1
|
Oshinowo O, Copeland R, Patel A, Shaver N, Fay ME, Jeltuhin R, Xiang Y, Caruso C, Otumala AE, Hernandez S, Delgado P, Dean G, Kelvin JM, Chester D, Brown AC, Dreaden EC, Leong T, Waggoner J, Li R, Ortlund E, Bennett C, Lam WA, Myers DR. Autoantibodies immuno-mechanically modulate platelet contractile force and bleeding risk. Nat Commun 2024; 15:10201. [PMID: 39587073 PMCID: PMC11589161 DOI: 10.1038/s41467-024-54309-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 11/05/2024] [Indexed: 11/27/2024] Open
Abstract
Altered mechanotransduction has been proposed as a putative mechanism for disease pathophysiology, yet evidence remains scarce. Here we introduce a concept we call single cell immuno-mechanical modulation, which links immunology, integrin biology, cellular mechanics, and disease pathophysiology and symptomology. Using a micropatterned hydrogel-laden coverslip compatible with standard fluorescence microscopy, we conduct a clinical mechanobiology study, specifically focusing on immune thrombocytopenia (ITP), an autoantibody-mediated platelet disorder that currently lacks a reliable biomarker for bleeding risk. We discover that in pediatric ITP patients (n = 53), low single platelet contraction force alone is a "physics-based" biomarker of bleeding (92.3% sensitivity, 90% specificity). Mechanistically, autoantibodies and monoclonal antibodies drive increases and decreases of cell force by stabilizing integrins in different conformations depending on the targeted epitope. Hence, immuno-mechanical modulation demonstrates how antibodies may pathologically alter mechanotransduction to cause clinical symptoms and this phenomenon can be leveraged to control cellular mechanics for research, diagnostic, and therapeutic purposes.
Collapse
Affiliation(s)
- Oluwamayokun Oshinowo
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Department of Pediatrics, Aflac Cancer Center and Blood Disorders Service, Children's Healthcare of Atlanta, Emory University School of Medicine, Emory University, Atlanta, GA, USA
- Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA, USA
- Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
- Winship Cancer Institute of Emory University, Emory University, Atlanta, GA, USA
| | - Renee Copeland
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Department of Pediatrics, Aflac Cancer Center and Blood Disorders Service, Children's Healthcare of Atlanta, Emory University School of Medicine, Emory University, Atlanta, GA, USA
- Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA, USA
- Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
- Winship Cancer Institute of Emory University, Emory University, Atlanta, GA, USA
| | - Anamika Patel
- Department of Biochemistry, Emory University School of Medicine, Emory University, Atlanta, GA, USA
| | - Nina Shaver
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Department of Pediatrics, Aflac Cancer Center and Blood Disorders Service, Children's Healthcare of Atlanta, Emory University School of Medicine, Emory University, Atlanta, GA, USA
- Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA, USA
- Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
- Winship Cancer Institute of Emory University, Emory University, Atlanta, GA, USA
| | - Meredith E Fay
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Department of Pediatrics, Aflac Cancer Center and Blood Disorders Service, Children's Healthcare of Atlanta, Emory University School of Medicine, Emory University, Atlanta, GA, USA
- Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA, USA
- Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
- Winship Cancer Institute of Emory University, Emory University, Atlanta, GA, USA
| | - Rebecca Jeltuhin
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Yijin Xiang
- Department of Pediatrics, Aflac Cancer Center and Blood Disorders Service, Children's Healthcare of Atlanta, Emory University School of Medicine, Emory University, Atlanta, GA, USA
| | - Christina Caruso
- Department of Pediatrics, Aflac Cancer Center and Blood Disorders Service, Children's Healthcare of Atlanta, Emory University School of Medicine, Emory University, Atlanta, GA, USA
- Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA, USA
| | - Adiya E Otumala
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Department of Pediatrics, Aflac Cancer Center and Blood Disorders Service, Children's Healthcare of Atlanta, Emory University School of Medicine, Emory University, Atlanta, GA, USA
- Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Sarah Hernandez
- Department of Medicine, Division of Infectious Diseases, Emory University, Atlanta, GA, USA
| | - Priscilla Delgado
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Department of Pediatrics, Aflac Cancer Center and Blood Disorders Service, Children's Healthcare of Atlanta, Emory University School of Medicine, Emory University, Atlanta, GA, USA
- Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Gabrielle Dean
- Aflac Cancer Center and Blood Disorders Service, Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - James M Kelvin
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Daniel Chester
- Joint Department of Biomedical Engineering of University of North Carolina, Chapel Hill and North Carolina State University, Raleigh, NC, USA
| | - Ashley C Brown
- Joint Department of Biomedical Engineering of University of North Carolina, Chapel Hill and North Carolina State University, Raleigh, NC, USA
| | - Erik C Dreaden
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Traci Leong
- Department of Biostatistics & Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Jesse Waggoner
- Joint Department of Biomedical Engineering of University of North Carolina, Chapel Hill and North Carolina State University, Raleigh, NC, USA
| | - Renhao Li
- Department of Pediatrics, Aflac Cancer Center and Blood Disorders Service, Children's Healthcare of Atlanta, Emory University School of Medicine, Emory University, Atlanta, GA, USA
| | - Eric Ortlund
- Department of Biochemistry, Emory University School of Medicine, Emory University, Atlanta, GA, USA
| | - Carolyn Bennett
- Department of Pediatrics, Aflac Cancer Center and Blood Disorders Service, Children's Healthcare of Atlanta, Emory University School of Medicine, Emory University, Atlanta, GA, USA
| | - Wilbur A Lam
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
- Department of Pediatrics, Aflac Cancer Center and Blood Disorders Service, Children's Healthcare of Atlanta, Emory University School of Medicine, Emory University, Atlanta, GA, USA.
- Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA, USA.
- Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA.
- Winship Cancer Institute of Emory University, Emory University, Atlanta, GA, USA.
| | - David R Myers
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
- Department of Pediatrics, Aflac Cancer Center and Blood Disorders Service, Children's Healthcare of Atlanta, Emory University School of Medicine, Emory University, Atlanta, GA, USA.
- Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
2
|
Liu Y, Yang Q, Wang Y, Lin M, Tong Y, Huang H, Yang C, Wu J, Tang B, Bai J, Liu C. Metallic Scaffold with Micron-Scale Geometrical Cues Promotes Osteogenesis and Angiogenesis via the ROCK/Myosin/YAP Pathway. ACS Biomater Sci Eng 2022; 8:3498-3514. [PMID: 35834297 DOI: 10.1021/acsbiomaterials.2c00225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The advent of precision manufacturing has enabled the creation of pores in metallic scaffolds with feature size in the range of single microns. In orthopedic implants, pore geometries at the micron scale could regulate bone formation by stimulating osteogenic differentiation and the coupling of osteogenesis and angiogenesis. However, the biological response to pore geometry at the cellular level is not clear. As cells are sensitive to curvature of the pore boundary, this study aimed to investigate osteogenesis in high- vs low-curvature environments by utilizing computer numerical control laser cutting to generate triangular and circular precision manufactured micropores (PMpores). We fabricated PMpores on 100 μm-thick stainless-steel discs. Triangular PMpores had a 30° vertex angle and a 300 μm base, and circular PMpores had a 300 μm diameter. We found triangular PMpores significantly enhanced the elastic modulus, proliferation, migration, and osteogenic differentiation of MC3T3-E1 preosteoblasts through Yes-associated protein (YAP) nuclear translocation. Inhibition of Rho-associated kinase (ROCK) and Myosin II abolished YAP translocation in all pore types and controls. Inhibition of YAP transcriptional activity reduced the proliferation, pore closure, collagen secretion, alkaline phosphatase (ALP), and Alizarin Red staining in MC3T3-E1 cultures. In C166 vascular endothelial cells, PMpores increased the VEGFA mRNA expression even without an angiogenic differentiation medium and induced tubule formation and maintenance. In terms of osteogenesis-angiogenesis coupling, a conditioned medium from MC3T3-E1 cells in PMpores promoted the expression of angiogenic genes in C166 cells. A coculture with MC3T3-E1 induced tubule formation and maintenance in C166 cells and tubule alignment along the edges of pores. Together, curvature cues in micropores are important stimuli to regulate osteogenic differentiation and osteogenesis-angiogenesis coupling. This study uncovered key mechanotransduction signaling components activated by curvature differences in a metallic scaffold and contributed to the understanding of the interaction between orthopedic implants and cells.
Collapse
Affiliation(s)
- Yang Liu
- Department of Biomedical Engineering, College of Engineering, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Advanced Biomaterials, 1088 Xueyuan Avenue, 518055 Shenzhen, China
| | - Qihao Yang
- The Third Affiliated Hospital of Guangzhou Medical University, 63 Duobao Road, Liwan District, 510150 Guangzhou, China
| | - Yue Wang
- Department of Mechanical and Energy Engineering, College of Engineering, Southern University of Science and Technology, 1088 Xueyuan Avenue, 518055 Shenzhen, China
| | - Minmin Lin
- Department of Biomedical Engineering, College of Engineering, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Advanced Biomaterials, 1088 Xueyuan Avenue, 518055 Shenzhen, China
| | - Yanrong Tong
- Department of Biomedical Engineering, College of Engineering, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Advanced Biomaterials, 1088 Xueyuan Avenue, 518055 Shenzhen, China
| | - Hanwei Huang
- Department of Biomedical Engineering, College of Engineering, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Advanced Biomaterials, 1088 Xueyuan Avenue, 518055 Shenzhen, China
| | - Chengyu Yang
- Department of Biomedical Engineering, College of Engineering, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Advanced Biomaterials, 1088 Xueyuan Avenue, 518055 Shenzhen, China
| | - Jianqun Wu
- College of Medicine, Southern University of Science and Technology, 1088 Xueyuan Avenue, 518055 Shenzhen, China
| | - Bin Tang
- Department of Biomedical Engineering, College of Engineering, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Advanced Biomaterials, 1088 Xueyuan Avenue, 518055 Shenzhen, China
| | - Jiaming Bai
- Department of Mechanical and Energy Engineering, College of Engineering, Southern University of Science and Technology, 1088 Xueyuan Avenue, 518055 Shenzhen, China
| | - Chao Liu
- Department of Biomedical Engineering, College of Engineering, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Advanced Biomaterials, 1088 Xueyuan Avenue, 518055 Shenzhen, China
| |
Collapse
|
3
|
Mo L, Zhang S, Qi F, Huang A. Highly stable cellulose nanofiber/polyacrylamide aerogel via in-situ physical/chemical double crosslinking for highly efficient Cu(II) ions removal. Int J Biol Macromol 2022; 209:1922-1932. [PMID: 35500768 DOI: 10.1016/j.ijbiomac.2022.04.167] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/22/2022] [Accepted: 04/22/2022] [Indexed: 11/05/2022]
Abstract
Water pollution by heavy metal ions is a global concern due to detrimental effects on the ecological environment and human health. To solve the problem of the stability and recyclability of the traditional adsorbents, we proposed three-dimensional lamellar porous cellulose nanofiber/polyacrylamide composite aerogel with outstanding pollutants adsorption, easy regeneration, and multiple recycling. The aerogel adsorbent was prepared by a two-step method via facile in-situ physical/chemical double cross-linking and freeze-drying processes. The resulting aerogels showed good thermal stability, superior water stability and excellent adsorption properties, with a maximum Langmuir adsorption capacity for Cu(II) ions up to 240 mg g-1 due to the in-situ physical/chemical combination of anionic polyacrylamide and carbonylated cellulose nanofibers. The adsorption mechanism was the electrostatic attraction, chelating effect and complex formation driving forces for the fast and efficient adsorption of Cu(II) ions. The removal efficiency of the aerogels for Cu(II) remained above 80% after 10 adsorption/regeneration cycles, suggesting its outstanding recyclability. The proposed aerogel adsorbent shows noteworthy potential for the practical treatment of heavy metal ion wastewater.
Collapse
Affiliation(s)
- Liuting Mo
- MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, Beijing 100083, China; Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Shifeng Zhang
- MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, Beijing 100083, China; Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| | - Fei Qi
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing 100083, China
| | - Anmin Huang
- Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing 100091, China
| |
Collapse
|
4
|
Zheng J, Wang Y, Kawazoe N, Yang Y, Chen G. Influences of Viscosity on the Osteogenic and Adipogenic Differentiation of Mesenchymal Stem Cells with Controlled Morphology. J Mater Chem B 2022; 10:3989-4001. [DOI: 10.1039/d2tb00729k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Matrix viscoelastic properties have been shown to have important effects on cell functions. However, the conventional culture methods for investigating the influences of viscoelastic properties on cell functions cannot exclude...
Collapse
|
5
|
Jiao F, Zhao Y, Sun Q, Huo B. Spreading area and shape regulate the apoptosis and osteogenesis of mesenchymal stem cells on circular and branched micropatterned islands. J Biomed Mater Res A 2020; 108:2080-2089. [PMID: 32319192 DOI: 10.1002/jbm.a.36967] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/20/2020] [Accepted: 03/28/2020] [Indexed: 12/22/2022]
Abstract
The topography of extracellular matrix regulates the differentiation of mesenchymal stem cells (MSCs). In particular, the effect of spreading shape or area on cellular differentiation and viability of individual MSCs cultured in the confined adhesive regions is an interesting fundamental issue. In this study, the adhesive patterns with the circularity of 0.1 or 1 and the areas of 314; 628; 1,256; or 2,512 μm2 were constructed using micropatterning technology. The expression of osteogenesis marker alkaline phosphatase and the apoptosis level of individual MSCs were measured using double fluorescent staining. Results indicated that individual MSCs confined in the small area showed an apoptotic tendency, and those in the large area might enter into osteogenesis. The branched shape with small circularity increased MSC viability but reduced their pluripotency compared with the circular shape. The expression of other osteogenesis markers, such as osteocalcin and Collagen I, confirmed that large and branched pattern promoted MSC osteogenesis. In addition, the transcriptional coactivator yes-associated protein (YAP) was transferred higher in the nuclei of the large and branched cells than other micropatterned groups. This study suggested that the spreading area and shape of individual MSCs regulate their viability and osteogenesis through the YAP pathway.
Collapse
Affiliation(s)
- Fei Jiao
- Biomechanics Lab, Department of Mechanics, School of Aerospace Engineering, Beijing Institute of Technology, Beijing, People's Republic of China
| | - Yang Zhao
- Biomechanics Lab, Department of Mechanics, School of Aerospace Engineering, Beijing Institute of Technology, Beijing, People's Republic of China
| | - Qing Sun
- Biomechanics Lab, Department of Mechanics, School of Aerospace Engineering, Beijing Institute of Technology, Beijing, People's Republic of China
| | - Bo Huo
- Biomechanics Lab, Department of Mechanics, School of Aerospace Engineering, Beijing Institute of Technology, Beijing, People's Republic of China
| |
Collapse
|
6
|
Yu Q, Zhang B, Zhang YM, Liu YH, Liu Y. Actin Cytoskeleton-Disrupting and Magnetic Field-Responsive Multivalent Supramolecular Assemblies for Efficient Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2020; 12:13709-13717. [PMID: 32118400 DOI: 10.1021/acsami.0c01762] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Actin cytoskeleton disruption is a promising and intriguing anticancer strategy, but their efficiency is frequently compromised by severe side effects of the actin cytoskeleton-disrupting agents. In this study, we constructed the biocompatible actin cytoskeleton-targeting multivalent supramolecular assemblies that specifically target and disrupt the tumor actin cytoskeleton for cancer therapy. The assemblies were composed of β-cyclodextrin-grafted hyaluronic acid (HACD) and iron oxide magnetic nanoparticles (MNPs) grafted by an actin-binding peptide (ABP) and adamantane (Ada)-modified polylysine. Owing to the multivalent binding between cyclodextrin and Ada, HACD, and peptide-grafted MNPs (MNP-ABP-Ada) could self-assemble to form MNP-ABP-Ada⊂HACD nanofibers in a geomagnetism-dependent manner. Furthermore, the presence of ABP rendered the assemblies to efficiently target the actin cytoskeleton. Interestingly, with the acid of a low-frequency alternating magnetic field (200 Hz), the actin cytoskeleton-targeting nanofibers could induce severe actin disruption, leading to a remarkable cell cycle arrest and drastic cell death of tumor cells both in vitro and in vivo, but showed no obvious toxicity to normal cells. The actin cytoskeleton-targeting/disrupting supramolecular assembly implies an excellent strategy for realizing efficient cancer therapy.
Collapse
Affiliation(s)
- Qilin Yu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Science, Nankai University, Tianjin 300071, P. R. China
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Bing Zhang
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Ying-Ming Zhang
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Yao-Hua Liu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Yu Liu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
7
|
Shi Y, Liu K, Zhang Z, Tao X, Chen HY, Kingshott P, Wang PY. Decoration of Material Surfaces with Complex Physicochemical Signals for Biointerface Applications. ACS Biomater Sci Eng 2020; 6:1836-1851. [DOI: 10.1021/acsbiomaterials.9b01806] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Yue Shi
- Centre for Human Tissue & Organ Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangzhou 518055, China
| | - Kun Liu
- Centre for Human Tissue & Organ Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangzhou 518055, China
| | - Zhen Zhang
- Centre for Human Tissue & Organ Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangzhou 518055, China
| | - Xuelian Tao
- Centre for Human Tissue & Organ Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangzhou 518055, China
| | - Hsien-Yeh Chen
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Peter Kingshott
- Department of Chemistry and Biotechnology, School of Science, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
- ARC Training Centre Training Centre in Surface Engineering for Advanced Materials (SEAM), School of Engineering, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Peng-Yuan Wang
- Centre for Human Tissue & Organ Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangzhou 518055, China
- Department of Chemistry and Biotechnology, School of Science, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| |
Collapse
|
8
|
Wang T, Nanda SS, Papaefthymiou GC, Yi DK. Mechanophysical Cues in Extracellular Matrix Regulation of Cell Behavior. Chembiochem 2020; 21:1254-1264. [DOI: 10.1002/cbic.201900686] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Tuntun Wang
- Department of ChemistryMyongji University Yongin 449-728 Republic of Korea
| | | | | | - Dong Kee Yi
- Department of ChemistryMyongji University Yongin 449-728 Republic of Korea
| |
Collapse
|
9
|
Jiang S, Müller M, Schönherr H. Toward Label-Free Selective Cell Separation of Different Eukaryotic Cell Lines Using Thermoresponsive Homopolymer Layers. ACS APPLIED BIO MATERIALS 2019; 2:2557-2566. [DOI: 10.1021/acsabm.9b00252] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Siyu Jiang
- Department of Chemistry and Biology & Research Center of Micro and Nanochemistry and Engineering (Cμ), Physical Chemistry I, University of Siegen, Adolf-Reichwein-Str. 2, Siegen 57076, Germany
| | - Mareike Müller
- Department of Chemistry and Biology & Research Center of Micro and Nanochemistry and Engineering (Cμ), Physical Chemistry I, University of Siegen, Adolf-Reichwein-Str. 2, Siegen 57076, Germany
| | - Holger Schönherr
- Department of Chemistry and Biology & Research Center of Micro and Nanochemistry and Engineering (Cμ), Physical Chemistry I, University of Siegen, Adolf-Reichwein-Str. 2, Siegen 57076, Germany
| |
Collapse
|
10
|
Li P, Dou X, Schönherr H. Micropatterning and nanopatterning with polymeric materials for advanced biointerface‐controlled systems. POLYM INT 2019. [DOI: 10.1002/pi.5770] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Ping Li
- Department of Chemistry and Biology, Physical Chemistry I and Research Center of Micro and Nanochemistry and Engineering (Cµ)University of Siegen Siegen Germany
| | - Xiaoqiu Dou
- Department of Chemistry and Biology, Physical Chemistry I and Research Center of Micro and Nanochemistry and Engineering (Cµ)University of Siegen Siegen Germany
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and EngineeringShanghai Jiaotong University Shanghai China
| | - Holger Schönherr
- Department of Chemistry and Biology, Physical Chemistry I and Research Center of Micro and Nanochemistry and Engineering (Cµ)University of Siegen Siegen Germany
| |
Collapse
|
11
|
Yang Y, Wang X, Hu X, Kawazoe N, Yang Y, Chen G. Influence of Cell Morphology on Mesenchymal Stem Cell Transfection. ACS APPLIED MATERIALS & INTERFACES 2019; 11:1932-1941. [PMID: 30571082 DOI: 10.1021/acsami.8b20490] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Gene transfection has broad applications in bioengineering and biomedical fields. Although many gene carrier materials and transfection methods have been developed, it remains unclear how cell morphology including cell spreading and elongation affects gene transfection. In this study, human bone marrow-derived mesenchymal stem cells (hMSCs) were cultured on micropatterns and transfected with cationic pAcGFP1-N1 plasmid complexes. The relationship between the cell morphology of hMSCs and gene transfection was investigated using micropatterning techniques. Spreading and elongation of hMSCs were precisely controlled by micropatterned surfaces. The results showed that well-spread and elongated hMSCs had high transfection efficiency. Analysis of the uptake of exogenous genes and DNA synthesis activity indicated that the well-spread and elongated cell morphology promoted gene transfection through enhanced uptake of the cationic complexes and accelerated DNA synthesis. The results should provide useful information for understanding of cell morphology on gene transfection and development of efficient gene transfection methods.
Collapse
Affiliation(s)
- Yingjun Yang
- Research Center for Functional Materials , National Institute for Materials Science , 1-1 Namiki , Tsukuba , Ibaraki 305-0044 , Japan
- Department of Materials Science and Engineering, Graduate School of Pure and Applied Sciences , University of Tsukuba , 1-1-1 Tennodai , Tsukuba , Ibaraki 305-8577 , Japan
| | - Xinlong Wang
- Research Center for Functional Materials , National Institute for Materials Science , 1-1 Namiki , Tsukuba , Ibaraki 305-0044 , Japan
| | - Xiaohong Hu
- Graduate School of Life and Environmental Science , University of Tsukuba , 1-1-1 Tennodai , Tsukuba , Ibaraki 305-8571 , Japan
| | - Naoki Kawazoe
- Research Center for Functional Materials , National Institute for Materials Science , 1-1 Namiki , Tsukuba , Ibaraki 305-0044 , Japan
| | - Yingnan Yang
- Graduate School of Life and Environmental Science , University of Tsukuba , 1-1-1 Tennodai , Tsukuba , Ibaraki 305-8571 , Japan
| | - Guoping Chen
- Research Center for Functional Materials , National Institute for Materials Science , 1-1 Namiki , Tsukuba , Ibaraki 305-0044 , Japan
- Department of Materials Science and Engineering, Graduate School of Pure and Applied Sciences , University of Tsukuba , 1-1-1 Tennodai , Tsukuba , Ibaraki 305-8577 , Japan
| |
Collapse
|
12
|
Song Q, Druzhinin SI, Schönherr H. Asymmetric multifunctional 3D cell microenvironments by capillary force assembly. J Mater Chem B 2019. [DOI: 10.1039/c9tb00653b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The fabrication and characterization of advanced 3D cell culture microenvironments that enable systematic structure–property relationship studies are reported.
Collapse
Affiliation(s)
- Qimeng Song
- Physical Chemistry I and Research Center of Micro and Nanochemistry and Engineering (Cμ)
- Department of Chemistry and Biology
- University of Siegen
- Siegen
- Germany
| | - Sergey I. Druzhinin
- Physical Chemistry I and Research Center of Micro and Nanochemistry and Engineering (Cμ)
- Department of Chemistry and Biology
- University of Siegen
- Siegen
- Germany
| | - Holger Schönherr
- Physical Chemistry I and Research Center of Micro and Nanochemistry and Engineering (Cμ)
- Department of Chemistry and Biology
- University of Siegen
- Siegen
- Germany
| |
Collapse
|
13
|
Jiang S, Lyu B, Müller M, Wesner D, Schönherr H. Thickness-Encoded Micropatterns in One-Component Thermoresponsive Polymer Brushes for Culture and Triggered Release of Pancreatic Tumor Cell Monolayers and Spheroids. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:14670-14677. [PMID: 30474988 DOI: 10.1021/acs.langmuir.8b03040] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Fabrication, characterization, and application of micropatterned one-component poly(di(ethylene glycol)methyl ether methacrylate) (PDEGMA) brushes for monolayer cell and spheroid culture and temperature-triggered release are reported. Micropatterns of various shapes and sizes were designed to possess a unique functionality imparted by thermoresponsive thin PDEGMA patches, which are cell adhesive at 37 °C, embedded in a much thicker cell-resistant PDEGMA matrix that does not exhibit measurable thermoresponsive properties. Depending on the cell seeding density, PaTu 8988t human pancreatic tumor cells or spheroids were cultured area-selectively, confined by the 40 ± 4 nm thick passivating PDEGMA matrix, and could be released on demand by a mild thermally triggered brush swelling in the 5 ± 1 nm thin regions. As shown by surface plasmon resonance (SPR) measurements, in contrast to the thinner brushes, the thicker brushes exhibited virtually no fibronectin adhesive properties at 37 °C, whereas at 25 °C, both areas showed similar protein resistant behavior. The quasi-2D thickness-encoded micropatterns were shown to be useful templates for the growth of 3D multicellular aggregates. Thermally induced release after 5 days of incubation afforded 3D cell spheroids comprising up to 99% viable cells demonstrating that the system can be used as a 3D spheroid in vitro model for basic tumor research and anticancer drug screenings.
Collapse
Affiliation(s)
- Siyu Jiang
- Department of Chemistry and Biology & Research Center of Micro and Nanochemistry and Engineering (Cμ), Physical Chemistry I , University of Siegen , Adolf-Reichwein-Street 2 , 57076 Siegen , Germany
| | - Beier Lyu
- Department of Chemistry and Biology & Research Center of Micro and Nanochemistry and Engineering (Cμ), Physical Chemistry I , University of Siegen , Adolf-Reichwein-Street 2 , 57076 Siegen , Germany
| | - Mareike Müller
- Department of Chemistry and Biology & Research Center of Micro and Nanochemistry and Engineering (Cμ), Physical Chemistry I , University of Siegen , Adolf-Reichwein-Street 2 , 57076 Siegen , Germany
| | - Daniel Wesner
- Department of Chemistry and Biology & Research Center of Micro and Nanochemistry and Engineering (Cμ), Physical Chemistry I , University of Siegen , Adolf-Reichwein-Street 2 , 57076 Siegen , Germany
| | - Holger Schönherr
- Department of Chemistry and Biology & Research Center of Micro and Nanochemistry and Engineering (Cμ), Physical Chemistry I , University of Siegen , Adolf-Reichwein-Street 2 , 57076 Siegen , Germany
| |
Collapse
|
14
|
Li P, Dou X, Feng C, Schönherr H. Enhanced cell adhesion on a bio-inspired hierarchically structured polyester modified with gelatin-methacrylate. Biomater Sci 2018; 6:785-792. [PMID: 29210373 DOI: 10.1039/c7bm00991g] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Herein, fabrication and modification of novel bio-inspired microwell arrays with nanoscale topographic structures are reported. The natural nano- and microstructures present on the surface of rose petals were hypothesized to enhance cell-surface contacts. Thus hierarchically structured polyethylene terephthalate glycol modified (PETG) substrates were fabricated by replication from rose petals via nanoimprint lithography, followed by covalent modification and crosslinking with RGD-presenting gelatin-methacrylate (GelMA) for promoting cell adhesion and spreading. Cell culture experiments showed that the introduction of gelatin resulted in significantly enhanced cell adhesion and more than doubled cell areas on the GelMA modified surfaces. In addition, a slight preference was observed for concave compared to convex surfaces, which is tentatively attributed to the matching curvature of the micro-cavities and the cells, facilitating the accommodation of cells. These bioinspired hierarchically structured and gelatin functionalized substrates may provide new prospects for designing cell-based interfaces for advanced biomedical studies, e.g. for cell culture and biosensing in the future.
Collapse
Affiliation(s)
- Ping Li
- Physical Chemistry I and Research Center of Micro and Nanochemistry and Engineering (Cμ), Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Str. 2, 57076, Siegen, Germany.
| | | | | | | |
Collapse
|
15
|
Yang Y, Wang X, Huang TC, Hu X, Kawazoe N, Tsai WB, Yang Y, Chen G. Regulation of mesenchymal stem cell functions by micro-nano hybrid patterned surfaces. J Mater Chem B 2018; 6:5424-5434. [PMID: 32254601 DOI: 10.1039/c8tb01621f] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Micro- and nano-structured substrates have been widely used in the biomedical engineering field. Their precise control of cell morphology makes them promising for investigating various cell behaviors. However, regulation of cell functions using micro-nano hybrid patterns is rarely achieved. Since the cell microenvironment in vivo has complex micro- and nano-structures, it is desirable to use micro-nano hybrid patterns to mimic the microenvironment to control cell morphology and disclose its influence on stem cell differentiation. In this study, poly(vinyl alcohol) (PVA) micro-stripes with different spacings (50 μm, 100 μm and 200 μm) were constructed on polystyrene (PS) nano-grooves to prepare micro-nano hybrid patterns where the direction of the PVA micro-stripes and PS nano-grooves was parallel or orthogonal. Human bone marrow-derived mesenchymal stem cells (hMSCs) cultured on the micro-nano hybrid patterns showed a different cell alignment and elongation dependent on the PVA micro-stripe spacing and orientation of the PS nano-grooves. Comparison of the influence of cell alignment and aspect ratio on differentiation of hMSCs indicated that myogenic differentiation was predominantly regulated by cell alignment and osteogenic differentiation by cell elongation, while adipogenic differentiation was regulated neither by cell alignment nor by cell elongation.
Collapse
Affiliation(s)
- Yingjun Yang
- Tissue Regeneration Materials Group, Research Center of Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Guo L, Fan Y, Kawazoe N, Fan H, Zhang X, Chen G. Fabrication of gelatin-micropatterned surface and its effect on osteogenic differentiation of hMSCs. J Mater Chem B 2018; 6:1018-1025. [DOI: 10.1039/c7tb03165c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Micropatterned surface with different surface chemistries was fabricated for the direct comparison of their effect on the behaviors of hMSCs and to avoid any batch to batch variations during cell culture.
Collapse
Affiliation(s)
- Likun Guo
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu
- China
- Research Center for Functional Materials
| | - Yujiang Fan
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu
- China
| | - Naoki Kawazoe
- Research Center for Functional Materials
- National Institute for Materials Science
- Tsukuba
- Japan
| | - Hongsong Fan
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu
- China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu
- China
| | - Guoping Chen
- Research Center for Functional Materials
- National Institute for Materials Science
- Tsukuba
- Japan
| |
Collapse
|
17
|
Großhans S, Lilge I, Schönherr H. Detailed Analysis of Pancreatic Tumor Cell Attachment on Gradient PDEGMA Brushes. Macromol Biosci 2017; 18. [PMID: 29280561 DOI: 10.1002/mabi.201700317] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 11/06/2017] [Indexed: 12/19/2022]
Abstract
Poly(di(ethylene glycol) methyl ether methacrylate) (PDEGMA) brushes show interesting thermoresponsive behavior that can be applied for cell release surfaces. Here it is shown that PDEGMA thickness gradients, which are synthesized by surface-initiated atom transfer radical polymerization, allow the systematic and precise analysis of the attachment of PaTu 8988 cells. By pumping the polymerization solution into the reactor with vertically fixed initiator samples, PDEGMA gradients with linearly increasing dry ellipsometric thickness with typical slopes of 2.5 nm cm-1 are obtained. A very narrow transition of PaTu 8988t cell attachment is observed that starts for a thickness larger than 7.1 ± 0.2 nm. For PDEGMA layers thicker than 8.7 ± 0.2 nm no attached cells are found. This very narrow transition in brush properties within a thickness difference of <2 nm from cell-adherent to cell-nonadherent can be determined in much greater detail than before owing to the thickness gradients with shallow slope.
Collapse
Affiliation(s)
- Sabine Großhans
- Physical Chemistry I, Department of Chemistry and Biology & Research Center of Micro and Nanochemistry and Engineering (Cµ), University of Siegen, Adolf-Reichwein-Str. 2, 57076, Siegen, Germany
| | - Inga Lilge
- Physical Chemistry I, Department of Chemistry and Biology & Research Center of Micro and Nanochemistry and Engineering (Cµ), University of Siegen, Adolf-Reichwein-Str. 2, 57076, Siegen, Germany
| | - Holger Schönherr
- Physical Chemistry I, Department of Chemistry and Biology & Research Center of Micro and Nanochemistry and Engineering (Cµ), University of Siegen, Adolf-Reichwein-Str. 2, 57076, Siegen, Germany
| |
Collapse
|
18
|
Dou X, Li P, Schönherr H. Three-Dimensional Microstructured Poly(vinyl alcohol) Hydrogel Platform for the Controlled Formation of Multicellular Cell Spheroids. Biomacromolecules 2017; 19:158-166. [DOI: 10.1021/acs.biomac.7b01345] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Xiaoqiu Dou
- Physical Chemistry I and Research Center
of Micro and Nanochemistry and Engineering (Cμ), Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Str. 2, 57076, Siegen, Germany
| | - Ping Li
- Physical Chemistry I and Research Center
of Micro and Nanochemistry and Engineering (Cμ), Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Str. 2, 57076, Siegen, Germany
| | - Holger Schönherr
- Physical Chemistry I and Research Center
of Micro and Nanochemistry and Engineering (Cμ), Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Str. 2, 57076, Siegen, Germany
| |
Collapse
|
19
|
Arrotin B, Delhalle J, Dubois P, Mespouille L, Mekhalif Z. Electroassisted Functionalization of Nitinol Surface, a Powerful Strategy for Polymer Coating through Controlled Radical Surface Initiation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:2977-2985. [PMID: 28252303 DOI: 10.1021/acs.langmuir.6b04536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Coating Nitinol (NiTi) surfaces with a polymer layer has become very appealing in the past few years owing to its increased attraction in the biomedical field. Although its intrinsic properties helped ensure its popularity, its extensive implementation is still hampered by its nickel inclusion, making it sensitive to pitting corrosion and therefore leading to the release of carcinogenic Ni2+ ions. Among all recent ways to modify NiTi surfaces, elaboration of self-assembled monolayers is of great interest as their high order confers a reinforcement of the metal surface corrosion resistance and brings new functionalities to the metal for postmodification processes. In this work, we compare the electroassisted and thermally assisted self-assembling of 11-(2-bromoisobutyrate)-undecyl-1-phosphonic acid (BUPA) to the classical immersion process on NiTi surfaces initially submitted to a hydrothermal treatment. Among all tested conditions, the electroassisted grafting of BUPA at room temperature appears to be the most promising alternative, as it allows grafting in very short times (5-10 min), thus preventing its degradation. The thus-formed layer has been proven to be sufficient to enable the surface-initiated atom transfer radical polymerization (SI-ATRP) of 2-(dimethylamino)ethyl methacrylate.
Collapse
Affiliation(s)
- Bastien Arrotin
- Laboratory of Chemistry and Electrochemistry of Surfaces (CES), University of Namur , rue de Bruxelles, 61, B-5000 Namur, Belgium
- Laboratory of Polymeric and Composite Materials (LPCM), Center of Innovation and Research in Materials & Polymers (CIRMAP), Health and Materials Research Institutes, University of Mons , Place du Parc, 23, B-7000 Mons, Belgium
| | - Joseph Delhalle
- Laboratory of Chemistry and Electrochemistry of Surfaces (CES), University of Namur , rue de Bruxelles, 61, B-5000 Namur, Belgium
| | - Philippe Dubois
- Laboratory of Polymeric and Composite Materials (LPCM), Center of Innovation and Research in Materials & Polymers (CIRMAP), Health and Materials Research Institutes, University of Mons , Place du Parc, 23, B-7000 Mons, Belgium
- Materials Research and Technology Department (MRT), Luxembourg Institute of Science and Technology (LIST) , Rue du Brill, 41, 4422 Belvaux, Luxembourg
| | - Laetitia Mespouille
- Laboratory of Polymeric and Composite Materials (LPCM), Center of Innovation and Research in Materials & Polymers (CIRMAP), Health and Materials Research Institutes, University of Mons , Place du Parc, 23, B-7000 Mons, Belgium
| | - Zineb Mekhalif
- Laboratory of Chemistry and Electrochemistry of Surfaces (CES), University of Namur , rue de Bruxelles, 61, B-5000 Namur, Belgium
| |
Collapse
|
20
|
Dou X, Li P, Jiang S, Bayat H, Schönherr H. Bioinspired Hierarchically Structured Surfaces for Efficient Capture and Release of Circulating Tumor Cells. ACS APPLIED MATERIALS & INTERFACES 2017; 9:8508-8518. [PMID: 28206737 DOI: 10.1021/acsami.6b16202] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The development of novel bioinspired surfaces with hierarchical micro- and nanoscale topographic structures for efficient capture and release of circulating tumor cells (CTCs) is reported. The capture of CTCs, facilitated by surface-immobilized epithelial cell adhesion molecule antibodies (anti-EpCAM), was shown to be significantly enhanced in novel three-dimensional hierarchically structured surfaces that were fabricated by replicating the natural micro- and nanostructures of rose petals. Under static conditions, these hierarchical capture substrates exhibited up to 6 times higher cell capture ability at concentrations of 100 cells mL-1 in contrast to flat anti-EpCAM-functionalized polydimethylsiloxane (PDMS) surfaces. As indicated by scanning electron microscopy (SEM) and immunofluorescent images, this enhancement can be in large part attributed to the topographical interaction between nanoscale cell surface components and nanostructures on the substrate. Similarly, the increased surface area affords a higher nominal coverage of anti-EpCAM, which increases the number of available binding sites for cell capture. By treating the substrates with the biocompatible reductant glutathione (GSH), up to 85% of the captured cells were released, which displayed over 98% cell viability after culturing on tissue culture polystyrene (TCP) for 24 h. Therefore, these bioinspired hierarchically structured and functionalized substrates can be successfully applied to capture CTCs, as well as release CTCs for subsequent analysis. These findings provide new prospects for designing cell-material interfaces for advanced cell-based biomedical studies in the future.
Collapse
Affiliation(s)
- Xiaoqiu Dou
- Physical Chemistry I and Research Center of Micro and Nanochemistry and Engineering (Cμ), Department of Chemistry and Biology, University of Siegen , Adolf-Reichwein-Strasse 2, 57076 Siegen, Germany
| | - Ping Li
- Physical Chemistry I and Research Center of Micro and Nanochemistry and Engineering (Cμ), Department of Chemistry and Biology, University of Siegen , Adolf-Reichwein-Strasse 2, 57076 Siegen, Germany
| | - Siyu Jiang
- Physical Chemistry I and Research Center of Micro and Nanochemistry and Engineering (Cμ), Department of Chemistry and Biology, University of Siegen , Adolf-Reichwein-Strasse 2, 57076 Siegen, Germany
| | - Haider Bayat
- Physical Chemistry I and Research Center of Micro and Nanochemistry and Engineering (Cμ), Department of Chemistry and Biology, University of Siegen , Adolf-Reichwein-Strasse 2, 57076 Siegen, Germany
| | - Holger Schönherr
- Physical Chemistry I and Research Center of Micro and Nanochemistry and Engineering (Cμ), Department of Chemistry and Biology, University of Siegen , Adolf-Reichwein-Strasse 2, 57076 Siegen, Germany
| |
Collapse
|
21
|
Lilge I, Jiang S, Schönherr H. Long-Term Stable Poly(acrylamide) Brush Modified Transparent Microwells for Cell Attachment Studies in 3D. Macromol Biosci 2017; 17. [DOI: 10.1002/mabi.201600451] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Revised: 11/23/2016] [Indexed: 12/18/2022]
Affiliation(s)
- Inga Lilge
- Physical Chemistry I; Department of Chemistry and Biology and Research Center of Micro and Nanochemistry and Engineering (Cμ); University of Siegen; Adolf-Reichwein-Str. 2 57076 Siegen Germany
| | - Siyu Jiang
- Physical Chemistry I; Department of Chemistry and Biology and Research Center of Micro and Nanochemistry and Engineering (Cμ); University of Siegen; Adolf-Reichwein-Str. 2 57076 Siegen Germany
| | - Holger Schönherr
- Physical Chemistry I; Department of Chemistry and Biology and Research Center of Micro and Nanochemistry and Engineering (Cμ); University of Siegen; Adolf-Reichwein-Str. 2 57076 Siegen Germany
| |
Collapse
|