve Growth Factor-Laden Anisotropic Silk Nanofiber Hydrogels to Regulate Neuronal/Astroglial Differentiation for Scarless Spinal Cord Repair. ACS APPLIED MATERIALS & INTERFACES 2022; 14:3701-3715. [PMID: 35006667 DOI: 10.1021/acsami.1c19229] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Scarless spinal cord regeneration remains a challenge due to the complicated microenvironment at lesion sites. In this study, the nerve growth factor (NGF) was immobilized in silk protein nanofiber hydrogels with hierarchical anisotropic microstructures to fabricate bioactive systems that provide multiple physical and biological cues to address spinal cord injury (SCI). The NGF maintained bioactivity inside the hydrogels and regulated the neuronal/astroglial differentiation of neural stem cells. The aligned microstructures facilitated the migration and orientation of cells, which further stimulated angiogenesis and neuron extensions both in vitro and in vivo. In a severe rat long-span hemisection SCI model, these hydrogel matrices reduced scar formation and achieved the scarless repair of the spinal cord and effective recovery of motor functions. Histological analysis confirmed the directional regenerated neuronal tissues, with a similar morphology to that of the normal spinal cord. The in vitro and in vivo results showed promising utility for these NGF-laden silk hydrogels for spinal cord regeneration while also demonstrating the feasibility of cell-free bioactive matrices with multiple cues to regulate endogenous cell responses.
Collapse
Affiliation(s)
- Xiang Gao
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People's Republic of China
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou 215000, People's Republic of China
| | - Weinan Cheng
- Department of Orthopedics, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361000, People's Republic of China
| | - Xiaoyi Zhang
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People's Republic of China
| | - Zhengyu Zhou
- Laboratory Animal Center, Medical Collagen of Soochow University, Soochow University, Suzhou 215123, People's Republic of China
| | - Zhaozhao Ding
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People's Republic of China
| | - Xiaozhong Zhou
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou 215000, People's Republic of China
| | - Qiang Lu
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People's Republic of China
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
23
|
Yu X, Shen G, Shang Q, Zhang Z, Zhao W, Zhang P, Liang D, Ren H, Jiang X. A Naringin-loaded gelatin-microsphere/nano-hydroxyapatite/silk fibroin composite scaffold promoted healing of critical-size vertebral defects in ovariectomised rat. Int J Biol Macromol 2021; 193:510-518. [PMID: 34710477 DOI: 10.1016/j.ijbiomac.2021.10.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/28/2021] [Accepted: 10/06/2021] [Indexed: 01/08/2023]
Abstract
In this study, we investigated the effect of three-dimensional of naringin/gelatin microspheres/nano-hydroxyapatite/silk fibroin (NG/GMs/nHA/SF) scaffolds on repair of a critical-size bone defect of lumbar 6 in osteoporotic rats. In this work, a cell-free scaffold for bone-tissue engineering based on a silk fibroin (SF)/nano-hydroxyapatite (nHA) scaffold was developed. The scaffold was fabricated by lyophilization. Naringin (NG) was loaded into gelatin microspheres (GMs), which were encapsulated in the nHA/SF scaffolds. The materials were characterized using x ray diffraction, Fourier-transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy and thermogravimetric analysis. Moreover, the biomechanics, degradation, and drug-release profile of the scaffold were also evaluated. In vitro, the effect of the scaffold on the adhesion, proliferation, and osteogenic differentiation of rat bone marrow mesenchymal stem cells (BMSCs) was evaluated. In vivo, at 3 months after ovariectomy, a critical-size lumbar defect was indued in the rats to evaluate scaffold therapeutic potential. A 3-mm defect in L6 developed in 60 SD rats, which were randomly divided into SF scaffold, nHA/SF scaffold, NG/nHA/SF scaffold, NG/GMs/nHA/SF scaffold, and blank groups (n = 12 each). At 4, 8, 12, and 16 weeks postoperatively, osteogenesis was evaluated by X-ray, micro-computed tomography, hematoxylin-eosin staining, and fast green staining, and by analysis of BMP-2, Runx2, and Ocn protein levels at 16 weeks. In our results, NG/GM/nHA/SF scaffolds exhibited good biocompatibility, biomechanical strength, and promoted BMSC adhesion, proliferation, and calcium nodule formation in vitro. Moreover, NG/GMs/nHA/SF scaffolds showed greater osteogenic differentiation potential than the other scaffolds in vitro. In vivo, gradual new bone formation was observed, and bone defects recovered by 16 weeks in the experimental group. In the blank group, limited bone formation was observed, and the bone defect was obvious. In conclusion, NG/GMs/nHA/SF scaffolds promoted repair of a lumbar 6 defect in osteoporotic rats. Therefore, the NG/GMs/nHA/SF biocomposite scaffold has potential as a bone-defect-filling biomaterial for bone regeneration.
Collapse
Affiliation(s)
- Xiang Yu
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Gengyang Shen
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qi Shang
- The First Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhida Zhang
- The First Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenhua Zhao
- The First Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Peng Zhang
- The First Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - De Liang
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hui Ren
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Xiaobing Jiang
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China..
| |
Collapse
|
24
|
Bahraminasab M, Janmohammadi M, Arab S, Talebi A, Nooshabadi VT, Koohsarian P, Nourbakhsh MS. Bone Scaffolds: An Incorporation of Biomaterials, Cells, and Biofactors. ACS Biomater Sci Eng 2021; 7:5397-5431. [PMID: 34797061 DOI: 10.1021/acsbiomaterials.1c00920] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Large injuries to bones are still one of the most challenging musculoskeletal problems. Tissue engineering can combine stem cells, scaffold biomaterials, and biofactors to aid in resolving this complication. Therefore, this review aims to provide information on the recent advances made to utilize the potential of biomaterials for making bone scaffolds and the assisted stem cell therapy and use of biofactors for bone tissue engineering. The requirements and different types of biomaterials used for making scaffolds are reviewed. Furthermore, the importance of stem cells and biofactors (growth factors and extracellular vesicles) in bone regeneration and their use in bone scaffolds and the key findings are discussed. Lastly, some of the main obstacles in bone tissue engineering and future trends are highlighted.
Collapse
Affiliation(s)
- Marjan Bahraminasab
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Semnan University of Medical Sciences, Semnan 3513138111, Iran.,Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan 3513138111, Iran
| | - Mahsa Janmohammadi
- Department of Biomedical Engineering, Faculty of New Sciences and Technologies, Semnan University, Semnan 3513119111, Iran
| | - Samaneh Arab
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Semnan University of Medical Sciences, Semnan 3513138111, Iran.,Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan 3513138111, Iran
| | - Athar Talebi
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan 3513138111, Iran
| | - Vajihe Taghdiri Nooshabadi
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Semnan University of Medical Sciences, Semnan 3513138111, Iran.,Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan 3513138111, Iran
| | - Parisa Koohsarian
- Department of Biochemistry and Hematology, School of Medicine, Semnan University of Medical Sciences, Semnan 3513138111, Iran
| | | |
Collapse
|
25
|
Zhang Y, Chen X, Li Y, Bai T, Li C, Jiang L, Liu Y, Sun C, Zhou W. Biomimetic Inorganic Nanoparticle-Loaded Silk Fibroin-Based Coating with Enhanced Antibacterial and Osteogenic Abilities. ACS OMEGA 2021; 6:30027-30039. [PMID: 34778674 PMCID: PMC8582041 DOI: 10.1021/acsomega.1c04734] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/15/2021] [Indexed: 06/13/2023]
Abstract
Poor osseointegration and infection are the main reasons leading to the failure of hard tissue implants; especially, in recent years, the failure rate has been increasing every year owing to the continuously increasing conditions such as injury, trauma, diseases, or infections. Therefore, the development of a biomimetic surface coating of bone tissues with antibacterial function is an effective means to improve bone healing and inhibit bacterial infection. Mimicking the natural bone, in this study, we have designed a silk fibroin (collagen-like structure)-based coating inlaid with nanohydroxyapatite (nHA) and silver nanoparticles (AgNPs) for promoting antibacterial ability and osteogenesis, especially focusing on the bone mimetic structure for enhancing bone health. Observing the morphology and size of the composite nanoparticles by transmission electron microscope (TEM), nHA provided nucleation sites for the formation of AgNPs, forming an nHA/AgNP complex with a size of about 100-200 nm. Characterization of the nHA/Ag-loaded silk fibroin biomimetic coating showed an increased surface roughness with good density and compact performances. The silk fibroin-based coating loaded with uniformly distributed AgNPs and nHA could effectively inhibit the adhesion of Staphylococcus aureus on the surface and, at the same time, quickly kill planktonic bacteria, indicating their good antibacterial ability. In vitro cell experiments revealed that the biomimetic silk fibroin-based coating was beneficial to the adhesion, spreading, and proliferation of osteoblasts (MC3T3-E1). In addition, by characterizing LDH and ROS, it was found that the nHA/Ag complex could significantly reduce the cytotoxicity of AgNPs, and the osteoblasts on the coating surface maintained the structure intact.
Collapse
Affiliation(s)
- Yunpeng Zhang
- Heping
Hospital Affiliated to Changzhi Medical College, Changzhi 046000, Shanxi, China
| | - Xiaorong Chen
- Changzhi
Medical College, Changzhi 046000, Shanxi, China
| | - Yuan Li
- Heping
Hospital Affiliated to Changzhi Medical College, Changzhi 046000, Shanxi, China
| | - Tian Bai
- Shaanxi
Key Laboratory of Biomedical Metal Materials, Northwest Institute for Non-ferrous Metal Research, Xi’an 710016, China
| | - Chen Li
- Changzhi
Medical College, Changzhi 046000, Shanxi, China
| | - Lingyan Jiang
- Heping
Hospital Affiliated to Changzhi Medical College, Changzhi 046000, Shanxi, China
| | - Yu Liu
- Heping
Hospital Affiliated to Changzhi Medical College, Changzhi 046000, Shanxi, China
| | - Changying Sun
- Heping
Hospital Affiliated to Changzhi Medical College, Changzhi 046000, Shanxi, China
| | - Wenhao Zhou
- Shaanxi
Key Laboratory of Biomedical Metal Materials, Northwest Institute for Non-ferrous Metal Research, Xi’an 710016, China
| |
Collapse
|
26
|
Kochhar D, DeBari MK, Abbott RD. The Materiobiology of Silk: Exploring the Biophysical Influence of Silk Biomaterials on Directing Cellular Behaviors. Front Bioeng Biotechnol 2021; 9:697981. [PMID: 34239865 PMCID: PMC8259510 DOI: 10.3389/fbioe.2021.697981] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 05/31/2021] [Indexed: 11/13/2022] Open
Abstract
Biophysical properties of the extracellular environment dynamically regulate cellular fates. In this review, we highlight silk, an indispensable polymeric biomaterial, owing to its unique mechanical properties, bioactive component sequestration, degradability, well-defined architectures, and biocompatibility that can regulate temporospatial biochemical and biophysical responses. We explore how the materiobiology of silks, both mulberry and non-mulberry based, affect cell behaviors including cell adhesion, cell proliferation, cell migration, and cell differentiation. Keeping in mind the novel biophysical properties of silk in film, fiber, or sponge forms, coupled with facile chemical decoration, and its ability to match functional requirements for specific tissues, we survey the influence of composition, mechanical properties, topography, and 3D geometry in unlocking the body's inherent regenerative potential.
Collapse
Affiliation(s)
- Dakshi Kochhar
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Megan K. DeBari
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Rosalyn D. Abbott
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, United States
| |
Collapse
|
27
|
Ding Z, Cheng W, Mia MS, Lu Q. Silk Biomaterials for Bone Tissue Engineering. Macromol Biosci 2021; 21:e2100153. [PMID: 34117836 DOI: 10.1002/mabi.202100153] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/17/2021] [Indexed: 12/14/2022]
Abstract
Silk is a natural fibrous polymer with application potential in regenerative medicine. Increasing interest remains for silk materials in bone tissue engineering due to their characteristics in biocompatibility, biodegradability and mechanical properties. Plenty of the in vitro and in vivo studies confirmed the advantages of silk in accelerating bone regeneration. Silk is processed into scaffolds, hydrogels, and films to facilitate different bone regenerative applications. Bioactive factors such as growth factors and drugs, and stem cells are introduced to silk-based matrices to create friendly and osteogenic microenvironments, directing cell behaviors and bone regeneration. The recent progress in silk-based bone biomaterials is discussed and focused on different fabrication and functionalization methods related to osteogenesis. The challenges and potential targets of silk bone materials are highlighted to evaluate the future development of silk-based bone materials.
Collapse
Affiliation(s)
- Zhaozhao Ding
- National Engineering Laboratory for Modern Silk and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, P. R. China
| | - Weinan Cheng
- Department of Orthopedics, The First Affiliated Hospital of Xiamen University, Xiamen, 361000, P. R. China
| | - Md Shipan Mia
- National Engineering Laboratory for Modern Silk and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, P. R. China
| | - Qiang Lu
- National Engineering Laboratory for Modern Silk and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, P. R. China
| |
Collapse
|
28
|
Chen ZJ, Shi HH, Zheng L, Zhang H, Cha YY, Ruan HX, Zhang Y, Zhang XC. A new cancellous bone material of silk fibroin/cellulose dual network composite aerogel reinforced by nano-hydroxyapatite filler. Int J Biol Macromol 2021; 182:286-297. [PMID: 33838188 DOI: 10.1016/j.ijbiomac.2021.03.204] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 11/15/2022]
Abstract
Composites materials comprised of biopolymeric aerogel matrices and inorganic nano-hydroxyapatite (n-HA) fillers have received considerable attention in bone engineering. Although with significant progress in aerogel-based biomaterials, the brittleness and low strengths limit the application. The improvements in toughness and mechanical strength of aerogel-based biomaterials are in great need. In this work, an alkali urea system was used to dissolve, regenerate and gelate cellulose and silk fibroin (SF) to prepare composite aerosol. A dual network structure was shaped in the composite aerosol materials interlaced by sheet-like SF and reticular cellulose wrapping n-HA on the surface. Through uniaxial compression, the density of the composite aerogel material was close to the one of natural bone, and mechanical strength and toughness were high. Our work indicates that the composite aerogel has the same mechanical strength range as cancellous bone when the ratio of cellulose, n-HA and SF being 8:1:1. In vitro cell culture showed HEK-293T cells cultured on composite aerogels had high ability of adhesion, proliferation and differentiation. Totally, the presented biodegradable composite aerogel has application potential in bone tissue engineering.
Collapse
Affiliation(s)
- Zong-Ju Chen
- College of Chemical Engineering and Resource Utilization, Northeast Forestry University, 150040 Harbin, China
| | - Hui-Hong Shi
- College of Chemical Engineering and Resource Utilization, Northeast Forestry University, 150040 Harbin, China
| | - Liang Zheng
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, 163319 Daqing, China
| | - Hua Zhang
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, 163319 Daqing, China
| | - Yu-Ying Cha
- College of Chemical Engineering and Resource Utilization, Northeast Forestry University, 150040 Harbin, China
| | - Hui-Xian Ruan
- College of Chemical Engineering and Resource Utilization, Northeast Forestry University, 150040 Harbin, China
| | - Yi Zhang
- College of Chemical Engineering and Resource Utilization, Northeast Forestry University, 150040 Harbin, China
| | - Xiu-Cheng Zhang
- College of Chemical Engineering and Resource Utilization, Northeast Forestry University, 150040 Harbin, China.
| |
Collapse
|
29
|
Liu M, Shu M, Yan J, Liu X, Wang R, Hou Z, Lin J. Luminescent net-like inorganic scaffolds with europium-doped hydroxyapatite for enhanced bone reconstruction. NANOSCALE 2021; 13:1181-1194. [PMID: 33404034 DOI: 10.1039/d0nr05608a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Bone reconstruction is an urgent problem during clinical treatment. In the past few decades, the construction of composite scaffolds has been a hot spot in the research field of bone tissue engineering (BTE). However, the disadvantages of composite materials raise our awareness to explore the potential application of hydroxyapatite (HAp) in bone substitutes due to the closest properties of HAp to natural bone tissue. In our study, we synthesized Eu3+-doped HAp (HAp:Eu3+) ultralong nanowires, which can be transformed to hydrophilic net-like scaffolds via a thiol-ene click reaction. The property of luminescence of HAp from Eu3+ is beneficial for identifying the relative position of materials and bone marrow mesenchymal stem cells (BMSCs). HAp:Eu3+ scaffolds with excellent cell biocompatibility could promote the expression of early bone formation markers (ALP and ARS) and enhance the expression of genes and proteins associated with osteogenesis (Runx 2, OCN, and OPN). In the end, the results of the in vivo osteogenesis experiment showed that pure HAp scaffolds presented different effects of bone tissue reconstruction compared with the composite scaffolds with HAp nanorods and polymer materials. The superior osteogenic effect could be observed in net-like pure HAp scaffold groups. Furthermore, the absorption of HAp:Eu3+ scaffolds could be monitored due to the luminescence property of Eu3+. This strategy based on ultralong HAp nanowires proved to be a new method for the construction of simple reticular scaffolds for potential osteogenic applications.
Collapse
Affiliation(s)
- Min Liu
- Department of Periodontology, Stomatological Hospital, Jilin University, Changchun 130021, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
30
|
Wang Y, Zhang W, Gong C, Liu B, Li Y, Wang L, Su Z, Wei G. Recent advances in the fabrication, functionalization, and bioapplications of peptide hydrogels. SOFT MATTER 2020; 16:10029-10045. [PMID: 32696801 DOI: 10.1039/d0sm00966k] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Self-assembled peptide-based nanomaterials have exhibited wide application potential in the fields of materials science, nanodevices, biomedicine, tissue engineering, biosensors, energy storage, environmental science, and others. Due to their porous structure, strong mechanical stability, high biocompatibility, and easy functionalization, three-dimensional self-assembled peptide hydrogels revealed promising potential in bio-related applications. To present the advances in this interesting topic, we present a review on the synthesis and functionalization of peptide hydrogels, as well as their applications in drug delivery, antibacterial materials, cell culture, biomineralization, bone tissue engineering, and biosensors. Specifically, we focus on the fabrication methods of peptide hydrogels through physical, chemical, and biological stimulations. In addition, the functional design of peptide hydrogels by incorporation with polymers, DNA, protein, nanoparticles, and carbon materials is introduced and discussed in detail. It is expected that this work will be helpful not only for the design and synthesis of various peptide-based nanostructures and nanomaterials, but also for the structural and functional tailoring of peptide-based nanomaterials to meet specific demands.
Collapse
Affiliation(s)
- Yan Wang
- College of Chemistry and Chemical Engineering, Qingdao University, 266071 Qingdao, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Wang Z, Li X, Cui Y, Cheng K, Dong M, Liu L. Effect of molecular weight of regenerated silk fibroin on silk-based spheres for drug delivery. KOREAN J CHEM ENG 2020. [DOI: 10.1007/s11814-020-0591-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
32
|
Zhang LY, Bi Q, Zhao C, Chen JY, Cai MH, Chen XY. Recent Advances in Biomaterials for the Treatment of Bone Defects. Organogenesis 2020; 16:113-125. [PMID: 32799735 DOI: 10.1080/15476278.2020.1808428] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Bone defects or fractures generally heal in the absence of major interventions due to the high regenerative capacity of bone tissue. However, in situations of severe/large bone defects, these orchestrated regeneration mechanisms are impaired. With advances in modern medicine, natural and synthetic bio-scaffolds from bioceramics and polymers that support bone growth have emerged and gained intense research interest. In particular, scaffolds that recapitulate the molecular cues of extracellular signals, particularly growth factors, offer potential as therapeutic bone biomaterials. The current challenges for these therapies include the ability to engineer materials that mimic the biological and mechanical properties of the real bone tissue matrix, whilst simultaneously supporting bone vascularization. In this review, we discuss the very recent innovative strategies in bone biomaterial technology, including those of endogenous biomaterials and cell/drug delivery systems that promote bone regeneration. We present our understanding of their current value and efficacy, and the future perspectives for bone regenerative medicine.
Collapse
Affiliation(s)
- Le-Yi Zhang
- Department of General Surgery, Chun'an First People's Hospital (Zhejiang Provincial People's Hospital Chun'an Branch) , Hangzhou, Zhejiang Province, China
| | - Qing Bi
- Department of Orthopedics, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College) , Hangzhou, China
| | - Chen Zhao
- Department of Orthopedics, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College) , Hangzhou, China
| | - Jin-Yang Chen
- Research and Development Department, Zhejiang Healthfuture Institute for Cell-Based Applied Technology , Hangzhou, Zhejiang Province, China
| | - Mao-Hua Cai
- Department of General Surgery, Chun'an First People's Hospital (Zhejiang Provincial People's Hospital Chun'an Branch) , Hangzhou, Zhejiang Province, China
| | - Xiao-Yi Chen
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College) , Hangzhou, China.,Clinical Research Institute, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College) , Hangzhou, China
| |
Collapse
|
33
|
Lyons JG, Plantz MA, Hsu WK, Hsu EL, Minardi S. Nanostructured Biomaterials for Bone Regeneration. Front Bioeng Biotechnol 2020; 8:922. [PMID: 32974298 PMCID: PMC7471872 DOI: 10.3389/fbioe.2020.00922] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/17/2020] [Indexed: 12/13/2022] Open
Abstract
This review article addresses the various aspects of nano-biomaterials used in or being pursued for the purpose of promoting bone regeneration. In the last decade, significant growth in the fields of polymer sciences, nanotechnology, and biotechnology has resulted in the development of new nano-biomaterials. These are extensively explored as drug delivery carriers and as implantable devices. At the interface of nanomaterials and biological systems, the organic and synthetic worlds have merged over the past two decades, forming a new scientific field incorporating nano-material design for biological applications. For this field to evolve, there is a need to understand the dynamic forces and molecular components that shape these interactions and influence function, while also considering safety. While there is still much to learn about the bio-physicochemical interactions at the interface, we are at a point where pockets of accumulated knowledge can provide a conceptual framework to guide further exploration and inform future product development. This review is intended as a resource for academics, scientists, and physicians working in the field of orthopedics and bone repair.
Collapse
Affiliation(s)
- Joseph G. Lyons
- Department of Orthopaedic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Simpson Querrey Institute, Northwestern University, Chicago, IL, United States
| | - Mark A. Plantz
- Department of Orthopaedic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Simpson Querrey Institute, Northwestern University, Chicago, IL, United States
| | - Wellington K. Hsu
- Department of Orthopaedic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Simpson Querrey Institute, Northwestern University, Chicago, IL, United States
| | - Erin L. Hsu
- Department of Orthopaedic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Simpson Querrey Institute, Northwestern University, Chicago, IL, United States
| | - Silvia Minardi
- Department of Orthopaedic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Simpson Querrey Institute, Northwestern University, Chicago, IL, United States
| |
Collapse
|
34
|
Biomimetic bone regeneration using angle-ply collagen membrane-supported cell sheets subjected to mechanical conditioning. Acta Biomater 2020; 112:75-86. [PMID: 32505802 DOI: 10.1016/j.actbio.2020.05.041] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 05/28/2020] [Accepted: 05/28/2020] [Indexed: 02/07/2023]
Abstract
Bone injuries are common and new strategies are desired for achieving ideal bone regeneration for bone defect repair. Scaffolds with bone-mimicking characteristics may provide an appropriate microenvironment to promote bone regeneration. Meanwhile, mechanical stimulation effectively regulates a wide range of cellular behaviors such as cell proliferation and differentiation. In this study, biomimetic multi-layer cell-collagen constructs with angle-ply structural feature were prepared by assembling micropatterned collagen membranes on which aligned MC3T3-E1 cells were cultured. The anisotropic microgrooved collagen membranes effectively guided the alignment of cells and promoted the osteogenic differentiation of them. To further promote cell differentiation and extracellular matrix production, the multi-layer cell-collagen constructs were cultured under mechanical conditioning through cyclic stretching. It was found that the constructs with both cell alignment and mechanical conditioning resulted in better osteogenic potential than those with cell alignment or mechanical conditioning alone. Upon implantation into the critical-sized calvarial defects of mice, the constructs with both cell alignment and mechanical conditioning achieved best new bone formation efficacy. Together, findings from this study reveal that synergized use of microstructural and mechanical cues may provide an effective new approach toward bone regeneration. STATEMENT OF SIGNIFICANCE: Biomimicking is an effective strategy to promote bone regeneration for repairing bone defects. Although numerous studies which micro-structurally mimicked native bone using various scaffolds, far less studies have paid attention to the mechanical environment of bone. In this study, angle-ply collagen membrane-supported cell sheets were prepared and pre-conditioned using mechanical loading prior to implantation at bone defects. The constructs with cell alignment and subjected to mechanical conditioning resulted in better osteogenic differentiation of cells in vitro and new bone formation in vivo than those with cell alignment or mechanical conditioning alone. Therefore, recapitulation of both microstructural and mechanical features of native bone may result in a synergistic effect and provides an effective approach toward bone regeneration.
Collapse
|
35
|
Liu Q, Feng L, Chen Z, Lan Y, Liu Y, Li D, Yan C, Xu Y. Ultrasmall Superparamagnetic Iron Oxide Labeled Silk Fibroin/Hydroxyapatite Multifunctional Scaffold Loaded With Bone Marrow-Derived Mesenchymal Stem Cells for Bone Regeneration. Front Bioeng Biotechnol 2020; 8:697. [PMID: 32695767 PMCID: PMC7338306 DOI: 10.3389/fbioe.2020.00697] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 06/03/2020] [Indexed: 12/14/2022] Open
Abstract
Numerous tissue-engineered constructs have been investigated as bone scaffolds in regenerative medicine. However, it remains challenging to non-invasively monitor the biodegradation and remodeling of bone grafts after implantation. Herein, silk fibroin/hydroxyapatite scaffolds incorporated with ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles were successfully synthesized, characterized, and implanted subcutaneously into the back of nude mice. The USPIO labeled scaffolds showed good three-dimensional porous structures and mechanical property, thermal stability for bone repair. After loaded with bone marrow-derived mesenchymal stem cells (BMSCs), the multifunctional scaffolds promoted cell adhesion and growth, and facilitated osteogenesis by showing increased levels of alkaline phosphatase activity and up-regulation of osteoblastic genes. Furthermore, in vivo quantitative magnetic resonance imaging (MRI) results provided valuable information on scaffolds degradation and bone formation simultaneously, which was further confirmed by computed tomography and histological examination. These findings demonstrated that the incorporation of USPIO into BMSCs-loaded multifunctional scaffold system could be feasible to noninvasively monitor bone regeneration by quantitative MRI. This tissue engineering strategy provides a promising tool for translational application of bone defect repair in clinical scenarios.
Collapse
Affiliation(s)
- Qin Liu
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Longbao Feng
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou, China
| | - Zelong Chen
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yong Lan
- Guangzhou Beogene Biotech Co., Ltd., Guangzhou, China
| | - Yu Liu
- Guangzhou Beogene Biotech Co., Ltd., Guangzhou, China
| | - Dan Li
- Guangzhou Beogene Biotech Co., Ltd., Guangzhou, China
| | - Chenggong Yan
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yikai Xu
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
36
|
Cheng W, Ding Z, Zheng X, Lu Q, Kong X, Zhou X, Lu G, Kaplan DL. Injectable hydrogel systems with multiple biophysical and biochemical cues for bone regeneration. Biomater Sci 2020; 8:2537-2548. [PMID: 32215404 PMCID: PMC7204512 DOI: 10.1039/d0bm00104j] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Bone regeneration is a complex process in which angiogenesis and osteogenesis are crucial. Introducing multiple angiogenic and osteogenic cues simultaneously into a single system and tuning these cues to optimize the niche remains a challenge for bone tissue engineering. Herein, based on our injectable biomimetic hydrogels composed of silk nanofibers (SNF) and hydroxyapatite nanoparticles (HA), deferoxamine (DFO) and bone morphogenetic protein-2 (BMP-2) were loaded on SNF and HA to introduce more angiogenic and osteogenic cues. The angiogenesis and osteogenesis capacity of injectable hydrogels could be regulated by tuning the delivery of DFO and BMP-2 independently, resulting in vascularization and bone regeneration in cranial defects. The angiogenesis and osteogenesis outcomes accelerated the regeneration of vascularized bones toward similar composition and structure to natural bones. Therefore, the multiple biophysical and chemical cues provided by the nanofibrous structures, organic-inorganic compositions, and chemical and biochemical angiogenic and osteogenic inducing cues suggest the potential for clinical applicability of these hydrogels in bone tissue engineering.
Collapse
Affiliation(s)
- Weinan Cheng
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou 215000, People's Republic of China. and Department of Burns and Plastic Surgery, The Affiliated Hospital of Jiangnan University, Wuxi 214041, People's Republic of China. and Department of Orthopedics, The First Affiliated Hospital of Xiamen University, Xiamen 361000, People's Republic of China
| | - Zhaozhao Ding
- Department of Burns and Plastic Surgery, The Affiliated Hospital of Jiangnan University, Wuxi 214041, People's Republic of China.
| | - Xin Zheng
- Department of Orthopedics, Taizhou Municipal Hospital, Taizhou 318000, People's Republic of China
| | - Qiang Lu
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou 215000, People's Republic of China. and Department of Burns and Plastic Surgery, The Affiliated Hospital of Jiangnan University, Wuxi 214041, People's Republic of China.
| | - Xiangdong Kong
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Xiaozhong Zhou
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou 215000, People's Republic of China.
| | - Guozhong Lu
- Department of Burns and Plastic Surgery, The Affiliated Hospital of Jiangnan University, Wuxi 214041, People's Republic of China.
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, USA
| |
Collapse
|
37
|
Farokhi M, Mottaghitalab F, Reis RL, Ramakrishna S, Kundu SC. Functionalized silk fibroin nanofibers as drug carriers: Advantages and challenges. J Control Release 2020; 321:324-347. [DOI: 10.1016/j.jconrel.2020.02.022] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/11/2020] [Accepted: 02/11/2020] [Indexed: 12/13/2022]
|
38
|
Patil S, Dhyani V, Kaur T, Singh N. Spatiotemporal Control over Cell Proliferation and Differentiation for Tissue Engineering and Regenerative Medicine Applications Using Silk Fibroin Scaffolds. ACS APPLIED BIO MATERIALS 2020; 3:3476-3493. [DOI: 10.1021/acsabm.0c00305] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Smita Patil
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Vartika Dhyani
- Department of Chemistry, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Tejinder Kaur
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Neetu Singh
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
- Biomedical Engineering Unit, All India Institute of Medical Sciences, New Delhi 110029, India
| |
Collapse
|
39
|
Jolly R, Khan AA, Ahmed SS, Alam S, Kazmi S, Owais M, Farooqi MA, Shakir M. Bioactive Phoenix dactylifera seeds incorporated chitosan/hydroxyapatite nanoconjugate for prospective bone tissue engineering applications: A bio-synergistic approach. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 109:110554. [DOI: 10.1016/j.msec.2019.110554] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 11/16/2019] [Accepted: 12/12/2019] [Indexed: 01/10/2023]
|
40
|
Xu G, Ding Z, Lu Q, Zhang X, Zhou X, Xiao L, Lu G, Kaplan DL. Electric field-driven building blocks for introducing multiple gradients to hydrogels. Protein Cell 2020; 11:267-285. [PMID: 32048173 PMCID: PMC7093350 DOI: 10.1007/s13238-020-00692-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 01/14/2020] [Indexed: 01/25/2023] Open
Abstract
Gradient biomaterials are considered as preferable matrices for tissue engineering due to better simulation of native tissues. The introduction of gradient cues usually needs special equipment and complex process but is only effective to limited biomaterials. Incorporation of multiple gradients in the hydrogels remains challenges. Here, beta-sheet rich silk nanofibers (BSNF) were used as building blocks to introduce multiple gradients into different hydrogel systems through the joint action of crosslinking and electric field. The blocks migrated to the anode along the electric field and gradually stagnated due to the solution-hydrogel transition of the systems, finally achieving gradient distribution of the blocks in the formed hydrogels. The gradient distribution of the blocks could be tuned easily through changing different factors such as solution viscosity, which resulted in highly tunable gradient of mechanical cues. The blocks were also aligned under the electric field, endowing orientation gradient simultaneously. Different cargos could be loaded on the blocks and form gradient cues through the same crosslinking-electric field strategy. The building blocks could be introduced to various hydrogels such as Gelatin and NIPAM, indicating the universality. Complex niches with multiple gradient cues could be achieved through the strategy. Silk-based hydrogels with suitable mechanical gradients were fabricated to control the osteogenesis and chondrogenesis. Chondrogenic-osteogenic gradient transition was obtained, which stimulated the ectopic osteochondral tissue regeneration in vivo. The versatility and highly controllability of the strategy as well as multifunction of the building blocks reveal the applicability in complex tissue engineering and various interfacial tissues.
Collapse
Affiliation(s)
- Gang Xu
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, 215000, China
- Department of Orthopedics, Affiliated Hospital of Xuzhou Medical University, Lianyungang, 222061, China
| | - Zhaozhao Ding
- Department of Burns and Plastic Surgery, Engineering Research Center of the Ministry of Education for Wound Repair Technology, The Affiliated Hospital of Jiangnan University, Wuxi, 214041, China
| | - Qiang Lu
- Department of Burns and Plastic Surgery, Engineering Research Center of the Ministry of Education for Wound Repair Technology, The Affiliated Hospital of Jiangnan University, Wuxi, 214041, China.
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, China.
| | - Xiaoyi Zhang
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, China
| | - Xiaozhong Zhou
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, 215000, China.
| | - Liying Xiao
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, China
| | - Guozhong Lu
- Department of Burns and Plastic Surgery, Engineering Research Center of the Ministry of Education for Wound Repair Technology, The Affiliated Hospital of Jiangnan University, Wuxi, 214041, China.
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| |
Collapse
|
41
|
The toughness chitosan-PVA double network hydrogel based on alkali solution system and hydrogen bonding for tissue engineering applications. Int J Biol Macromol 2020; 146:99-109. [DOI: 10.1016/j.ijbiomac.2019.12.186] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 12/15/2019] [Accepted: 12/20/2019] [Indexed: 02/07/2023]
|
42
|
Sabra S, Ragab DM, Agwa MM, Rohani S. Recent advances in electrospun nanofibers for some biomedical applications. Eur J Pharm Sci 2020; 144:105224. [DOI: 10.1016/j.ejps.2020.105224] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 01/08/2020] [Accepted: 01/13/2020] [Indexed: 12/21/2022]
|
43
|
Zhang X, Zhang Z, Xiao L, Ding Z, He J, Lu G, Lu Q, Kaplan DL. Natural Nanofiber Shuttles for Transporting Hydrophobic Cargo into Aqueous Solutions. Biomacromolecules 2020; 21:1022-1030. [PMID: 31935078 DOI: 10.1021/acs.biomac.9b01739] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hydrophobic biomolecules realize their functions in vivo in aqueous environments, often through a delicate balance of amphiphilicity and chaperones. Introducing exogenous hydrophobic biomolecules into in vivo aqueous systems is a challenge in drug delivery and regenerative medicine, where labile linkers, carriers, and fusions or chimeric molecules are often designed to facilitate such aqueous interfaces. Here, we utilize naturally derived silk nanofiber shuttles with the capacity to transport hydrophobic cargos directly into aqueous solutions. These nanofibers disperse in organic solvents and in aqueous solutions because of their inherent amphiphilicity, with enriched hydrophobicity and strategically interspersed negatively charged groups. Hydrophobic molecules loaded on these shuttles in organic solvent-water systems separated from the solvent after centrifugation. These concentrated hydrophobic molecule-loaded nanofibers could then be dispersed into aqueous solution directly without modification. These shuttle systems were effective for different hydrophobic molecules such as drugs, vitamins, and dyes. Improved biological stability and functions of hydrophobic cargos after loading on these nanofibers suggest potential applications in drug delivery, cosmetology, medical diagnosis, and related health fields, with a relatively facile process.
Collapse
Affiliation(s)
- Xiaoyi Zhang
- Department of Burns and Plastic Surgery , The Affiliated Hospital of Jiangnan University , Wuxi 214041 , China.,National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology , Soochow University , Suzhou 215123 , China
| | - Zhen Zhang
- Department of Dermatology, Shanghai Ninth People's Hospital , Shanghai Jiaotong University School of Medicine , Shanghai 200011 , China
| | - Liying Xiao
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology , Soochow University , Suzhou 215123 , China
| | - Zhaozhao Ding
- Department of Burns and Plastic Surgery , The Affiliated Hospital of Jiangnan University , Wuxi 214041 , China
| | - Jiuyang He
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics , Chinese Academy of Sciences , Beijing 100101 , China
| | - Guozhong Lu
- Department of Burns and Plastic Surgery , The Affiliated Hospital of Jiangnan University , Wuxi 214041 , China
| | - Qiang Lu
- Department of Burns and Plastic Surgery , The Affiliated Hospital of Jiangnan University , Wuxi 214041 , China.,National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology , Soochow University , Suzhou 215123 , China
| | - David L Kaplan
- Department of Biomedical Engineering , Tufts University , Medford , Massachusetts 02155 , United States
| |
Collapse
|
44
|
Meng L, Shao C, Cui C, Xu F, Lei J, Yang J. Autonomous Self-Healing Silk Fibroin Injectable Hydrogels Formed via Surfactant-Free Hydrophobic Association. ACS APPLIED MATERIALS & INTERFACES 2020; 12:1628-1639. [PMID: 31800210 DOI: 10.1021/acsami.9b19415] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Many natural materials, such as silk, animal bone, nacre, and plant fibers, achieve outstanding strength and toughness through the rupture of sacrificial bonds between chain segments in the organic phase. In this work, we present a bioinspired strategy to fabricate silk fibroin-based hydrophobic-association (HA) hydrogels by incorporating the hydrophobic interaction as a sacrificial bond into the alginate ionic network, which not only enhanced the mechanical extensibility, strength, and toughness of the hydrogels but also enabled self-recovery and self-healing properties via reversible hydrophobic interactions without external stimuli at room temperature. The hydrophobic interaction system consisted of the hydrophobic monomer stearyl methacrylate (C18M) and an amphiphilic regenerated silk fibroin (RSF) solution. The mechanical tests and rheometry indicated that the hydrophobic interaction served as the sacrificial bond that preferentially ruptures prior to the alginate ionic network under an external load, which dissipated enormous amounts of energy and conferred an improved mechanical performance. Moreover, the structure of HA gels could be quickly recovered after injection due to the existence of hydrophobic interactions. In addition, the degradability of the HA gels in a protease XIV solution was strongly dependent upon the C18M component, which significantly promoted the degradation rate of HA gels. The biomimetic mineralization process of HA gels within a simulated body fluid (SBF), mimicking the inorganic composition of human blood plasma, was performed and the calcium phosphate nanoparticles on the hydrogel were observed. Importantly, in vivo experiments illustrated that the HA gels exhibited satisfactory biocompatibility, and the mouse osteoblasts (MC3T3-E1) could attach and spread on the hydrogels. Overall, the self-healing, biocompatibility, and high mechanical properties of the HA gels render them potentially suitable for load-bearing applications in drug delivery or other soft tissue-engineering applications.
Collapse
Affiliation(s)
- Lei Meng
- Beijing Key Laboratory of Lignocellulosic Chemistry , Beijing Forestry University , Beijing 100083 , China
| | - Changyou Shao
- Beijing Key Laboratory of Lignocellulosic Chemistry , Beijing Forestry University , Beijing 100083 , China
| | - Chen Cui
- Beijing Key Laboratory of Lignocellulosic Chemistry , Beijing Forestry University , Beijing 100083 , China
| | - Feng Xu
- Beijing Key Laboratory of Lignocellulosic Chemistry , Beijing Forestry University , Beijing 100083 , China
| | - Jiandu Lei
- Beijing Key Laboratory of Lignocellulosic Chemistry , Beijing Forestry University , Beijing 100083 , China
| | - Jun Yang
- Beijing Key Laboratory of Lignocellulosic Chemistry , Beijing Forestry University , Beijing 100083 , China
| |
Collapse
|
45
|
Natural Sources and Applications of Demineralized Bone Matrix in the Field of Bone and Cartilage Tissue Engineering. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1249:3-14. [DOI: 10.1007/978-981-15-3258-0_1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
46
|
Liu J, Ding Z, Lu G, Wang J, Wang L, Lu Q. Amorphous Silk Fibroin Nanofiber Hydrogels with Enhanced Mechanical Properties. Macromol Biosci 2019; 19:e1900326. [DOI: 10.1002/mabi.201900326] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Jiawei Liu
- School of Chemistry and Pharmaceutical EngineeringQilu University of Technology (Shandong Academy of Sciences) Jinan 250353 P. R. China
| | - Zhaozhao Ding
- National Engineering Laboratory for Modern Silk and Collaborative Innovation Center of Suzhou Nano Science and TechnologySoochow University Suzhou 215123 P. R. China
| | - Guozhong Lu
- Department of Burns and Plastic SurgeryThe Affiliated Hospital of Jiangnan University Wuxi 214041 P. R. China
| | - Jingui Wang
- School of Chemistry and Pharmaceutical EngineeringQilu University of Technology (Shandong Academy of Sciences) Jinan 250353 P. R. China
| | - Ling Wang
- School of Chemistry and Pharmaceutical EngineeringQilu University of Technology (Shandong Academy of Sciences) Jinan 250353 P. R. China
| | - Qiang Lu
- National Engineering Laboratory for Modern Silk and Collaborative Innovation Center of Suzhou Nano Science and TechnologySoochow University Suzhou 215123 P. R. China
| |
Collapse
|
47
|
Zhu C, Ding Z, Lu Q, Lu G, Xiao L, Zhang X, Dong X, Ru C, Kaplan DL. Injectable Silk-Vaterite Composite Hydrogels with Tunable Sustained Drug Release Capacity. ACS Biomater Sci Eng 2019; 5:6602-6609. [PMID: 33423479 DOI: 10.1021/acsbiomaterials.9b01313] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Improving the efficiency of chemotherapy remains a key challenge in drug delivery. Many drug carriers have been designed to achieve multifunctional factors as part of their performance, including controlled release, dispersibility in aqueous environments, and targeting to cancer sites. However, it is difficult to optimize multiple properties simultaneously for a single carrier system. Here, synergistic carriers composed of vaterite microspheres and silk nanofiber hydrogels were developed to improve the dispersibility of vaterite spheres and the control of drug delivery without compromising the injectability or sensitivity to pH. The vaterite microspheres were dispersed homogeneously and remained stable in the silk nanofiber hydrogels. Doxorubicin (DOX) was effectively loaded on the vaterite spheres and silk nanofibers, forming synergistic silk-vaterite hydrogel delivery systems. The sustained delivery of DOX was tuned and controlled by vaterite stability and the DOX content loaded on the spheres and nanofibers. The cytotoxicity was regulated via the controlled delivery of DOX, suggesting the possibility of optimizing chemotherapeutic strategies. These silk-vaterite delivery hydrogels suggest a useful strategy for designing novel delivery systems for improved delivery and therapeutic benefits.
Collapse
Affiliation(s)
- Caihong Zhu
- Research Center of Robotics and Micro System & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, 178 Ganjiang East Road, Suzhou 215021, People's Republic of China.,National Engineering Laboratory for Modern Silk, Soochow University, 199 Renai Road, Suzhou 215123, People's Republic of China
| | - Zhaozhao Ding
- National Engineering Laboratory for Modern Silk, Soochow University, 199 Renai Road, Suzhou 215123, People's Republic of China
| | - Qiang Lu
- National Engineering Laboratory for Modern Silk, Soochow University, 199 Renai Road, Suzhou 215123, People's Republic of China
| | - Guozhong Lu
- Department of Burns and Plastic Surgery, The Affiliated Hospital of Jiangnan University, 585 Xingyuan North Road, Wuxi 214041, People's Republic of China
| | - Liying Xiao
- National Engineering Laboratory for Modern Silk, Soochow University, 199 Renai Road, Suzhou 215123, People's Republic of China
| | - Xiaoyi Zhang
- National Engineering Laboratory for Modern Silk, Soochow University, 199 Renai Road, Suzhou 215123, People's Republic of China
| | - Xiaodan Dong
- National Engineering Laboratory for Modern Silk, Soochow University, 199 Renai Road, Suzhou 215123, People's Republic of China
| | - Changhai Ru
- Research Center of Robotics and Micro System & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, 178 Ganjiang East Road, Suzhou 215021, People's Republic of China
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby St, Medford, Massachusetts 02155, United States
| |
Collapse
|
48
|
Construction of physical-crosslink chitosan/PVA double-network hydrogel with surface mineralization for bone repair. Carbohydr Polym 2019; 224:115176. [DOI: 10.1016/j.carbpol.2019.115176] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 05/20/2019] [Accepted: 08/06/2019] [Indexed: 01/14/2023]
|
49
|
Janani G, Kumar M, Chouhan D, Moses JC, Gangrade A, Bhattacharjee S, Mandal BB. Insight into Silk-Based Biomaterials: From Physicochemical Attributes to Recent Biomedical Applications. ACS APPLIED BIO MATERIALS 2019; 2:5460-5491. [DOI: 10.1021/acsabm.9b00576] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
50
|
Rasheed T, Nabeel F, Raza A, Bilal M, Iqbal H. Biomimetic nanostructures/cues as drug delivery systems: a review. MATERIALS TODAY CHEMISTRY 2019; 13:147-157. [DOI: 10.1016/j.mtchem.2019.06.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|