1
|
Zheng L, Ulbricht M, Van der Bruggen B, Wang Z, Hou D, Wei Y. Making waves: Magneto-responsive membranes with special and switchable wettability: new opportunities for membrane distillation. WATER RESEARCH 2024; 249:120939. [PMID: 38043347 DOI: 10.1016/j.watres.2023.120939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 09/07/2023] [Accepted: 11/28/2023] [Indexed: 12/05/2023]
Abstract
Membrane distillation (MD) has promising potential in the water purification and wastewater treatment industries; however, fouling and wetting are the main obstacles to its commercialization, and higher fluxes and energy efficiencies are essential. Magneto-responsive membranes (MagMem) with integrated magnetic nanoparticles (MNPs) enable in situ fouling mitigation and switchable separation by nano-mixing or nano-heating, triggered by external magnetic fields, in a range of membrane processes, but not yet been demonstrated in MD. This perspective discussed the potential paths of MagMem utilization in MD based on the research status and dilemmas of MD. It can be envisioned that MagMem will lead to a paradigm shift in MD, especially by in situ fouling/wetting mitigation and enhancing energy efficiency via in-place actuation and localized heating by MNPs. Moreover, remotely controllable pore tuning and specific or switchable wettability can also be anticipated. Overall, MagMem provides attractive opportunities for advanced robust and efficient MD.
Collapse
Affiliation(s)
- Libing Zheng
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Beijing 100085, China; Lehrstuhl für Technische Chemie II, Universität Duisburg-Essen, Essen 45117, Germany; Department of Chemical Engineering, KU Leuven, Leuven B-3001, Belgium
| | - Mathias Ulbricht
- Lehrstuhl für Technische Chemie II, Universität Duisburg-Essen, Essen 45117, Germany.
| | | | - Zhangxin Wang
- School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Deyin Hou
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Beijing 100085, China
| | - Yuansong Wei
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Beijing 100085, China.
| |
Collapse
|
2
|
Nottelet B, Buwalda S, van Nostrum CF, Zhao X, Deng C, Zhong Z, Cheah E, Svirskis D, Trayford C, van Rijt S, Ménard-Moyon C, Kumar R, Kehr NS, de Barros NR, Khademhosseini A, Kim HJ, Vermonden T. Roadmap on multifunctional materials for drug delivery. JPHYS MATERIALS 2024; 7:012502. [PMID: 38144214 PMCID: PMC10734278 DOI: 10.1088/2515-7639/ad05e8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 09/29/2023] [Accepted: 10/23/2023] [Indexed: 12/26/2023]
Abstract
This Roadmap on drug delivery aims to cover some of the most recent advances in the field of materials for drug delivery systems (DDSs) and emphasizes the role that multifunctional materials play in advancing the performance of modern DDSs in the context of the most current challenges presented. The Roadmap is comprised of multiple sections, each of which introduces the status of the field, the current and future challenges faced, and a perspective of the required advances necessary for biomaterial science to tackle these challenges. It is our hope that this collective vision will contribute to the initiation of conversation and collaboration across all areas of multifunctional materials for DDSs. We stress that this article is not meant to be a fully comprehensive review but rather an up-to-date snapshot of different areas of research, with a minimal number of references that focus upon the very latest research developments.
Collapse
Affiliation(s)
- Benjamin Nottelet
- IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
- Department of Pharmacy, Nîmes University Hospital, Univ Montpellier, 30900 Nimes, France
| | - Sytze Buwalda
- MINES Paris, PSL University, Center for Materials Forming, 06904 Sophia Antipolis, France
| | | | - Xiaofei Zhao
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, People’s Republic of China
| | - Chao Deng
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, People’s Republic of China
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, People’s Republic of China
| | - Ernest Cheah
- School of Pharmacy, University of Auckland, 85 Park Road, Grafton, Auckland 1023, New Zealand
| | - Darren Svirskis
- School of Pharmacy, University of Auckland, 85 Park Road, Grafton, Auckland 1023, New Zealand
| | - Chloe Trayford
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, PO Box 616, 6200 MD Maastricht, The Netherlands
| | - Sabine van Rijt
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, PO Box 616, 6200 MD Maastricht, The Netherlands
| | - Cécilia Ménard-Moyon
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, 67000 Strasbourg, France
| | - Ravi Kumar
- Physikalisches Institute and Center of Soft Nanoscience, University of Münster, Münster, Germany
| | - Nermin Seda Kehr
- Physikalisches Institute and Center of Soft Nanoscience, University of Münster, Münster, Germany
- Department of Chemistry, Izmir Institute of Technology, Izmir, Turkey
| | - Natan Roberto de Barros
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90274, United States of America
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90274, United States of America
| | - Han-Jun Kim
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90274, United States of America
- College of Pharmacy, Korea University, Sejong 30019, Republic of Korea
| | - Tina Vermonden
- Utrecht Institute for Pharmaceutical Sciences, Utrecht,The Netherlands
| |
Collapse
|
3
|
Lee J, Kim D, Park M, Ryu J, Park H, Kim T, Kim D, Ju SY, Kim J. Spatiotemporally Controllable Electrical Stimulator via Independent Photobending and Upconversion Photoluminescence Using Two Different Wavelengths of Near-Infrared/Visible Light as Dual Stimuli. ACS APPLIED MATERIALS & INTERFACES 2023; 15:46311-46321. [PMID: 37690085 DOI: 10.1021/acsami.3c08807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Multistimuli responsive materials are advantageous in that they can enhance the desired response or bypass unwanted reactions. Light is one of the most attractive stimuli since it allows remote spatiotemporal control and multiplexing of properties (e.g., wavelength, intensity, irradiation time, pulsed/continuous wave) for application on multiphotoresponsive materials. However, the operating wavelength for such photoresponsive systems often includes an ultraviolet (UV) range that limits its use in the biomedical field. Herein, we investigate near-infrared (NIR)/visible (Vis) light-responsive nanocomposite films composed of rare earth element (i.e., Yb, Er)-doped NaYF4 nanoparticles (NPs) embedded in azobenzene-incorporated poly(dimethylsiloxane) (AzoPDMS), silk fibroin, and silver nanowire (AgNW) layers. Photobending (PB) of the nanocomposite film is induced by a Vis light of 400-700 nm, while upconversion photoluminescence (UCPL) of embedded NPs is activated by an NIR light of 980 nm. The excitation wavelength of photoluminescence (PL) is shifted to the NIR (λ = 980 nm) range via photon upconversion in rare earth element-doped NPs. Independent operation of PB and UCPL enables both on-demand electrical switching and real-time location monitoring for spatiotemporally controlled electrical pulse stimulation. As a result, the dual-photoresponsive nanocomposite film can be utilized as a remotely controllable electrical stimulator and location indicator via different wavelengths of light.
Collapse
Affiliation(s)
- Jiyeon Lee
- School of Integrated Technology, College of Computing, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Republic of Korea
| | - Dongjun Kim
- School of Integrated Technology, College of Computing, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Republic of Korea
| | - Minsuk Park
- Department of Chemistry, College of Science, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Jaehyeok Ryu
- School of Integrated Technology, College of Computing, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Republic of Korea
| | - Hyunbin Park
- Integrative Biotechnology and Translational Medicine, Graduate School, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Republic of Korea
| | - Taehee Kim
- Department of Chemistry, College of Science, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Dongho Kim
- Department of Chemistry, College of Science, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Sang-Yong Ju
- Department of Chemistry, College of Science, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Jiwon Kim
- School of Integrated Technology, College of Computing, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Republic of Korea
- Integrated Science and Engineering Division, Underwood International College, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Republic of Korea
- Integrative Biotechnology and Translational Medicine, Graduate School, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Republic of Korea
| |
Collapse
|
4
|
Mills R, Baldridge KC, Bernard M, Bhattacharyya D. Recent Advances in Responsive Membrane Functionalization Approaches and Applications. SEP SCI TECHNOL 2022; 58:1202-1236. [PMID: 37063489 PMCID: PMC10103845 DOI: 10.1080/01496395.2022.2145222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 10/28/2022] [Indexed: 11/25/2022]
Abstract
In recent years, significant advances have been made in the field of functionalized membranes. With the functionalization using various materials, such as polymers and enzymes, membranes can exhibit property changes in response to an environmental stimulation, such as heat, light, ionic strength, or pH. The resulting responsive nature allows for an increased breadth of membrane uses, due to the developed functionalization properties, such as smart-gating filtration for size-selective water contaminant removal, self-cleaning antifouling surfaces, increased scalability options, and highly sensitive molecular detection. In this review, new advances in both fabrication and applications of functionalized membranes are reported and summarized, including temperature-responsive, pH-responsive, light-responsive, enzyme-functionalized, and two-dimensional material-functionalized membranes. Specific emphasis was given to the most recent technological improvements, current limitations, advances in characterization techniques, and future directions for the field of functionalized membranes.
Collapse
Affiliation(s)
- Rollie Mills
- Department of Chemical and Materials Engineering, University of Kentucky; Lexington, KY 40506, USA
| | - Kevin C. Baldridge
- Department of Chemical and Materials Engineering, University of Kentucky; Lexington, KY 40506, USA
| | - Matthew Bernard
- Department of Chemical and Materials Engineering, University of Kentucky; Lexington, KY 40506, USA
| | - Dibakar Bhattacharyya
- Department of Chemical and Materials Engineering, University of Kentucky; Lexington, KY 40506, USA
| |
Collapse
|
5
|
Nano-filtration performance and temperature dependency of thin film composite polyamide membranes embedded with thermal responsive zwitterionic nanocapsules. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
6
|
Smart membranes for biomedical applications. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2022.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
7
|
Bandehali S, Parvizian F, Hosseini SM, Matsuura T, Drioli E, Shen J, Moghadassi A, Adeleye AS. Planning of smart gating membranes for water treatment. CHEMOSPHERE 2021; 283:131207. [PMID: 34157628 DOI: 10.1016/j.chemosphere.2021.131207] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 06/13/2023]
Abstract
The use of membranes in desalination and water treatment has been intensively studied in recent years. The conventional membranes however have various problems such as uncontrollable pore size and membrane properties, which prevents membranes from quickly responding to alteration of operating and environmental conditions. As a result the membranes are fouled, and their separation performance is lowered. The preparation of smart gating membranes inspired by cell membranes is a new method to face these challenges. Introducing stimuli-responsive functional materials into traditional porous membranes and use of hydrogels and microgels can change surface properties and membrane pore sizes under different conditions. This review shows potential of smart gating membranes in water treatment. Various types of stimuli-response such as those of thermo-, pH-, ion-, molecule-, UV light-, magnetic-, redox- and electro-responsive gating membranes along with various gel types such as those of polyelectrolyte, PNIPAM-based, self-healing hydrogels and microgel based-smart gating membranes are discussed. Design strategies, separation mechanisms and challenges in fabrication of smart gating membranes in water treatment are also presented. It is demonstrated that experimental and modeling and simulation results have to be utilized effectively to produce smart gating membranes.
Collapse
Affiliation(s)
- Samaneh Bandehali
- Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak, 38156-8-8349, Iran
| | - Fahime Parvizian
- Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak, 38156-8-8349, Iran
| | - Sayed Mohsen Hosseini
- Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak, 38156-8-8349, Iran.
| | - Takeshi Matsuura
- Department of Chemical and Biological Engineering, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada.
| | - Enrico Drioli
- Institute on Membrane Technology, National Research Council of Italy (CNR-ITM), Via P. Bucci 17/C, Rende, CS, 87036, Italy; Department of Environmental and Chemical Engineering, University of Calabria, Via P. Bucci 45A, 87036, Rende, CS, Italy.
| | - Jiangnan Shen
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Abdolreza Moghadassi
- Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak, 38156-8-8349, Iran
| | - Adeyemi S Adeleye
- Department of Civil and Environmental Engineering, University of California, Irvine, CA, 92697-2175, USA
| |
Collapse
|
8
|
Götz T, Landzettel J, Schiestel T. Thermo‐responsive mixed‐matrix hollow fiber membranes. J Appl Polym Sci 2021. [DOI: 10.1002/app.50787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Tobias Götz
- Innovation Field Membranes Fraunhofer Institute for Interfacial Engineering and Biotechnology Stuttgart Germany
| | - Jan Landzettel
- Innovation Field Membranes Fraunhofer Institute for Interfacial Engineering and Biotechnology Stuttgart Germany
| | - Thomas Schiestel
- Innovation Field Membranes Fraunhofer Institute for Interfacial Engineering and Biotechnology Stuttgart Germany
| |
Collapse
|
9
|
Sung B, Kim M, Abelmann L. Magnetic microgels and nanogels: Physical mechanisms and biomedical applications. Bioeng Transl Med 2021; 6:e10190. [PMID: 33532590 PMCID: PMC7823133 DOI: 10.1002/btm2.10190] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/02/2020] [Accepted: 10/05/2020] [Indexed: 02/06/2023] Open
Abstract
Soft micro- and nanostructures have been extensively developed for biomedical applications. The main focus has been on multifunctional composite materials that combine the advantages of hydrogels and colloidal particles. Magnetic microgels and nanogels can be realized by hybridizing stimuli-sensitive gels and magnetic nanoparticles. They are of particular interest since they can be controlled in a wide range of biological environments by using magnetic fields. In this review, we elucidate physical principles underlying the design of magnetic microgels and nanogels for biomedical applications. Particularly, this article provides a comprehensive and conceptual overview on the correlative structural design and physical functionality of the magnetic gel systems under the concept of colloidal biodevices. To this end, we begin with an overview of physicochemical mechanisms related to stimuli-responsive hydrogels and transport phenomena and summarize the magnetic properties of inorganic nanoparticles. On the basis of the engineering principles, we categorize and summarize recent advances in magnetic hybrid microgels and nanogels, with emphasis on the biomedical applications of these materials. Potential applications of these hybrid microgels and nanogels in anticancer treatment, protein therapeutics, gene therapy, bioseparation, biocatalysis, and regenerative medicine are highlighted. Finally, current challenges and future opportunities in the design of smart colloidal biodevices are discussed.
Collapse
Affiliation(s)
- Baeckkyoung Sung
- KIST Europe Forschungsgesellschaft mbHSaarbrückenGermany
- Department of Biological SciencesKent State UniversityKentOhioUSA
- Division of Energy and Environment TechnologyUniversity of Science and TechnologyDaejeonRepublic of Korea
| | - Min‐Ho Kim
- Department of Biological SciencesKent State UniversityKentOhioUSA
| | - Leon Abelmann
- KIST Europe Forschungsgesellschaft mbHSaarbrückenGermany
- MESA+ Institute for Nanotechnology, University of TwenteEnschedeThe Netherlands
| |
Collapse
|
10
|
Vu A, Sengupta A, Freeman E, Qian X, Ulbricht M, Wickramasinghe SR. Tailoring and Remotely Switching Performance of Ultrafiltration Membranes by Magnetically Responsive Polymer Chains. MEMBRANES 2020; 10:membranes10090219. [PMID: 32882913 PMCID: PMC7558725 DOI: 10.3390/membranes10090219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 08/27/2020] [Accepted: 08/29/2020] [Indexed: 11/19/2022]
Abstract
Magnetically responsive ultrafiltration membranes were prepared by grafting poly(2-hydroxyethyl methacrylate) chains from the outer surface of 100-kDa regenerated cellulose ultrafiltration membranes. Surface-initiated atom transfer radical polymerization was used to graft the polymer chains. Grafting from the internal pore surface was suppressed by using glycerol as a pore-filling solvent during initiator immobilization at varied densities. Glycerol suppresses the initiator attachment to the pore surface. Polymerization times of up to four hours were investigated. Superparamagnetic nanoparticles were covalently attached to the chain end. Membrane performance was determined using bovine serum albumin and dextran as model solutes. Increasing the grafted polymer chain density and length led to a decrease in the permeate flux and an increase in the apparent rejection coefficient. In an oscillating magnetic field, movement of the grafted polymer chains led to a decrease in the permeate flux, as well as an increase in the apparent rejection coefficient of the model solutes.
Collapse
Affiliation(s)
- Anh Vu
- Ralph E Martin Department of Chemical Engineering, University of Arkansas, Fayetteville, AR 72701, USA; (A.V.); (A.S.); (E.F.)
| | - Arijit Sengupta
- Ralph E Martin Department of Chemical Engineering, University of Arkansas, Fayetteville, AR 72701, USA; (A.V.); (A.S.); (E.F.)
- Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Emily Freeman
- Ralph E Martin Department of Chemical Engineering, University of Arkansas, Fayetteville, AR 72701, USA; (A.V.); (A.S.); (E.F.)
| | - Xianghong Qian
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR 72701, USA;
| | - Mathias Ulbricht
- Lehrstuhl für Technische Chemie II, Universität Duisburg-Essen, 45117 Essen, Germany;
| | - S. Ranil Wickramasinghe
- Ralph E Martin Department of Chemical Engineering, University of Arkansas, Fayetteville, AR 72701, USA; (A.V.); (A.S.); (E.F.)
- Correspondence:
| |
Collapse
|
11
|
Nowak BP, Ravoo BJ. Magneto- and photo-responsive hydrogels from the co-assembly of peptides, cyclodextrins, and superparamagnetic nanoparticles. Faraday Discuss 2020; 219:220-228. [PMID: 31297494 DOI: 10.1039/c9fd00012g] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dual response to external non-invasive stimuli, such as light and magnetic field, is a highly desirable property in soft nanomaterials with potential applications in soft robotics, tissue engineering, and life-like materials. Within this class of materials, hydrogels obtained from the self-assembly of low molecular weight gelators (LMWGs) are of special interest due to their ease of preparation and modification. Herein, we report a modular co-assembly strategy for a magneto- and photo-responsive supramolecular hydrogel based on the arylazopyrazole (AAP) modified pentapeptide gelator Nap-GFFYS, and β-cyclodextrin vesicles (CDVs) with superparamagnetic cobalt ferrite nanoparticles embedded in their membranes. Upon application of a magnetic field, a reversible increase in the storage modulus is observed during rheological measurements. Additionally, a gel rod could be manipulated with a weak permanent magnet, resulting in macroscopic bending of the rod. Furthermore, through irradiation with UV and visible light, respectively, the host-guest interaction between the AAP moiety and the hydrophobic cavity of the β-CD can be deactivated on demand, thus lowering the stiffness of the hydrogel reversibly.
Collapse
Affiliation(s)
- Benedikt P Nowak
- Center for Soft Nanoscience and Organic Chemistry Institute, Westfälische Wilhelms Universität Münster, Busso Peus Straße 10, 48149 Münster, Germany.
| | | |
Collapse
|
12
|
McCune JA, Mommer S, Parkins CC, Scherman OA. Design Principles for Aqueous Interactive Materials: Lessons from Small Molecules and Stimuli-Responsive Systems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1906890. [PMID: 32227391 DOI: 10.1002/adma.201906890] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 11/24/2019] [Indexed: 06/10/2023]
Abstract
Interactive materials are at the forefront of current materials research with few examples in the literature. Researchers are inspired by nature to develop materials that can modulate and adapt their behavior in accordance with their surroundings. Stimuli-responsive systems have been developed over the past decades which, although often described as "smart," lack the ability to act autonomously. Nevertheless, these systems attract attention on account of the resultant materials' ability to change their properties in a predicable manner. These materials find application in a plethora of areas including drug delivery, artificial muscles, etc. Stimuli-responsive materials are serving as the precursors for next-generation interactive materials. Interest in these systems has resulted in a library of well-developed chemical motifs; however, there is a fundamental gap between stimuli-responsive and interactive materials. In this perspective, current state-of-the-art stimuli-responsive materials are outlined with a specific emphasis on aqueous macroscopic interactive materials. Compartmentalization, critical for achieving interactivity, relies on hydrophobic, hydrophilic, supramolecular, and ionic interactions, which are commonly present in aqueous systems and enable complex self-assembly processes. Relevant examples of aqueous interactive materials that do exist are given, and design principles to realize the next generation of materials with embedded autonomous function are suggested.
Collapse
Affiliation(s)
- Jade A McCune
- Melville Laboratory for Polymer Synthesis, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Stefan Mommer
- Melville Laboratory for Polymer Synthesis, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Christopher C Parkins
- Melville Laboratory for Polymer Synthesis, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Oren A Scherman
- Melville Laboratory for Polymer Synthesis, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| |
Collapse
|
13
|
Thinking the future of membranes: Perspectives for advanced and new membrane materials and manufacturing processes. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117761] [Citation(s) in RCA: 203] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
14
|
Gulina LB, Gurenko VE, Tolstoy VP, Mikhailovskii VY, Koroleva AV. Interface-Assisted Synthesis of the Mn 3-xFe xO 4 Gradient Film with Multifunctional Properties. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:14983-14989. [PMID: 31702162 DOI: 10.1021/acs.langmuir.9b02338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Anisotropic gradient materials are considered as promising and novel in that they have numerous functional properties and are able to transform into hierarchical microstructures. We report a facile method of gradient inorganic thin film synthesis through diffusion-controlled deposition at the gas-solution interface. To investigate the reaction of interfacial phase boundary controllable hydrolysis by gaseous ammonium, an aqueous solution of FeCl3 and MnCl2 was chosen, as the precipitation pH values for the hydroxides of these metals differ gradually. As a result of synthesis using the gas-solution interface technique (GSIT), a thin film is formed on the surface of the solution that consists of Mn2+(Fe,Mn)23+O4 nanoparticles with hausmannite crystal structure. The ratio between iron and manganese in the film can be adjusted over a wide range by varying the synthetic procedure. Specific conditions are determined that allow the formation of a Mn-Fe mixed oxide film with a gradient of composition, morphology, and properties, as well as its further transformation into microscrolls with a diameter of 10-20 μm and a length of up to 300 μm, showing weak superparamagnetic properties. The technique reported provides a new interfacial route for the development of functional gradient materials with tubular morphology.
Collapse
Affiliation(s)
- Larisa B Gulina
- Saint Petersburg State University , 7/9 Universitetskaya Nab. , St. Petersburg 199034 , Russia
| | - Vladislav E Gurenko
- Saint Petersburg State University , 7/9 Universitetskaya Nab. , St. Petersburg 199034 , Russia
| | - Valeri P Tolstoy
- Saint Petersburg State University , 7/9 Universitetskaya Nab. , St. Petersburg 199034 , Russia
| | | | - Alexandra V Koroleva
- Saint Petersburg State University , 7/9 Universitetskaya Nab. , St. Petersburg 199034 , Russia
| |
Collapse
|
15
|
Sangroniz L, Sangroniz A, Fernández M, Etxeberria A, Müller AJ, Santamaria A. Elaboration and Characterization of Conductive Polymer Nanocomposites with Potential Use as Electrically Driven Membranes. Polymers (Basel) 2019; 11:polym11071180. [PMID: 31337091 PMCID: PMC6680706 DOI: 10.3390/polym11071180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/09/2019] [Accepted: 07/11/2019] [Indexed: 12/04/2022] Open
Abstract
In this work, a general, facile, and relatively low-cost method to produce electrically driven non-porous membranes by revalorization of recycled polyolefins is proposed. The polymer matrices are poly(propylene) (PP) and poly(ethylene) (PE) and their corresponding recycled samples, which are respectively mixed with carbon nanotubes (CNT). The performances of the elaborated nanocomposites are studied by morphological, rheological, and electrical conductivity tests. The Joule heating effect is evaluated by applying an electric field and recording the corresponding temperature rise. An increase of 90 °C is obtained in certain cases, which represents the highest temperature enhancement reached so far by the Joule effect in thermoplastics, to our knowledge. The work shows a route to develop stimulus (voltage)-response (temperature) materials with low cost and with potential applications in many fields. As an example, the increase of the permeability with temperature of membranes made of the indicated nanocomposites, is analyzed.
Collapse
Affiliation(s)
- Leire Sangroniz
- POLYMAT and Polymer Science and Technology Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, 20018 San Sebastian, Spain
| | - Ainara Sangroniz
- POLYMAT and Polymer Science and Technology Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, 20018 San Sebastian, Spain
| | - Mercedes Fernández
- POLYMAT and Polymer Science and Technology Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, 20018 San Sebastian, Spain
| | - Agustin Etxeberria
- POLYMAT and Polymer Science and Technology Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, 20018 San Sebastian, Spain
| | - Alejandro J Müller
- POLYMAT and Polymer Science and Technology Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, 20018 San Sebastian, Spain
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Antxon Santamaria
- POLYMAT and Polymer Science and Technology Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, 20018 San Sebastian, Spain.
| |
Collapse
|
16
|
Manjua AC, Alves VD, Crespo JG, Portugal CAM. Magnetic Responsive PVA Hydrogels for Remote Modulation of Protein Sorption. ACS APPLIED MATERIALS & INTERFACES 2019; 11:21239-21249. [PMID: 31141340 DOI: 10.1021/acsami.9b03146] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
This work shows the ability to reversibly modulate the hydrophilicity of the hydrogels doped with iron oxide nanoparticles (MNPs) in a noninvasive way when exposed to a cyclic variation of the intensity (ON/OFF) of an external magnetic field. A reversible switching of surface contact angles was observed for magnetic PVA hydrogels when exposed to consecutive variation of the magnetic field intensity between 0 and 0.08 T. Motivated by the magnetic dependence of the hydrophilicity of these hybrid hydrogels, the impact of the magnetic field on protein sorption was also evaluated. The noninvasive regulation of protein sorption-released mechanisms was achieved by ON/OFF magnetic field switches, suggesting the possible influence of magnetic-induced hydrogel shrinking effect and changes of surface wettability on protein sorption. The capacity to magnetically modulate surface wettability and protein sorption make these magnetic hydrogels promising candidates for development of functional devices for tissue engineering, drug release applications, or biosensor systems, where the control of protein sorption and mobility are essential steps to improve the efficiency of these processes.
Collapse
Affiliation(s)
- Ana C Manjua
- LAQV-Requimte , FCT-Universidade Nova de Lisboa , Campus da Caparica, 2829-516 Caparica , Portugal
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences , IST-Universidade de Lisboa , Av. Rovisco Pais , 1049-001 Lisboa , Portugal
| | - Vitor D Alves
- LEAF-Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia , Universidade de Lisboa , Tapada da Ajuda , 1349-017 Lisboa , Portugal
| | - João G Crespo
- LAQV-Requimte , FCT-Universidade Nova de Lisboa , Campus da Caparica, 2829-516 Caparica , Portugal
| | - Carla A M Portugal
- LAQV-Requimte , FCT-Universidade Nova de Lisboa , Campus da Caparica, 2829-516 Caparica , Portugal
| |
Collapse
|
17
|
Wondraczek L, Pohnert G, Schacher FH, Köhler A, Gottschaldt M, Schubert US, Küsel K, Brakhage AA. Artificial Microbial Arenas: Materials for Observing and Manipulating Microbial Consortia. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1900284. [PMID: 30993782 DOI: 10.1002/adma.201900284] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/28/2019] [Indexed: 06/09/2023]
Abstract
From the smallest ecological niche to global scale, communities of microbial life present a major factor in system regulation and stability. As long as laboratory studies remain restricted to single or few species assemblies, however, very little is known about the interaction patterns and exogenous factors controlling the dynamics of natural microbial communities. In combination with microfluidic technologies, progress in the manufacture of functional and stimuli-responsive materials makes artificial microbial arenas accessible. As habitats for natural or multispecies synthetic consortia, they are expected to not only enable detailed investigations, but also the training and the directed evolution of microbial communities in states of balance and disturbance, or under the effects of modulated stimuli and spontaneous response triggers. Here, a perspective on how materials research will play an essential role in generating answers to the most pertinent questions of microbial engineering is presented, and the concept of adaptive microbial arenas and possibilities for their construction from particulate microniches to 3D habitats is introduced. Materials as active and tunable components at the interface of living and nonliving matter offer exciting opportunities in this field. Beyond forming the physical horizon for microbial cultivates, they will enable dedicated intervention, training, and observation of microbial consortia.
Collapse
Affiliation(s)
- Lothar Wondraczek
- Otto Schott Institute of Materials Research, Friedrich Schiller University Jena, Fraunhoferstrasse 6, 07743, Jena, Germany
- Center of Energy and Environmental Chemistry Jena (CEEC Jena), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
- Microverse Cluster, Friedrich Schiller University Jena, Neugasse 23, 07743, Jena, Germany
| | - Georg Pohnert
- Microverse Cluster, Friedrich Schiller University Jena, Neugasse 23, 07743, Jena, Germany
- Institute of Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Lessingstrasse 8, 07743, Jena, Germany
- Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, 07745, Jena, Germany
| | - Felix H Schacher
- Center of Energy and Environmental Chemistry Jena (CEEC Jena), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
- Microverse Cluster, Friedrich Schiller University Jena, Neugasse 23, 07743, Jena, Germany
- Institute of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Angela Köhler
- Microverse Cluster, Friedrich Schiller University Jena, Neugasse 23, 07743, Jena, Germany
- Leibniz Institute for Natural Product Research and Infection Biology (HKI), Adolf-Reichwein-Str. 23, 07745, Jena, Germany
| | - Michael Gottschaldt
- Institute of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Ulrich S Schubert
- Center of Energy and Environmental Chemistry Jena (CEEC Jena), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
- Microverse Cluster, Friedrich Schiller University Jena, Neugasse 23, 07743, Jena, Germany
- Institute of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Kirsten Küsel
- Microverse Cluster, Friedrich Schiller University Jena, Neugasse 23, 07743, Jena, Germany
- Institute of Biodiversity, Aquatic Geomicrobiology, Friedrich Schiller University, Dornburger Str. 159, 07743, Jena, Germany
- German Center for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5E, 04103, Leipzig, Germany
| | - Axel A Brakhage
- Microverse Cluster, Friedrich Schiller University Jena, Neugasse 23, 07743, Jena, Germany
- Leibniz Institute for Natural Product Research and Infection Biology (HKI), Adolf-Reichwein-Str. 23, 07745, Jena, Germany
| |
Collapse
|
18
|
Zhou H, Zheng S, Qu C, Wang D, Liu C, Wang Y, Fan X, Xiao W, Li H, Zhao D, Chang J, Chen C, Zhao X. Simple and environmentally friendly approach for preparing high-performance polyimide precursor hydrogel with fully aromatic structures for strain sensor. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.01.043] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
19
|
Study of magnetic-responsive nanoparticle on the membrane surface as a membrane antifouling surface coating. JOURNAL OF POLYMER RESEARCH 2019. [DOI: 10.1007/s10965-019-1734-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
20
|
Zhu LJ, Song HM, Wang G, Zeng ZX, Xue QJ. Dual stimuli-responsive polysulfone membranes with interconnected networks by a vapor-liquid induced phase separation strategy. J Colloid Interface Sci 2018; 531:585-592. [DOI: 10.1016/j.jcis.2018.07.098] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 07/23/2018] [Accepted: 07/23/2018] [Indexed: 11/24/2022]
|
21
|
Hernández-Vargas G, Ponce-Ponce de León CA, González-Valdez J, Iqbal HMN. “Smart” Polymers: Physicochemical Characteristics and Applications in Bio-Separation Strategies. SEPARATION & PURIFICATION REVIEWS 2018; 47:199-213. [DOI: 10.1080/15422119.2017.1356332] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 07/09/2017] [Indexed: 02/08/2023]
Affiliation(s)
- Gustavo Hernández-Vargas
- Tecnologico de Monterrey, School of Engineering and Science, Tecnologico de Monterrey, Campus Monterrey, Monterrey, N.L., Mexico
| | | | - José González-Valdez
- Tecnologico de Monterrey, School of Engineering and Science, Tecnologico de Monterrey, Campus Monterrey, Monterrey, N.L., Mexico
| | - Hafiz M. N. Iqbal
- Tecnologico de Monterrey, School of Engineering and Science, Tecnologico de Monterrey, Campus Monterrey, Monterrey, N.L., Mexico
| |
Collapse
|
22
|
Büning D, Ennen-Roth F, Walter SV, Hennecke T, Ulbricht M. Potassium-sensitive poly(N-isopropylacrylamide)-based hydrogels for sensor applications. Polym Chem 2018. [DOI: 10.1039/c8py00490k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In situcrosslinking polymerization of potassium sensitive hydrogels for advancedin vivosensor applications is studied in detail.
Collapse
Affiliation(s)
- Dominic Büning
- Lehrstuhl für Technische Chemie II
- Universität Duisburg-Essen
- 45141 Essen
- Germany
| | - Franka Ennen-Roth
- Lehrstuhl für Technische Chemie II
- Universität Duisburg-Essen
- 45141 Essen
- Germany
| | - Sarah Verena Walter
- Lehrstuhl für Technische Chemie II
- Universität Duisburg-Essen
- 45141 Essen
- Germany
| | - Tobias Hennecke
- Lehrstuhl für Technische Chemie II
- Universität Duisburg-Essen
- 45141 Essen
- Germany
| | - Mathias Ulbricht
- Lehrstuhl für Technische Chemie II
- Universität Duisburg-Essen
- 45141 Essen
- Germany
| |
Collapse
|
23
|
|
24
|
Bhalani DV, Bera A, Chandel AKS, Kumar SB, Jewrajka SK. Multifunctionalization of Poly(vinylidene fluoride)/Reactive Copolymer Blend Membranes for Broad Spectrum Applications. ACS APPLIED MATERIALS & INTERFACES 2017; 9:3102-3112. [PMID: 28009504 DOI: 10.1021/acsami.6b13235] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Simultaneous immobilization and cross-linking of antifouling/low toxic polymers, e.g., poly(ethylenimine) (PEI), dextran (Dex), agarose (Agr), poly(ethylene glycol) (PEG), PEI-Dex, and PEI-PEG conjugates, and stimuli-responsive copolymers on a porous membrane surface in mild reaction conditions is desirable for the enhancement of hydrophilicity, antifouling character, cytocompatibility, and inducing stimuli-responsive behavior. Grafting to technique is required since the precursors of most of these macromolecules are not amenable to surface-initiated polymerization. In this work, we report a versatile process for the simultaneous immobilization and cross-linking of a library of macromolecules on and into the blend membrane (PVDF-blend) of poly(vinylidene fluoride) and poly(methyl methacrylate)-co-poly(chloromethylstyrene). Sequential nucleophilic substitution reaction between activated halide moieties of the copolymer and amine groups of different macromolecules readily provided series of modified membranes. These membranes exhibited antifouling property superior to that of the unmodified membrane. The effectiveness of this technique has been demonstrated by the immobilization of pH or both pH- and temperature-responsive copolymer on PVDF-blend membrane for responsive separation of poly(ethylene oxide) and bovine serum albumin. Silver nanoparticles were also anchored on the select modified membranes surfaces for the enhancement of antibiofouling property. Our approach is useful to obtain verities of functional membranes and selection of membrane for a particular application.
Collapse
Affiliation(s)
- Dixit V Bhalani
- Reverse Osmosis Membrane Division, ‡AcSIR, and §Marine Biotechnology and Ecology Division, CSIR-Central Salt and Marine Chemicals Research Institute , G. B. Marg, Bhavnagar, Gujarat 364002, India
| | - Anupam Bera
- Reverse Osmosis Membrane Division, ‡AcSIR, and §Marine Biotechnology and Ecology Division, CSIR-Central Salt and Marine Chemicals Research Institute , G. B. Marg, Bhavnagar, Gujarat 364002, India
| | - Arvind K Singh Chandel
- Reverse Osmosis Membrane Division, ‡AcSIR, and §Marine Biotechnology and Ecology Division, CSIR-Central Salt and Marine Chemicals Research Institute , G. B. Marg, Bhavnagar, Gujarat 364002, India
| | - Sweta B Kumar
- Reverse Osmosis Membrane Division, ‡AcSIR, and §Marine Biotechnology and Ecology Division, CSIR-Central Salt and Marine Chemicals Research Institute , G. B. Marg, Bhavnagar, Gujarat 364002, India
| | - Suresh K Jewrajka
- Reverse Osmosis Membrane Division, ‡AcSIR, and §Marine Biotechnology and Ecology Division, CSIR-Central Salt and Marine Chemicals Research Institute , G. B. Marg, Bhavnagar, Gujarat 364002, India
| |
Collapse
|
25
|
Dong L, Fan W, Zhang H, Chen M, Zhao Y. CO2-Responsive polymer membranes with gas-tunable pore size. Chem Commun (Camb) 2017; 53:9574-9577. [DOI: 10.1039/c7cc05291j] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel type of CO2-responsive polymer membrane shows gas-tunable pore size that can be used for size exclusion-based filtration of gold nanoparticles.
Collapse
Affiliation(s)
- Liangliang Dong
- Département de chimie, Université de Sherbrooke
- Sherbrooke
- Canada
- Key Laboratory of Synthetic and Biological Colloids
- Ministry of Education
| | - Weizheng Fan
- Département de chimie, Université de Sherbrooke
- Sherbrooke
- Canada
| | - Hongji Zhang
- Key Laboratory of Synthetic and Biological Colloids
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi 214122
| | - Mingqing Chen
- Key Laboratory of Synthetic and Biological Colloids
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi 214122
| | - Yue Zhao
- Département de chimie, Université de Sherbrooke
- Sherbrooke
- Canada
| |
Collapse
|