1
|
Dubrovin IA, Hirsch LO, Chiliveru A, Jukanti A, Rozenfeld S, Schechter A, Cahan R. Microbial Electrolysis Cells Based on a Bacterial Anode Encapsulated with a Dialysis Bag Including Graphite Particles. Microorganisms 2024; 12:1486. [PMID: 39065254 PMCID: PMC11278843 DOI: 10.3390/microorganisms12071486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/09/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
One of the main barriers to MEC applicability is the bacterial anode. Usually, the bacterial anode contains non-exoelectrogenic bacteria that act as a physical barrier by settling on the anode surface and displacing the exoelectrogenic microorganisms. Those non-exoelectrogens can also compete with exoelectrogenic microorganisms for nutrients and reduce hydrogen production. In this study, the bacterial anode was encapsulated by a dialysis bag including suspended graphite particles to improve current transfer from the bacteria to the anode material. An anode encapsulated in a dialysis bag without graphite particles, and a bare anode, were used as controls. The MEC with the graphite-dialysis-bag anode was fed with artificial wastewater, leading to a current density, hydrogen production rate, and areal capacitance of 2.73 A·m-2, 134.13 F·m-2, and 7.6 × 10-2 m3·m-3·d-1, respectively. These were highest when compared to the MECs based on the dialysis-bag anode and bare anode (1.73 and 0.33 A·m-2, 82.50 and 13.75 F·m-2, 4.2 × 10-2 and 5.2 × 10-3 m3·m-3·d-1, respectively). The electrochemical impedance spectroscopy of the modified graphite-dialysis-bag anode showed the lowest charge transfer resistance of 35 Ω. The COD removal results on the 25th day were higher when the MEC based on the graphite-dialysis-bag anode was fed with Geobacter medium (53%) than when it was fed with artificial wastewater (40%). The coulombic efficiency of the MEC based on the graphite-dialysis-bag anode was 12% when was fed with Geobacter medium and 15% when was fed with artificial wastewater.
Collapse
Affiliation(s)
- Irina Amar Dubrovin
- Department of Chemical Engineering, Ariel University, Ariel 40700, Israel; (I.A.D.); (L.O.H.); (A.C.); (A.J.); (S.R.)
| | - Lea Ouaknin Hirsch
- Department of Chemical Engineering, Ariel University, Ariel 40700, Israel; (I.A.D.); (L.O.H.); (A.C.); (A.J.); (S.R.)
| | - Abhishiktha Chiliveru
- Department of Chemical Engineering, Ariel University, Ariel 40700, Israel; (I.A.D.); (L.O.H.); (A.C.); (A.J.); (S.R.)
| | - Avinash Jukanti
- Department of Chemical Engineering, Ariel University, Ariel 40700, Israel; (I.A.D.); (L.O.H.); (A.C.); (A.J.); (S.R.)
| | - Shmuel Rozenfeld
- Department of Chemical Engineering, Ariel University, Ariel 40700, Israel; (I.A.D.); (L.O.H.); (A.C.); (A.J.); (S.R.)
| | - Alex Schechter
- Department of Chemistry, Ariel University, Ariel 40700, Israel;
| | - Rivka Cahan
- Department of Chemical Engineering, Ariel University, Ariel 40700, Israel; (I.A.D.); (L.O.H.); (A.C.); (A.J.); (S.R.)
| |
Collapse
|
2
|
You J, Ye L, Kong X, Duan Y, Zhao J, Chen J, Chen D. Efficient biodechlorination at the Fe 3O 4-based silicone powder modified chlorobenzene-affinity anode. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131794. [PMID: 37315409 DOI: 10.1016/j.jhazmat.2023.131794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/14/2023] [Accepted: 06/05/2023] [Indexed: 06/16/2023]
Abstract
The treatment of chlorinated volatile organic compounds faces challenges of secondary pollution and less-efficiency due to the substitution of chlorine. Microbial fuel cells (MFCs) provide a promising opportunity for its abatement. In this study, a novel Fe3O4 nanoparticles and silicone-based powder (SP) were integrated and immobilized on carbon felt (CF+Fe3O4@SP), which was further used as anode in the chlorobenzene (CB) powered MFC. Owing to the cooperation between SP and Fe3O4, the anode exhibited excellent performance for both biodechlorination and power generation. The results indicated that the CF+Fe3O4@SP anode loaded MFC achieved 98.5% removal of 200 mg/L CB within 28 h, and the maximum power density was 675.9 mW/m3, which was a 45.6% increase compared to that of the bare CF anode. Microbial community analysis indicated that the genera Comamonadaceae, Pandoraea, Obscuribacteraceae, and Truepera were dominated, especially, the Comamonadaceae and Obscuribacteraceae showed outstanding affinity for Fe3O4 and SP, respectively. Moreover, the proportion of live bacteria, secretion of extracellular polymer substances, and protein content in the extracellular polymer substances were significantly increased by modifying Fe3O4@SP onto the carbon-based anode. Thus, this study provides new insights into the development of MFCs for refractory and hydrophobic volatile organic compounds removal.
Collapse
Affiliation(s)
- Juping You
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhejiang Ocean University, Zhoushan 316022, China
| | - Lei Ye
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhejiang Ocean University, Zhoushan 316022, China
| | - Xianwang Kong
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhejiang Ocean University, Zhoushan 316022, China
| | - Yuqi Duan
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhejiang Ocean University, Zhoushan 316022, China
| | - Jingkai Zhao
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhejiang Ocean University, Zhoushan 316022, China; College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jianmeng Chen
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhejiang Ocean University, Zhoushan 316022, China; College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Dongzhi Chen
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhejiang Ocean University, Zhoushan 316022, China.
| |
Collapse
|
3
|
Rafaqat S, Ali N, Torres C, Rittmann B. Recent progress in treatment of dyes wastewater using microbial-electro-Fenton technology. RSC Adv 2022; 12:17104-17137. [PMID: 35755587 PMCID: PMC9178700 DOI: 10.1039/d2ra01831d] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/02/2022] [Indexed: 01/24/2023] Open
Abstract
Globally, textile dyeing and manufacturing are one of the largest industrial units releasing huge amount of wastewater (WW) with refractory compounds such as dyes and pigments. Currently, wastewater treatment has been viewed as an industrial opportunity for rejuvenating fresh water resources and it is highly required in water stressed countries. This comprehensive review highlights an overall concept and in-depth knowledge on integrated, cost-effective cross-disciplinary solutions for domestic and industrial (textile dyes) WW and for harnessing renewable energy. This basic concept entails parallel or sequential modes of treating two chemically different WW i.e., domestic and industrial in the same system. In this case, contemporary advancement in MFC/MEC (METs) based systems towards Microbial-Electro-Fenton Technology (MEFT) revealed a substantial emerging scope and opportunity. Principally the said technology is based upon previously established anaerobic digestion and electro-chemical (photo/UV/Fenton) processes in the disciplines of microbial biotechnology and electro-chemistry. It holds an added advantage to all previously establish technologies in terms of treatment and energy efficiency, minimal toxicity and sludge waste, and environmental sustainable. This review typically described different dyes and their ultimate fate in environment and recently developed hierarchy of MEFS. It revealed detail mechanisms and degradation rate of dyes typically in cathodic Fenton system under batch and continuous modes of different MEF reactors. Moreover, it described cost-effectiveness of the said technology in terms of energy budget (production and consumption), and the limitations related to reactor fabrication cost and design for future upgradation to large scale application.
Collapse
Affiliation(s)
- Shumaila Rafaqat
- Department of Microbiology, Quaid-i-Azam University Islamabad Pakistan
| | - Naeem Ali
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University Islamabad Pakistan
| | - Cesar Torres
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University USA
| | - Bruce Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University USA
| |
Collapse
|
4
|
Yang Q, Yang S, Liu G, Zhou B, Yu X, Yin Y, Yang J, Zhao H. Boosting the anode performance of microbial fuel cells with a bacteria-derived biological iron oxide/carbon nanocomposite catalyst. CHEMOSPHERE 2021; 268:128800. [PMID: 33143885 DOI: 10.1016/j.chemosphere.2020.128800] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 09/23/2020] [Accepted: 10/27/2020] [Indexed: 06/11/2023]
Abstract
Modifying the electrodes of microbial fuel cells (MFCs) with iron oxides can improve the bacterial attachment performances and electrocatalytic activities for energy conversion, which is of significance in the fabrication of MFCs. However, the conventional modification methods usually result in the aggregation of iron sites, producing the electrodes of poor qualities. Herein, we report a novel method for the modification of electrochemical electrodes to boost the anode performance of MFC. The Shewanella precursor adhered on carbon felt electrode was directly carbonized to form a bacteria-derived biological iron oxide/carbon (Bio-FeOx/C) nanocomposite catalyst. The large spatial separation between the bacteria, as well as those between the iron containing proteins in the bacteria, deliver a highly dispersed Bio-FeOx/C nanocomposite with good electrocatalytic activities. The excellent microbial attachment performance and electron transfer rate of the Bio-FeOx/C modified electrode significantly promote the transfer of produced electrons between bacteria and electrode. Accordingly, the MFC with the Bio-FeOx/C electrode exhibits the maximum power density of 797.0 mW m-2, much higher than that obtained with the conventional carbon felt anode (226.1 mW m-2). Our works have paved a new avenue to the conversion of the natural bacterial precursors into active iron oxide nanoparticles as the anode catalyst of MFCs. The high catalytic activity of the prepared Bio-FeOx endows it great application potentials in the construction of high-performance electrodes.
Collapse
Affiliation(s)
- Qinzheng Yang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, Shandong, PR China; Department of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, PR China.
| | - Siqi Yang
- Department of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, PR China
| | - Guangli Liu
- Department of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, PR China
| | - Bin Zhou
- Department of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, PR China
| | - Xiaodi Yu
- Department of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, PR China
| | - Yanshun Yin
- Department of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, PR China
| | - Jing Yang
- School of Electronic and Information Engineering (Department of Physics), Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, PR China.
| | - Huazhang Zhao
- Department of Environmental Engineering, Peking University, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, PR China.
| |
Collapse
|
5
|
Li Z, Zhang P, Qiu Y, Zhang Z, Wang X, Yu Y, Feng Y. Biosynthetic FeS/BC hybrid particles enhanced the electroactive bacteria enrichment in microbial electrochemical systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 762:143142. [PMID: 33168253 DOI: 10.1016/j.scitotenv.2020.143142] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/08/2020] [Accepted: 10/11/2020] [Indexed: 06/11/2023]
Abstract
Modifying the surface of an anode can improve electroactive bacteria (EAB) enrichment, thereby enhancing the performance of the associated microbial electrochemical systems (MESs). In this study, biosynthetic FeS nanoparticles were used to modify the anode in MESs. The experimental results demonstrated that the stable maximum voltage of the FeS composited biochar (FeS/BC)-modified anode reached 0.72 V, which is 20% higher than that of the control. The maximum power density with the FeS/BC anode was 793 mW/m2, which is 46.31% higher than that obtained with the control (542 mW/m2). According to cyclic voltammetry (CV) analysis, FeS/BC facilitates the direct electron transfer between bacteria and the electrode. The biomass protein concentration of the FeS/BC anode was 841.75 μg/cm2, which is almost 1.5 times higher than that of the carbon cloth anode (344.25 μg/cm2); hence, FeS/BC modification can promote biofilm formation. The composition of Geobacter species on the FeS/BC anode (75.16%) was much higher than that on the carbon cloth anode (4.81%). All the results demonstrated that the use of the biosynthetic FeS/BC anode is an environmentally friendly and efficient strategy for enhancing the electroactive biofilm formation and EAB enrichment in MESs.
Collapse
Affiliation(s)
- Zeng Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No.73 Huanghe Road, Nangang District, Harbin 150090, PR China
| | - Peng Zhang
- Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, Yunnan, PR China
| | - Ye Qiu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No.73 Huanghe Road, Nangang District, Harbin 150090, PR China
| | - Zhaohan Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No.73 Huanghe Road, Nangang District, Harbin 150090, PR China
| | - Xin Wang
- College of Environmental Science & Engineering, Nankai University, Tianjin, 300071, PR China
| | - Yanling Yu
- School of Chemistry & Chemical Engineering, Harbin Institute of Technology, Harbin 150001, PR China
| | - Yujie Feng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No.73 Huanghe Road, Nangang District, Harbin 150090, PR China.
| |
Collapse
|
6
|
Yaqoob AA, Mohamad Ibrahim MN, Rafatullah M, Chua YS, Ahmad A, Umar K. Recent Advances in Anodes for Microbial Fuel Cells: An Overview. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E2078. [PMID: 32369902 PMCID: PMC7254385 DOI: 10.3390/ma13092078] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 04/26/2020] [Accepted: 04/29/2020] [Indexed: 11/19/2022]
Abstract
The recycling and treatment of wastewater using microbial fuel cells (MFCs) has been attracting significant attention as a way to control energy crises and water pollution simultaneously. Despite all efforts, MFCs are unable to produce high energy or efficiently treat pollutants due to several issues, one being the anode's material. The anode is one of the most important parts of an MFC. Recently, different types of anode materials have been developed to improve the removal rate of pollutants and the efficiency of energy production. In MFCs, carbon-based materials have been employed as the most commonly preferred anode material. An extensive range of potentials are presently available for use in the fabrication of anode materials and can considerably minimize the current challenges, such as the need for high quality materials and their costs. The fabrication of an anode using biomass waste is an ideal approach to address the present issues and increase the working efficiency of MFCs. Furthermore, the current challenges and future perspectives of anode materials are briefly discussed.
Collapse
Affiliation(s)
- Asim Ali Yaqoob
- School of Chemical Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia; (A.A.Y.); (Y.S.C.); (K.U.)
| | | | - Mohd Rafatullah
- School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia;
| | - Yong Shen Chua
- School of Chemical Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia; (A.A.Y.); (Y.S.C.); (K.U.)
| | - Akil Ahmad
- School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia;
| | - Khalid Umar
- School of Chemical Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia; (A.A.Y.); (Y.S.C.); (K.U.)
| |
Collapse
|