1
|
Sun Y, Li T, Liu X, Liu Y, Zada A, Han Y, Han Y, Chen J, Dang A. Exceptional Suppression of the Self-Discharge Behavior of Supercapacitors by Precisely Tuning the Surface Assets of MXene by a Spontaneous Single-Atom Doping Strategy. NANO LETTERS 2025. [PMID: 40016161 DOI: 10.1021/acs.nanolett.4c06026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
MXene-based supercapacitors (SCs) are widely regarded as promising energy storage devices. However, the inevitable and ignored self-discharge behavior of MXene-based SCs causes an unavoidable voltage decay and energy loss. Herein, the Ru single-atom doping strategy is used to fabricate a Ru-MXene film to modulate the surface properties of MXene, and the assembled Ru-MXene film-based SC showed a suppressed self-discharge behavior due to the simultaneously reduced activation-controlled and diffusion-controlled reactions. Regarding the self-discharge mechanism, three positive synergistic effects including increased adsorption energy, increased work function, and oxidation of the Ti atom of Ru-MXene simultaneously led to suppressing the self-discharge behavior. Benefiting from abundant electroactive sites and higher adsorption energy, the assembled Ru-MXene film-based SC exhibited an excellent electrochemical performance. This work provides a glimpse into the single-atom doping strategy to suppress the self-discharge behavior of MXene-based SCs and a prospective guide to promote their practical applications.
Collapse
Affiliation(s)
- Yiting Sun
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
- Shannxi Engineering Laboratory for Graphene New Carbon Materials and Applications, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Tiehu Li
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
- Shannxi Engineering Laboratory for Graphene New Carbon Materials and Applications, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Xin Liu
- Institute of Biomedical Precision Testing and Instrumentation, College of Artificial Intelligence, Taiyuan University of Technology, Jinzhong 030600, P. R. China
| | - Yuhui Liu
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
- Shannxi Engineering Laboratory for Graphene New Carbon Materials and Applications, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Amir Zada
- Department of Chemistry, Abdul Wali Khan University Mardan, Khyber, Pakhtunkhwa 23200, Pakistan
- UNESCO-UNISA Africa Chair in Nanosciences and Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, PO Box 392, Pretoria 0002, South Africa
| | - Yongkang Han
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
- Shannxi Engineering Laboratory for Graphene New Carbon Materials and Applications, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Yanying Han
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
- Shannxi Engineering Laboratory for Graphene New Carbon Materials and Applications, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Jiahe Chen
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
- Shannxi Engineering Laboratory for Graphene New Carbon Materials and Applications, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Alei Dang
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
- Shannxi Engineering Laboratory for Graphene New Carbon Materials and Applications, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| |
Collapse
|
2
|
Naya SI, Nagamitsu M, Sugime H, Soejima T, Tada H. Metal oxide plating for maximizing the performance of ruthenium(IV) oxide-catalyzed electrochemical oxygen evolution reaction. NANOSCALE 2025; 17:888-895. [PMID: 39601337 DOI: 10.1039/d4nr03678f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Hydrogen production by proton exchange membrane water electrolysis requires an anode with low overpotential for oxygen evolution reaction (OER) and robustness in acidic solution. While exploring new electrode materials to improve the performance and durability, optimizing the morphology of typical materials using new methods is a big challenge in materials science. RuO2 is one of the most active and stable electrocatalysts, but further improvement in its performance and cost reduction must be achieved for practical use. Herein, we present a novel technology, named "metal oxide plating", which can provide maximum performances with minimum amount. A uniform single-crystal RuO2 film with thickness of ∼2.5 nm was synthesized by a solvothermal-post heating method at an amount (x) of only 18 μg cm-2 (ST-RuO2(18)//TiO2 NWA). OER stably proceeds on ST-RuO2(18)//TiO2 NWA with ∼100% efficiency to provide a mass-specific activity (MSA) of 341 A gcat-1 at 1.50 V (vs. RHE), exceeding the values for most of the state-of-the-art RuO2 electrodes.
Collapse
Affiliation(s)
- Shin-Ichi Naya
- Environmental Research Laboratory, Kindai University, 3-4-1, Kowakae, Higashi-Osaka, Osaka 577-8502, Japan.
| | - Mio Nagamitsu
- Graduate School of Science and Engineering, Kindai University, 3-4-1, Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
| | - Hisashi Sugime
- Graduate School of Science and Engineering, Kindai University, 3-4-1, Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1, Kowakae, Higashi-Oaka, Osaka 577-8502, Japan
| | - Tetsuro Soejima
- Graduate School of Science and Engineering, Kindai University, 3-4-1, Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1, Kowakae, Higashi-Oaka, Osaka 577-8502, Japan
| | - Hiroaki Tada
- Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan.
| |
Collapse
|
3
|
Yan H, Wang Y, Xin Y, Jiang Z, Deng B, Jiang ZJ. Carbon Nanotube Support, Carbon Loricae and Oxygen Defect Co-Promoted Superior Activities and Excellent Durability of RuO 2 Nanoparticles Towards the pH-Universal H 2 Evolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2406070. [PMID: 39128138 DOI: 10.1002/smll.202406070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/01/2024] [Indexed: 08/13/2024]
Abstract
This work reports a strategy that integrates the carbon nanotube (CNT) supporting, ultrathin carbon coating and oxygen defect generation to fabricate the RuO2 based catalysts toward the pH-universal hydrogen evolution reaction (HER) with high efficiencies. Specifically, the CNT supported RuO2 nanoparticles with ultrathin carbon loricae and rich oxygen vacancies at the surface (C@OV-RuO2/CNTs-325) have been synthesized. The C@OV-RuO2/CNTs-325 shows superior activities and excellent durability for the HER. It only requires overpotentials of 36.1, 18.0, and 19.3 mV to deliver -10 mA cm-2 in the acidic, neutral, and alkaline media, respectively. Its HER activities are comparable to that of the Pt/C in the acidic media but higher than those of the Pt/C in the neutral and alkaline media. The C@OV-RuO2/CNTs-325 shows excellent HER durability with no activity losses for > 500 h in the acidic, neutral or alkaline media at -250 mA cm-2. The density-functional-theory calculations indicate that the CNT supporting, the carbon coating, and the OVs can modulate the d-band centers of Ru, increasing the HER activities of C@OV-RuO2/CNTs-325, and stabilize the Ru atoms in the catalyst, increasing the durability of the C@OV-RuO2/CNTs-325. More interestingly, the C@OV-RuO2/CNTs-325 shows great potential for practical applications toward overall seawater splitting.
Collapse
Affiliation(s)
- Haohao Yan
- Guangzhou Key Laboratory for Surface Chemistry of Energy Materials, Guangdong Engineering and Technology Research Center for Surface Chemistry of Energy Materials, College of Environment and Energy, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Yongjie Wang
- Guangdong Provincial Key Laboratory of Semiconductor Optoelectronic Materials and Intelligent Photonic Systems, Harbin Institute of Technology, Shenzhen, 518055, P. R. China
| | - Yue Xin
- Guangzhou Key Laboratory for Surface Chemistry of Energy Materials, Guangdong Engineering and Technology Research Center for Surface Chemistry of Energy Materials, College of Environment and Energy, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Zhongqing Jiang
- Guangzhou Key Laboratory for Surface Chemistry of Energy Materials, Guangdong Engineering and Technology Research Center for Surface Chemistry of Energy Materials, College of Environment and Energy, South China University of Technology, Guangzhou, 510006, P. R. China
- Department of Physics, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - Binglu Deng
- School of Materials Science and Hydrogen Energy, Foshan University, Foshan, 528000, P. R. China
| | - Zhong-Jie Jiang
- Guangzhou Key Laboratory for Surface Chemistry of Energy Materials, Guangdong Engineering and Technology Research Center for Surface Chemistry of Energy Materials, College of Environment and Energy, South China University of Technology, Guangzhou, 510006, P. R. China
| |
Collapse
|
4
|
Yin T, Yang M, Tian M, Jiang W, Liu G. Modulating *OOH Adsorption on RuO 2 for Efficient and Durable Acidic Water Oxidation Electrocatalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404092. [PMID: 39036856 DOI: 10.1002/smll.202404092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/11/2024] [Indexed: 07/23/2024]
Abstract
Acidic water electrolysis is of considerable interest due to its higher current density operation and energy conversion efficiency, but its real industrial application is highly limited by the shortage of efficient, stable, and cost-effective acidic oxygen evolution reaction (OER) electrocatalysts. Here, an electrocatalyst consisting of Ni-implanted RuO2 supported is reported on α-MnO2 (MnO2/RuO2-Ni) that shows high activity and remarkable durability in acidic OER. Precisely, the MnO2/RuO2-Ni catalyst shows an overpotential of 198 mV at a current density of 10 mA cm-2 and can operate continuously and stably for 400 h (j = 10 mA cm-2) without any obvious attenuation of activity, making it one of the best-performing acid-stable OER catalysts. Experimental results, in conjunction with density functional theory calculations, demonstrate that the interface electron transfer effect from RuO2 to MnO2, further enhanced by Ni incorporation, effectively modulates the adsorption of OOH* and significantly reduces the overpotential, thereby enhancing catalytic activity and durability.
Collapse
Affiliation(s)
- Tingting Yin
- National Special Superfine Powder Engineering Research Center, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China
| | - Mengying Yang
- National Special Superfine Powder Engineering Research Center, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China
| | - Meng Tian
- Interdisciplinary Center for Fundamental and Frontier Sciences, Nanjing University of Science and Technology, Jiangyin, Jiangsu, 214443, China
| | - Wei Jiang
- National Special Superfine Powder Engineering Research Center, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China
| | - Guigao Liu
- National Special Superfine Powder Engineering Research Center, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China
| |
Collapse
|
5
|
Cao Y, Li Z, Yin X, Gan Y, Ye Y, Cai R, Wang Q, Feng B, Dai X, Song W. Electronic modulation and reaction-pathway optimization on three-dimensional seaweed-like NiSe@NiMn LDH heterostructure to trigger effective oxygen evolution reaction. J Colloid Interface Sci 2024; 658:528-539. [PMID: 38128196 DOI: 10.1016/j.jcis.2023.12.073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023]
Abstract
The development of low-cost and high-efficiency electrocatalysts for the oxygen evolution reaction (OER) is essential to produce high-purity hydrogen in large scale. Herein, a three-dimensional (3D) seaweed-like hierarchical structure was fabricated using two-dimensional (2D) NiMn LDH nanosheets wrapped on one-dimensional (1D) NiSe nanowires with nickel foam (NF) as a substrate (NiSe@NiMn LDH/NF) via hydrothermal and electrodeposition processes. Owing to the strong interfacial synergy, 3D seaweed-like hierarchical structure, higher conductivity, and strong structural stability, the NiSe@NiMn LDH/NF exhibited superior OER performance with an overpotential of 287 mV at 100 mA cm-2, and stably operated for 160 h at large current. Moreover, the overall water splitting system with NiSe@NiMn LDH/NF as the anode and Pt/C/NF as the cathode exhibited a low cell voltage of 1.59/1.64 V to reach 50/100 mA cm-2, and excellent stability for 110 h at 300 mA cm-2. The density function theory (DFT) calculations unveiled that NiSe@NiMn LDH enabled the interfacial synergy, reallocating the electron density at the interface, and further weakening the energy barrier of OH* by strengthening chemical bonds with OH* intermediates to improve the intrinsic OER activity.
Collapse
Affiliation(s)
- Yihua Cao
- College of Chemical Engineering and Environment, China University of Petroleum, Beijing 102249, China
| | - Zhi Li
- College of Science, China University of Petroleum, Beijing 102249, China
| | - Xueli Yin
- College of Chemical Engineering and Environment, China University of Petroleum, Beijing 102249, China
| | - Yonghao Gan
- College of Chemical Engineering and Environment, China University of Petroleum, Beijing 102249, China
| | - Ying Ye
- College of Chemical Engineering and Environment, China University of Petroleum, Beijing 102249, China
| | - Run Cai
- College of Chemical Engineering and Environment, China University of Petroleum, Beijing 102249, China
| | - Qi Wang
- College of Chemical Engineering and Environment, China University of Petroleum, Beijing 102249, China
| | - Bo Feng
- College of Chemical Engineering and Environment, China University of Petroleum, Beijing 102249, China
| | - Xiaoping Dai
- College of Chemical Engineering and Environment, China University of Petroleum, Beijing 102249, China; State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China.
| | - Weiyu Song
- College of Science, China University of Petroleum, Beijing 102249, China.
| |
Collapse
|
6
|
Yu X, Lin L, Pei C, Ji S, Sun Y, Wang Y, Kyu Kim J, Seok Park H, Pang H. Immobilizing Bimetallic RuCo Nanoalloys on Few-Layered MXene as a Robust Bifunctional Electrocatalyst for Overall Water Splitting. Chemistry 2024; 30:e202303524. [PMID: 37965774 DOI: 10.1002/chem.202303524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/15/2023] [Accepted: 11/15/2023] [Indexed: 11/16/2023]
Abstract
Doping Co atoms into Ru lattices can tune the electronic structure of active sites, and the conductive MXene can adjust the electrical conductivity of catalysts, which are both favorable for improving the electrocatalytic activity of the catalyst for water splitting. Here, ruthenium-cobalt bimetallic nanoalloys coupled with exfoliated Ti3 C2 Tx MXene (RuCo-Ti3 C2 Tx ) have been constructed by ice-templated and thermal activation. Due to the strong interaction between the RuCo nanoalloys and conductive MXene, RuCo-Ti3 C2 Tx not only exhibits an excellent hydrogen evolution reaction (HER) performance with a low overpotential and Tafel slope (60 mV, 34.8 mV dec-1 in 0.5 M H2 SO4 and 52 mV, 38.7 mV dec-1 in 1 M KOH), but also good oxygen evolution reaction (OER) performance in an alkaline electrolyte (266 mV, 111.1 mV dec-1 in 1 M KOH). The assembled RuCo-Ti3 C2 Tx ||RuCo-Ti3 C2 Tx electrolyzer requires a lower potential (1.56 V) than does the Pt/C||RuO2 electrolyzer at 10 mA cm-2 . A boosted catalytic HER activity from immobilizing the RuCo nanoalloys on MXene was unveiled by density functional theory calculations. This study provides a feasible and efficient strategy for developing MXene-based catalysts for overall water splitting.
Collapse
Affiliation(s)
- Xu Yu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, P. R. China
| | - Longjie Lin
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, P. R. China
| | - Chengang Pei
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, 440-746, Republic of Korea
| | - Shenjing Ji
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, P. R. China
| | - Yuanyuan Sun
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, P. R. China
| | - Yang Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, P. R. China
| | - Jung Kyu Kim
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, 440-746, Republic of Korea
| | - Ho Seok Park
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, 440-746, Republic of Korea
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, P. R. China
| |
Collapse
|
7
|
Jiang B, Zhu J, Xia Z, Lyu J, Li X, Zheng L, Chen C, Chaemchuen S, Bu T, Verpoort F, Mu S, Wu J, Wang J, Kou Z. Correlating Single-Atomic Ruthenium Interdistance with Long-Range Interaction Boosts Hydrogen Evolution Reaction Kinetics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310699. [PMID: 37967925 DOI: 10.1002/adma.202310699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/10/2023] [Indexed: 11/17/2023]
Abstract
Correlated single-atom catalysts (c-SACs) with tailored intersite metal-metal interactions are superior to conventional catalysts with isolated metal sites. However, precise quantification of the single-atomic interdistance (SAD) in c-SACs is not yet achieved, which is essential for a crucial understanding and remarkable improvement of the correlated metal-site-governed catalytic reaction kinetics. Here, three Ru c-SACs are fabricated with precise SAD using a planar organometallic molecular design and π-π molecule-carbon nanotube confinement. This strategy results in graded SAD from 2.4 to 9.3 Å in the Ru c-SACs, wherein tailoring the Ru SAD into 7.0 Å generates an exceptionally high turnover frequency of 17.92 H2 s-1 and a remarkable mass activity of 100.4 A mg-1 under 50 and 100 mV overpotentials, respectively, which is superior to all the Ru-based catalysts reported previously. Furthermore, density functional theory calculations confirm that Ru SAD has a negative correlation with its d-band center owing to the long-range interactions induced by distinct local atomic geometries, resulting in an appropriate electrostatic potential and the highest catalytic activity on c-SACs with 7.0 Å Ru SAD. The present study promises an attractive methodology for experimentally quantifying the metal SAD to provide valuable insights into the catalytic mechanism of c-SACs.
Collapse
Affiliation(s)
- Bowen Jiang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
- SEU-FEI Nano-Pico Center, Key Lab of MEMS of Ministry of Education, Southeast University, Nanjing, 210096, P. R. China
| | - Jiawei Zhu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Zhenzhi Xia
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Jiahui Lyu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
- Nanostructure Research Center, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Xingchuan Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Lirong Zheng
- Institute of High Energy Physics, the Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Cheng Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
- Sanya Science and Education Innovation Park of Wuhan University of Technology, Sanya, 572000, China
| | - Somboon Chaemchuen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Tongle Bu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Francis Verpoort
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Shichun Mu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Jinsong Wu
- Nanostructure Research Center, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - John Wang
- Department of Materials Science and Engineering, Faculty of Engineering, National University of Singapore, Singapore, 117574, Singapore
| | - Zongkui Kou
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
- Sanya Science and Education Innovation Park of Wuhan University of Technology, Sanya, 572000, China
- Hubei Key Laboratory of Fuel Cell, Wuhan University of Technology, Wuhan, 430070, P. R. China
| |
Collapse
|
8
|
Chen R, Chen S, Wang L, Wang D. Nanoscale Metal Particle Modified Single-Atom Catalyst: Synthesis, Characterization, and Application. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2304713. [PMID: 37439396 DOI: 10.1002/adma.202304713] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/04/2023] [Accepted: 07/07/2023] [Indexed: 07/14/2023]
Abstract
Single-atom catalysts (SACs) have attracted considerable attention in heterogeneous catalysis because of their well-defined active sites, maximum atomic utilization efficiency, and unique unsaturated coordinated structures. However, their effectiveness is limited to reactions requiring active sites containing multiple metal atoms. Furthermore, the loading amounts of single-atom sites must be restricted to prevent aggregation, which can adversely affect the catalytic performance despite the high activity of the individual atoms. The introduction of nanoscale metal particles (NMPs) into SACs (NMP-SACs) has proven to be an efficient approach for improving their catalytic performance. A comprehensive review is urgently needed to systematically introduce the synthesis, characterization, and application of NMP-SACs and the mechanisms behind their superior catalytic performance. This review first presents and classifies the different mechanisms through which NMPs enhance the performance of SACs. It then summarizes the currently reported synthetic strategies and state-of-the-art characterization techniques of NMP-SACs. Moreover, their application in electro/thermo/photocatalysis, and the reasons for their superior performance are discussed. Finally, the challenges and perspectives of NMP-SACs for the future design of advanced catalysts are addressed.
Collapse
Affiliation(s)
- Runze Chen
- School of Material Science and Engineering, Zhengzhou University, Zhengzhou, Henan, 450001, P. R. China
| | - Shenghua Chen
- National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, Shanxi, 710049, P. R. China
| | - Liqiang Wang
- School of Material Science and Engineering, Zhengzhou University, Zhengzhou, Henan, 450001, P. R. China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
9
|
Bai X, Zhang X, Sun Y, Huang M, Fan J, Xu S, Li H. Low Ruthenium Content Confined on Boron Carbon Nitride as an Efficient and Stable Electrocatalyst for Acidic Oxygen Evolution Reaction. Angew Chem Int Ed Engl 2023; 62:e202308704. [PMID: 37489759 DOI: 10.1002/anie.202308704] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 07/26/2023]
Abstract
To date, only a few noble metal oxides exhibit the required efficiency and stability as oxygen evolution reaction (OER) catalysts under the acidic, high-voltage conditions that exist during proton exchange membrane water electrolysis (PEMWE). The high cost and scarcity of these catalysts hinder the large-scale application of PEMWE. Here, we report a novel OER electrocatalyst for OER comprised of uniformly dispersed Ru clusters confined on boron carbon nitride (BCN) support. Compared to RuO2 , our BCN-supported catalyst shows enhanced charge transfer. It displays a low overpotential of 164 mV at a current density of 10 mA cm-2 , suggesting its excellent OER catalytic activity. This catalyst was able to operate continuously for over 12 h under acidic conditions, whereas RuO2 without any support fails in 1 h. Density functional theory (DFT) calculations confirm that the interaction between the N on BCN support and Ru clusters changes the adsorption capacity and reduces the OER energy barrier, which increases the electrocatalytic activity of Ru.
Collapse
Affiliation(s)
- Xiaofang Bai
- Department of Materials Science and Engineering, Southern University of Science and Technology, 518055, Shenzhen, Guangdong, China
| | - Xiuping Zhang
- Department of Materials Science and Engineering, Southern University of Science and Technology, 518055, Shenzhen, Guangdong, China
| | - Yujiao Sun
- Department of Materials Science and Engineering, Southern University of Science and Technology, 518055, Shenzhen, Guangdong, China
| | - Mingcheng Huang
- Department of Materials Science and Engineering, Southern University of Science and Technology, 518055, Shenzhen, Guangdong, China
| | - Jiantao Fan
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, 518055, Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Southern University of Science and Technology, 518055, Shenzhen, Guangdong, China
| | - Shaoyi Xu
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, 518055, Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Southern University of Science and Technology, 518055, Shenzhen, Guangdong, China
| | - Hui Li
- Department of Materials Science and Engineering, Southern University of Science and Technology, 518055, Shenzhen, Guangdong, China
- Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development, Southern University of Science and Technology, 518055, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Hydrogen Energy, Southern University of Science and Technology, 518055, Shenzhen, Guangdong, China
| |
Collapse
|
10
|
He F, Wang Y, Liu J, Yao X. One-dimensional carbon based nanoreactor fabrication by electrospinning for sustainable catalysis. EXPLORATION (BEIJING, CHINA) 2023; 3:20220164. [PMID: 37933386 PMCID: PMC10624385 DOI: 10.1002/exp.20220164] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 03/10/2023] [Indexed: 11/08/2023]
Abstract
An efficient and economical electrocatalyst as kinetic support is key to electrochemical reactions. For this reason, chemists have been working to investigate the basic changing of chemical principles when the system is confined in limited space with nanometer-scale dimensions or sub-microliter volumes. Inspired by biological research, the design and construction of a closed reaction environment, namely the reactor, has attracted more and more interest in chemistry, biology, and materials science. In particular, nanoreactors became a high-profile rising star and different types of nanoreactors have been fabricated. Compared with the traditional particle nanoreactor, the one-dimensional (1D) carbon-based nanoreactor prepared by the electrospinning process has better electrolyte diffusion, charge transfer capabilities, and outstanding catalytic activity and selectivity than the traditional particle catalyst which has great application potential in various electrochemical catalytic reactions.
Collapse
Affiliation(s)
- Fagui He
- State Key Laboratory of Catalysis, Dalian Institute of Chemical PhysicsChinese Academy of SciencesDalianLiaoningChina
| | - Yiyan Wang
- DICP‐Surrey Joint Centre for Future Materials, Department of Chemical and Process Engineering, and Advanced Technology InstituteUniversity of SurreyGuilfordSurreyUK
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Shanghai Research Institute of Petrochemical TechnologySinopecShanghaiChina
| | - Jian Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical PhysicsChinese Academy of SciencesDalianLiaoningChina
- DICP‐Surrey Joint Centre for Future Materials, Department of Chemical and Process Engineering, and Advanced Technology InstituteUniversity of SurreyGuilfordSurreyUK
- Shanghai Key Laboratory of Molecular Catalysis and Innovative MaterialsFudan UniversityShanghaiP. R. China
| | - Xiangdong Yao
- School of Advanced EnergySun‐yat Sen University (Shenzhen)ShenzhenGuangdongChina
| |
Collapse
|
11
|
Lin Y, Dong Y, Wang X, Chen L. Electrocatalysts for the Oxygen Evolution Reaction in Acidic Media. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210565. [PMID: 36521026 DOI: 10.1002/adma.202210565] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/09/2022] [Indexed: 06/02/2023]
Abstract
The well-established proton exchange membrane (PEM)-based water electrolysis, which operates under acidic conditions, possesses many advantages compared to alkaline water electrolysis, such as compact design, higher voltage efficiency, and higher gas purity. However, PEM-based water electrolysis is hampered by the low efficiency, instability, and high cost of anodic electrocatalysts for the oxygen evolution reaction (OER). In this review, the recently reported acidic OER electrocatalysts are comprehensively summarized, classified, and discussed. The related fundamental studies on OER mechanisms and the relationship between activity and stability are particularly highlighted in order to provide an atomistic-level understanding for OER catalysis. A stability test protocol is suggested to evaluate the intrinsic activity degradation. Some current challenges and unresolved questions, such as the usage of carbon-based materials and the differences between the electrocatalyst performances in acidic electrolytes and PEM-based electrolyzers are also discussed. Finally, suggestions for the most promising electrocatalysts and a perspective for future research are outlined. This review presents a fresh impetus and guideline to the rational design and synthesis of high-performance acidic OER electrocatalysts for PEM-based water electrolysis.
Collapse
Affiliation(s)
- Yichao Lin
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
- Department of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Qianwan Institute of CNiTECH, Ningbo, 315000, China
| | - Yan Dong
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
- Department of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Qianwan Institute of CNiTECH, Ningbo, 315000, China
| | - Xuezhen Wang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
- Department of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Qianwan Institute of CNiTECH, Ningbo, 315000, China
| | - Liang Chen
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
- Department of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Qianwan Institute of CNiTECH, Ningbo, 315000, China
| |
Collapse
|
12
|
Liu Z, Du Y, Yu R, Zheng M, Hu R, Wu J, Xia Y, Zhuang Z, Wang D. Tuning Mass Transport in Electrocatalysis Down to Sub-5 nm through Nanoscale Grade Separation. Angew Chem Int Ed Engl 2023; 62:e202212653. [PMID: 36399050 DOI: 10.1002/anie.202212653] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 11/19/2022]
Abstract
Nano and single-atom catalysis open new possibilities of producing green hydrogen (H2 ) by water electrolysis. However, for the hydrogen evolution reaction (HER) which occurs at a characteristic reaction rate proportional to the potential, the fast generation of H2 nanobubbles at atomic-scale interfaces often leads to the blockage of active sites. Herein, a nanoscale grade-separation strategy is proposed to tackle mass-transport problem by utilizing ordered three-dimensional (3d) interconnected sub-5 nm pores. The results reveal that 3d criss-crossing mesopores with grade separation allow efficient diffusion of H2 bubbles along the interconnected channels. After the support of ultrafine ruthenium (Ru), the 3d mesopores are on a superior level to two-dimensional system at maximizing the catalyst performance and the obtained Ru catalyst outperforms most of the other HER catalysts. This work provides a potential route to fine-tuning few-nanometer mass transport during water electrolysis.
Collapse
Affiliation(s)
- Zhenhui Liu
- College of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P. R. China
| | - Yue Du
- Institute for Advanced Materials, Hubei Normal University, Huangshi, 435002, P. R. China
| | - Ruohan Yu
- Wuhan University of Technology, Nanostructure Research Centre, Wuhan, 430070, P. R. China
| | - Mingbo Zheng
- College of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P. R. China
| | - Rui Hu
- College of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P. R. China
| | - Jingsong Wu
- Wuhan University of Technology, Nanostructure Research Centre, Wuhan, 430070, P. R. China
| | - Yongyao Xia
- College of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P. R. China.,Department of Chemistry, Fudan University, Shanghai, 200433, P. R. China
| | - Zechao Zhuang
- Department of Chemistry, Tsinghua University, Beijing, P. R. China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, P. R. China
| |
Collapse
|
13
|
Fu ZY, Xu HM, Li WH, Jin GP, Han SK. Phase Transformation from Amorphous RuS x to Ru-RuS 2 Hybrid Nanostructure for Efficient Water Splitting in Alkaline Media. Inorg Chem 2023; 62:583-590. [PMID: 36563110 DOI: 10.1021/acs.inorgchem.2c03882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Ruthenium (Ru)-based materials, as a class of efficient hydrogen evolution reaction (HER) catalysts, play an important role in hydrogen generation by electrolysis of water in an alkaline solution for clean hydrogen energy. Hybrid nanostructure (HN) materials, which include two or more components with distinct functionality, show better performance than their individual materials, since HN materials can potentially integrate their advantages and overcome the weaknesses. However, it remains a challenge to construct Ru-based HN materials with desired crystal phases for enhanced HER performances. Herein, a series of new Ru-based HN materials (t-Ru-RuS2, S-Ru-RuS2, and T-Ru-RuS2) through phase engineering of nanomaterials (PEN) and chemical transformation are designed to achieve highly efficient HER properties. Owing to the plentiful formation of heterojunctions and amorphous/crystalline interfaces, the t-Ru-RuS2 HN delivers the most outstanding overpotential of 16 mV and owns a small Tafel slope of 29 mV dec-1 at a current density of 10 mA cm-2, which exceeds commercial Pt/C catalysts (34 mV, 38 mV dec-1). This work shows a new insight for HN and provides alternative opportunities in designing advanced electrocatalysts with low cost for HER in the hydrogen economy.
Collapse
Affiliation(s)
- Zi-Yu Fu
- Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Hou-Ming Xu
- Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Wan-Hong Li
- Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Guan-Ping Jin
- Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Shi-Kui Han
- Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| |
Collapse
|
14
|
Fang F, Wang Y, Shen LW, Tian G, Cahen D, Xiao YX, Chen JB, Wu SM, He L, Ozoemena KI, Symes MD, Yang XY. Interfacial Carbon Makes Nano-Particulate RuO 2 an Efficient, Stable, pH-Universal Catalyst for Splitting of Seawater. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203778. [PMID: 36103609 DOI: 10.1002/smll.202203778] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 08/21/2022] [Indexed: 06/15/2023]
Abstract
An electrocatalyst composed of RuO2 surrounded by interfacial carbon, is synthesized through controllable oxidization-calcination. This electrocatalyst provides efficient charge transfer, numerous active sites, and promising activity for pH-universal electrocatalytic overall seawater splitting. An electrolyzer with this catalyst gives current densities of 10 mA cm-2 at a record low cell voltage of 1.52 V, and shows excellent durability at current densities of 10 mA cm-2 for up to 100 h. Based on the results, a mechanism for the catalytic activity of the composite is proposed. Finally, a solar-driven system is assembled and used for overall seawater splitting, showing 95% Faraday efficiency.
Collapse
Affiliation(s)
- Fang Fang
- State Key Laboratory of Advanced Technology for Materials Synthesis andProcessing & School of Materials Science and Engineering & International School of Materials Science and Engineering & Shenzhen Research Institute & Joint Laboratory for Marine Advanced Materials in Pilot National Laboratory for Marine Science and Technology (Qingdao), Wuhan University of Technology, Wuhan, 430070, China
| | - Yong Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis andProcessing & School of Materials Science and Engineering & International School of Materials Science and Engineering & Shenzhen Research Institute & Joint Laboratory for Marine Advanced Materials in Pilot National Laboratory for Marine Science and Technology (Qingdao), Wuhan University of Technology, Wuhan, 430070, China
| | - Le-Wei Shen
- State Key Laboratory of Advanced Technology for Materials Synthesis andProcessing & School of Materials Science and Engineering & International School of Materials Science and Engineering & Shenzhen Research Institute & Joint Laboratory for Marine Advanced Materials in Pilot National Laboratory for Marine Science and Technology (Qingdao), Wuhan University of Technology, Wuhan, 430070, China
| | - Ge Tian
- State Key Laboratory of Advanced Technology for Materials Synthesis andProcessing & School of Materials Science and Engineering & International School of Materials Science and Engineering & Shenzhen Research Institute & Joint Laboratory for Marine Advanced Materials in Pilot National Laboratory for Marine Science and Technology (Qingdao), Wuhan University of Technology, Wuhan, 430070, China
| | - David Cahen
- Department of Chemistry, and Bar-Ilan Inst. for Nanotechnol. & Adv. Mater. (BINA), Bar-Ilan University, Ramat Gan, 5290002, Israel
- Weizmann Inst. of Science, Rehovot, 76100, Israel
| | - Yu-Xuan Xiao
- State Key Laboratory of Advanced Technology for Materials Synthesis andProcessing & School of Materials Science and Engineering & International School of Materials Science and Engineering & Shenzhen Research Institute & Joint Laboratory for Marine Advanced Materials in Pilot National Laboratory for Marine Science and Technology (Qingdao), Wuhan University of Technology, Wuhan, 430070, China
| | - Jiang-Bo Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis andProcessing & School of Materials Science and Engineering & International School of Materials Science and Engineering & Shenzhen Research Institute & Joint Laboratory for Marine Advanced Materials in Pilot National Laboratory for Marine Science and Technology (Qingdao), Wuhan University of Technology, Wuhan, 430070, China
| | - Si-Ming Wu
- State Key Laboratory of Advanced Technology for Materials Synthesis andProcessing & School of Materials Science and Engineering & International School of Materials Science and Engineering & Shenzhen Research Institute & Joint Laboratory for Marine Advanced Materials in Pilot National Laboratory for Marine Science and Technology (Qingdao), Wuhan University of Technology, Wuhan, 430070, China
| | - Liang He
- State Key Laboratory of Advanced Technology for Materials Synthesis andProcessing & School of Materials Science and Engineering & International School of Materials Science and Engineering & Shenzhen Research Institute & Joint Laboratory for Marine Advanced Materials in Pilot National Laboratory for Marine Science and Technology (Qingdao), Wuhan University of Technology, Wuhan, 430070, China
| | - Kenneth I Ozoemena
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Private Bag 3, Johannesburg, 2050, South Africa
| | - Mark D Symes
- WestCHEM, School of Chemistry, University of Glasgow, University Avenue, Glasgow, G12 8QQ, UK
| | - Xiao-Yu Yang
- State Key Laboratory of Advanced Technology for Materials Synthesis andProcessing & School of Materials Science and Engineering & International School of Materials Science and Engineering & Shenzhen Research Institute & Joint Laboratory for Marine Advanced Materials in Pilot National Laboratory for Marine Science and Technology (Qingdao), Wuhan University of Technology, Wuhan, 430070, China
| |
Collapse
|
15
|
He L, Gao M, Ning F, Bai C, Pan S, Jin H, Wen Q, Zhou X. Ultralight, Safe, Economical, and Portable Oxygen Generators with Low Energy Consumption Prepared by Air-Breathing Electrochemical Extraction. ACS APPLIED MATERIALS & INTERFACES 2022; 14:28114-28122. [PMID: 35671410 DOI: 10.1021/acsami.2c05626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Pure oxygen is vital in medical treatment, first aid, and chemical synthesis. Hypoxia can cause severe damage to the organ systems such as respiratory, digestive, and nervous systems and even directly cause death. Notably, the severe Coronavirus disease 2019 (COVID-19) pandemic has exacerbated the shortage of medical oxygen in the world. Hence, a safe, economical, and portable oxygen supply device is urgently needed. Here, we have successfully prepared a device with air-breathing electrochemical extraction of pure oxygen (ABEEPO) with light weight and high energy efficiency. By renovating the structure of the electrolytic cell, the components bipolar plate and end plate are replaced with a plastic membrane, and the component current collector is replaced with a highly conductive graphene composite membrane electrode. Due to the use of the plastic membrane and graphene composite membrane electrode, the weight of the electrolytic cell is reduced from 1319.4 to 1.6 g, and the flexibility of the electrolytic cell is successfully realized. Through optimizing anode catalysts, working area, and operating voltage, a high flow rate per mass (234 mL h-1 g-1) was achieved at a voltage of 1.2 V. The device exhibits high stability in 2 h. The new portable oxygen production device would be effective for hypoxia treatment.
Collapse
Affiliation(s)
- Lei He
- Division of Advanced Nanomaterials, Suzhou Institute of Nano-Tech and NanoBionics, Chinese Academy of Sciences, Suzhou 215123, China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
| | - Miao Gao
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science & Technology of China, Hefei 230026, China
| | - Fandi Ning
- Division of Advanced Nanomaterials, Suzhou Institute of Nano-Tech and NanoBionics, Chinese Academy of Sciences, Suzhou 215123, China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
| | - Chuang Bai
- Division of Advanced Nanomaterials, Suzhou Institute of Nano-Tech and NanoBionics, Chinese Academy of Sciences, Suzhou 215123, China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
| | - Saifei Pan
- Division of Advanced Nanomaterials, Suzhou Institute of Nano-Tech and NanoBionics, Chinese Academy of Sciences, Suzhou 215123, China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
| | - Hanqing Jin
- Division of Advanced Nanomaterials, Suzhou Institute of Nano-Tech and NanoBionics, Chinese Academy of Sciences, Suzhou 215123, China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
| | - Qinglin Wen
- Division of Advanced Nanomaterials, Suzhou Institute of Nano-Tech and NanoBionics, Chinese Academy of Sciences, Suzhou 215123, China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
| | - Xiaochun Zhou
- Division of Advanced Nanomaterials, Suzhou Institute of Nano-Tech and NanoBionics, Chinese Academy of Sciences, Suzhou 215123, China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
16
|
Sun SC, Jiang H, Chen ZY, Chen Q, Ma MY, Zhen L, Song B, Xu CY. Bifunctional WC-Supported RuO 2 Nanoparticles for Robust Water Splitting in Acidic Media. Angew Chem Int Ed Engl 2022; 61:e202202519. [PMID: 35266633 DOI: 10.1002/anie.202202519] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Indexed: 01/14/2023]
Abstract
We report the strong catalyst-support interaction in WC-supported RuO2 nanoparticles (RuO2 -WC NPs) anchored on carbon nanosheets with low loading of Ru (4.11 wt.%), which significantly promotes the oxygen evolution reaction activity with a η10 of 347 mV and a mass activity of 1430 A gRu -1 , eight-fold higher than that of commercial RuO2 (176 A gRu -1 ). Theoretical calculations demonstrate that the strong catalyst-support interaction between RuO2 and the WC support could optimize the surrounding electronic structure of Ru sites to reduce the reaction barrier. Considering the likewise excellent catalytic ability for hydrogen production, an acidic overall water splitting (OWS) electrolyzer with a good stability constructed by bifunctional RuO2 -WC NPs only requires a cell voltage of 1.66 V to afford 10 mA cm-2 . The unique 0D/2D nanoarchitectures rationally combining a WC support with precious metal oxides provides a promising strategy to tradeoff the high catalytic activity and low cost for acidic OWS applications.
Collapse
Affiliation(s)
- Shu-Chao Sun
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China.,MOE Key Laboratory of Micro-Systems and Micro-Structures Manufacturing, Harbin Institute of Technology, Harbin, 150080, P. R. China
| | - Hao Jiang
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Zi-Yao Chen
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Qing Chen
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, P. R. China
| | - Ming-Yuan Ma
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Liang Zhen
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China.,MOE Key Laboratory of Micro-Systems and Micro-Structures Manufacturing, Harbin Institute of Technology, Harbin, 150080, P. R. China.,Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, P. R. China
| | - Bo Song
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Cheng-Yan Xu
- MOE Key Laboratory of Micro-Systems and Micro-Structures Manufacturing, Harbin Institute of Technology, Harbin, 150080, P. R. China.,Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, P. R. China
| |
Collapse
|
17
|
RuCo Alloy Nanoparticles Embedded into N-Doped Carbon for High Efficiency Hydrogen Evolution Electrocatalyst. ENERGIES 2022. [DOI: 10.3390/en15082908] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
For large-scale and sustainable water electrolysis, it is of great significance to develop cheap and efficient electrocatalysts that can replace platinum. Currently, it is difficult for most catalysts to combine high activity and stability. To solve this problem, we use cobalt to regulate the electronic structure of ruthenium to achieve high activity, and use carbon matrix to protect alloy nanoparticles to achieve high stability. Herein, based on the zeolitic imidazolate frameworks (ZIFs), a novel hybrid composed of RuCo alloy nano-particles and N-doped carbon was prepared via a facile pyrolysis-displacement-sintering strategy. Due to the unique porous structure and multi-component synergy, the optimal RuCo500@NC750 material in both acidic and alkaline media exhibited eminent HER catalytic activity. Notably, the 3-RuCo500@NC750 obtained a current density of 10 mA cm−2 at 22 mV and 31 mV in 0.5 M H2SO4 and 1.0 M KOH, respectively, comparable to that of the reference Pt/C catalyst. Furthermore, the Tafel slopes of the catalyst are 52 mV Dec−1 and 47 mV Dec−1, respectively, under acid and alkali conditions, and the catalyst has good stability, indicating that it has broad application prospects in practical electrolytic systems. This work contributes to understanding the role of carbon-supported polymetallic alloy in the electrocatalytic hydrogen evolution process, and provides some inspiration for the development of a high efficiency hydrogen evolution catalyst.
Collapse
|
18
|
Sun S, Jiang H, Chen Z, Chen Q, Ma M, Zhen L, Song B, Xu C. Bifunctional WC‐Supported RuO2 Nanoparticles for Robust Water Splitting in Acidic Media. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Shuchao Sun
- Harbin Institute of Technology School of Materials Science and Engineering CHINA
| | - Hao Jiang
- Harbin Institute of Technology School of Materials Science and Engineering CHINA
| | - Ziyao Chen
- Harbin Institute of Technology School of Materials Science and Engineering CHINA
| | - Qing Chen
- Harbin Institute of Technology Shenzhen School of Materials Science and Engineering CHINA
| | - Mingyuan Ma
- Harbin Institute of Technology School of Materials Science and Engineering CHINA
| | - Liang Zhen
- Harbin Institute of Technology School of Materials Science and Engineering CHINA
| | - Bo Song
- Harbin Institute of Technology P.O.Box 3010,No.2 Yikuang street 150001 Harbin CHINA
| | - Chengyan Xu
- Harbin Institute of Technology Shenzhen School of Materials Science and Engineering CHINA
| |
Collapse
|
19
|
Dai L, Xiang L, Zhang M, Wen Z, Xu Q, Chen K, Zhao Z, Ci S. Asymmetric Neutral‐alkaline Microbial Electrolysis Cells for Hydrogen Production. ChemElectroChem 2022. [DOI: 10.1002/celc.202101584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ling Dai
- Nanchang Hangkong University enviromental and chemical engineering school nanchang CHINA
| | - Lijuan Xiang
- Nanchang Hangkong University environment and chemical engineering school CHINA
| | - Mengtian Zhang
- Nanchang Hangkong University environmental and chemical engineering college nanchang CHINA
| | - Zhenhai Wen
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Science Institute of Materials 155 Yangqiao Road West 350002 Fuzhou CHINA
| | - Qiuhua Xu
- Nanchang Hangkong University environmental and chemical engineering college nanchang CHINA
| | - Kai Chen
- Nanchang Hangkong University environmental and chemical engineering college nanchang CHINA
| | - Zhifeng Zhao
- Nanchang Hangkong University enviromental and chemical engineering college nanchang CHINA
| | - Suqin Ci
- Nanchang Hangkong University enviromental and chemical engineering school nanchang CHINA
| |
Collapse
|
20
|
Ahmed J, Alhokbany N, Ahamad T, Alshehri SM. Investigation of enhanced electro-catalytic HER/OER performances of copper tungsten oxide@reduced graphene oxide nanocomposites in alkaline and acidic media. NEW J CHEM 2022. [DOI: 10.1039/d1nj04617a] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In this paper, we investigate the electro-catalytic hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) of synthesized copper tungsten oxide@reduced graphene oxide (CuWO4@rGO) nanocomposites.
Collapse
Affiliation(s)
- Jahangeer Ahmed
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Norah Alhokbany
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Tansir Ahamad
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saad M. Alshehri
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
21
|
Søndergaard-Pedersen F, Lakhotiya H, Bøjesen ED, Bondesgaard M, Myekhlai M, Benedetti TM, Gooding JJ, Tilley RD, Iversen BB. Highly efficient and stable Ru nanoparticle electrocatalyst for the hydrogen evolution reaction in alkaline conditions. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00177b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ru nanoparticles are prepared via solvothermal synthesis with allotropism control. Both fcc and hcp samples are active catalysts for the hydrogen evolution reaction, but the hcp sample is stable during 12 hour operation.
Collapse
Affiliation(s)
- Frederik Søndergaard-Pedersen
- Center for Materials Crystallography, Department of Chemistry, Aarhus University, DK8000 Aarhus C, Denmark
- iNANO, Aarhus University, DK8000, Aarhus C, Denmark
| | - Harish Lakhotiya
- Center for Materials Crystallography, Department of Chemistry, Aarhus University, DK8000 Aarhus C, Denmark
- iNANO, Aarhus University, DK8000, Aarhus C, Denmark
| | | | - Martin Bondesgaard
- Center for Materials Crystallography, Department of Chemistry, Aarhus University, DK8000 Aarhus C, Denmark
- iNANO, Aarhus University, DK8000, Aarhus C, Denmark
| | - Munkhshur Myekhlai
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Tania M. Benedetti
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - J. Justin Gooding
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Richard D. Tilley
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
- Electron Microscope Unit, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Bo B. Iversen
- Center for Materials Crystallography, Department of Chemistry, Aarhus University, DK8000 Aarhus C, Denmark
- iNANO, Aarhus University, DK8000, Aarhus C, Denmark
| |
Collapse
|
22
|
Ramachandra SK, Nagaraju DH, Marappa S, Kapse S, Thapa R. Highly efficient catalysts of ruthenium clusters on Fe 3O 4/MWCNTs for the hydrogen evolution reaction. NEW J CHEM 2022. [DOI: 10.1039/d2nj00887d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Anchoring of Ru onto the Fe3O4/MWCNTs composite, its HER mechanism and DFT calculated change in Gibbs free energy of adsorbed hydrogen are described.
Collapse
Affiliation(s)
| | | | - Shivanna Marappa
- Department of Chemistry, School of Applied Sciences, REVA University, Bangalore, 560064, Karnataka, India
| | - Samadhan Kapse
- Department of Physics, SRM University – AP, Amaravati 522240, Andhra Pradesh, India
| | - Ranjit Thapa
- Department of Physics, SRM University – AP, Amaravati 522240, Andhra Pradesh, India
| |
Collapse
|
23
|
Jiang K, Liu W, Lai W, Wang M, Li Q, Wang Z, Yuan J, Deng Y, Bao J, Ji H. NiFe Layered Double Hydroxide/FeOOH Heterostructure Nanosheets as an Efficient and Durable Bifunctional Electrocatalyst for Overall Seawater Splitting. Inorg Chem 2021; 60:17371-17378. [PMID: 34705457 DOI: 10.1021/acs.inorgchem.1c02903] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Electrolysis of seawater can not only desalinate seawater but also produce high-purity hydrogen. Nevertheless, the presence of chloride ions in seawater will cause electrode corrosion and also undergo a chlorine oxidation reaction (ClOR) that competes with the oxygen evolution reaction (OER). Therefore, highly efficient and long-term stable electrocatalysts are needed in this field. In this work, an advanced bifunctional electrocatalyst based on NiFe layered double hydroxide (LDH)/FeOOH heterostructure nanosheets (NiFe LDH/FeOOH) was synthesized on nickel-iron foam (INF) via a simple electrodeposition method. The NiFe LDH/FeOOH electrode demonstrates excellent electrocatalytic activity and stability, which results from the strong interaction between FeOOH and NiFe LDH. Furthermore, ex situ X-ray photoelectron spectroscopy (XPS) and in situ Raman spectroscopy revealed the catalytic process and also demonstrated that the NiFe LDH/FeOOH heterostructure could facilitate the formation of active NiOOH species in the reaction. The obtained NiFe LDH/FeOOH catalyst displays low overpotentials of 181.8 mV at 10 mA·cm-2 for hydrogen evolution reaction (HER) and 286.2 mV at 100 mA·cm-2 for OER in the 1.0 M KOH + 0.5 M NaCl electrolyte. Furthermore, it also exhibits a low voltage of 1.55 V to achieve the current density of 10 mA·cm-2 and works steadily for 105 h at 100 mA·cm-2 for overall alkaline simulated seawater splitting. This work will afford a valid strategy for designing a non-noble metal catalyst for seawater splitting.
Collapse
Affiliation(s)
- Kun Jiang
- Institute for Energy Research, School of Material Science & Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu Province 212013, P.R. China
| | - Wenjun Liu
- Institute for Energy Research, School of Material Science & Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu Province 212013, P.R. China
| | - Wei Lai
- Institute for Energy Research, School of Material Science & Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu Province 212013, P.R. China
| | - Menglian Wang
- Institute for Energy Research, School of Material Science & Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu Province 212013, P.R. China
| | - Qian Li
- Institute for Energy Research, School of Material Science & Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu Province 212013, P.R. China
| | - Zhaolong Wang
- Institute for Energy Research, School of Material Science & Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu Province 212013, P.R. China
| | - Junjie Yuan
- Institute for Energy Research, School of Material Science & Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu Province 212013, P.R. China
| | - Yilin Deng
- Institute for Energy Research, School of Material Science & Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu Province 212013, P.R. China
| | - Jian Bao
- Institute for Energy Research, School of Material Science & Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu Province 212013, P.R. China
| | - Hongbing Ji
- Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, P.R. China
| |
Collapse
|
24
|
Pu Z, Liu T, Zhang G, Ranganathan H, Chen Z, Sun S. Electrocatalytic Oxygen Evolution Reaction in Acidic Conditions: Recent Progress and Perspectives. CHEMSUSCHEM 2021; 14:4636-4657. [PMID: 34411443 DOI: 10.1002/cssc.202101461] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/12/2021] [Indexed: 06/13/2023]
Abstract
The electrochemical oxygen evolution reaction (OER) is an important half-cell reaction in many renewable energy conversion and storage technologies, including electrolyzers, nitrogen fixation, CO2 reduction, metal-air batteries, and regenerative fuel cells. Among them, proton exchange membrane (PEM)-based devices exhibit a series of advantages, such as excellent proton conductivity, high durability, and good mechanical strength, and have attracted global interest as a green energy device for transport and stationary sectors. Nevertheless, with a view to rapid commercialization, it is urgent to develop highly active and acid-stable OER catalysts for PEM-based devices. In this Review, based on the recent advances in theoretical calculation and in situ/operando characterization, the OER mechanism in acidic conditions is first discussed in detail. Subsequently, recent advances in the development of several types of acid-stable OER catalysts, including noble metals, non-noble metals, and even metal-free OER materials, are systematically summarized. Finally, the current key issues and future challenges for materials used as acidic OER catalysis are identified and potential future directions are proposed.
Collapse
Affiliation(s)
- Zonghua Pu
- Institut National de la Recherche Scientifique-Énergie Matériaux et Télécommunications, 1650 Boulevard Lionel-Boulet, Varennes, QC J3X 1S2, Canada
| | - Tingting Liu
- Institute for Clean Energy & Advanced Materials, School of Materials & Energy, Southwest University, Chongqing, 400715, P. R. China
| | - Gaixia Zhang
- Institut National de la Recherche Scientifique-Énergie Matériaux et Télécommunications, 1650 Boulevard Lionel-Boulet, Varennes, QC J3X 1S2, Canada
| | - Hariprasad Ranganathan
- Institut National de la Recherche Scientifique-Énergie Matériaux et Télécommunications, 1650 Boulevard Lionel-Boulet, Varennes, QC J3X 1S2, Canada
| | - Zhangxing Chen
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Shuhui Sun
- Institut National de la Recherche Scientifique-Énergie Matériaux et Télécommunications, 1650 Boulevard Lionel-Boulet, Varennes, QC J3X 1S2, Canada
| |
Collapse
|
25
|
Singh D, Raj KK, Azad UP, Pandey R. In situ transformed three heteroleptic Co(II)-MOFs as potential electrocatalysts for the electrochemical oxygen evolution reaction. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
26
|
Huang J, Scott SB, Chorkendorff I, Wen Z. Online Electrochemistry–Mass Spectrometry Evaluation of the Acidic Oxygen Evolution Reaction at Supported Catalysts. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03430] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Junheng Huang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - Soren B. Scott
- Department of Physics, Technical University of Denmark, Fysikvej, Building 312, DK-2800 Kgs. Lyngby, Denmark
| | - Ib Chorkendorff
- Department of Physics, Technical University of Denmark, Fysikvej, Building 312, DK-2800 Kgs. Lyngby, Denmark
| | - Zhenhai Wen
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| |
Collapse
|
27
|
Yin X, Dai X, Nie F, Ren Z, Yang Z, Gan Y, Wu B, Cao Y, Zhang X. Electronic modulation and proton transfer by iron and borate co-doping for synergistically triggering the oxygen evolution reaction on a hollow NiO bipyramidal prism. NANOSCALE 2021; 13:14156-14165. [PMID: 34477697 DOI: 10.1039/d1nr03500b] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Designing an Earth-abundant and inexpensive electrocatalyst to drive the oxygen evolution reaction (OER) for high-purity hydrogen production is of great importance. Herein, the cation (iron) and anion (borate) co-doping strategy was proposed to effectively trigger the OER performance on a low-cost NiO material. The optimal hollow Fe/Bi-NiO bipyramidal prism shows superior OER performance, and displays a low overpotential (261 mV) at 10 mA cm-2, accompanied by a low Tafel slope (46 mV dec-1), excellent intrinsic activity and robust stability. The overall alkaline water splitting using Fe/Bi-NiO/NF as an anode affords low cell voltages of 1.50 and 1.63 V at 10 and 100 mA cm-2, and operates steadily at a high current density of 100 mA cm-2 for 55 h without decay. The excellent electrocatalytic activity could be ascribed to the hollow structure to shorten the mass transfer pathway, the electronic modulation by Fe doping, the increased accessible electroactive sites created by oxygen vacancies through borate doping, and the formation of BO33--OH- to accelerate the deprotonation of OHads.
Collapse
Affiliation(s)
- Xueli Yin
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Changping, Beijing 102249, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Fan Y, Zhang X, Zhang Y, Xie X, Ding J, Cai J, Li B, Lv H, Liu L, Zhu M, Zheng X, Cai Q, Liu Y, Lu S. Decoration of Ru/RuO 2 hybrid nanoparticles on MoO 2 plane as bifunctional electrocatalyst for overall water splitting. J Colloid Interface Sci 2021; 604:508-516. [PMID: 34274714 DOI: 10.1016/j.jcis.2021.07.038] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/01/2021] [Accepted: 07/06/2021] [Indexed: 11/20/2022]
Abstract
Hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) are the two branches of artificial overall water splitting (OWS), in which the reaction efficiency usually depends on different specific catalysts. Although effective bifunctional electrocatalyst for OWS (HER and OER) are highly desired, designing and constructing such suitable materials is full of challenges to overcome several difficulties, involving slow kinetics, differences in catalytic mechanisms, large overpotential values, and low round-trip efficiencies. In this work, we reported a new bifunctional electrocatalyst Ru/RuO2-MoO2 catalyst (RRMC) via a redox solid phase reaction (RSPR) strategy to achieve the high electrocatalytic activity of OWS. Briefly, due to the restricted transport behavior of atoms in solid state precursor, the designed redox reaction occurred between the adjacent part of RuO2 and MoS2, forming Ru/RuO2 hybrid NPs and MoO2 plane. Therefore, the newly formed Ru/RuO2 hybrid NPs and MoO2 plane were tightly combined and used as an electrocatalyst for OWS. Benefiting from the exposed active sites and optimized electronic structure, the RRMC sample annealed at 500 °C (RRMC-500) exhibited low overpotential for HER (18 mV) and for OER (260 mV) at 10 mA cm-2 under alkaline conditions. Especially, a low cell voltage of 1.54 V was required at 10 mA cm-2 under alkaline condition.
Collapse
Affiliation(s)
- Yunxiao Fan
- Green Catalysis Center, College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China
| | - Xudong Zhang
- Green Catalysis Center, College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China
| | - Yongjiang Zhang
- Luoyang Cigarette Factory of China Tobacco Henan Industrial co., ltd, Luoyang 471003, PR China
| | - Xin Xie
- Green Catalysis Center, College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China
| | - Jie Ding
- Green Catalysis Center, College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China.
| | - Jialin Cai
- Green Catalysis Center, College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China
| | - Baojun Li
- Green Catalysis Center, College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China
| | - Hualun Lv
- Green Catalysis Center, College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China
| | - Leyan Liu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China
| | - Mingming Zhu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China
| | - Xiucheng Zheng
- Green Catalysis Center, College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China.
| | - Qiang Cai
- College of Materials Science and Engineering, Tsinghua University, Beijing 100084, PR China
| | - Yushan Liu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China.
| | - Siyu Lu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China
| |
Collapse
|
29
|
Li Z, Hu M, Wang P, Liu J, Yao J, Li C. Heterojunction catalyst in electrocatalytic water splitting. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213953] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
30
|
Samanta R, Mishra R, Barman S. Interface- and Surface-Engineered PdO-RuO 2 Hetero-Nanostructures with High Activity for Hydrogen Evolution/Oxidation Reactions. CHEMSUSCHEM 2021; 14:2112-2125. [PMID: 33760385 DOI: 10.1002/cssc.202100200] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/19/2021] [Indexed: 06/12/2023]
Abstract
Active catalysts for HER/HOR are crucial to develop hydrogen-based renewable technologies. The interface of hetero-nanostructures can integrate different components into a single synergistic hybrid with high activity. Here, the synthesis of PdO-RuO2 -C with abundant interfaces/defects was achieved for the hydrogen evolution reaction (HER) and hydrogen oxidation reaction (HOR). It exhibited a current density of 10 mA cm-2 at 44 mV with a Tafel slope of 34 mV dec-1 in 1 m KOH. The HER mass activity was 3 times higher in base and comparable to Pt/C in acid. The stability test confirmed high HER stability. The catalyst also exhibited excellent HOR activity in both media; in alkaline HOR it outperformed Pt/C. The exchange current density i0,m of PdO-RuO2 /C was 522 mA mg-1 in base, which is 58 and 3.4 times higher than those of Pd/C and Pt/C. The HOR activity of PdO-RuO2 /C was 22 and 300 times higher than those of PdO/C in acid and base. Improvement of HER/HOR kinetics in different alkaline electrolytes was observed in the order K+ <Na+ <Li+ , and increase of HER as well decrease of HOR kinetics was observed with increasing Li+ concentration. It was proposed that OHad -M+ -(H2 O)x in the double-layer region could influence HER/HOR activity in base. Based on the hard and soft acid and base (HSAB) theory, the OHads -M+ -(H2 O)x could help to remove more OHads into the bulk, leading to increase in HER/HOR activity in alkaline electrolyte (K+ <Na+ <Li+ ) and increasing the HER with increasing Li+ concentration. The decrease of HOR activity of PdO-RuO2 /C with increasing M+ was due to M+ -induced OHads destabilization through the bifunctional mechanism. The high HER/HOR activity of PdO-RuO2 /C could be attributed, among other factors, to interface engineering and strong synergistic interaction. This work provides an opportunity to design oxide-based catalysts for renewable energy technologies.
Collapse
Affiliation(s)
- Rajib Samanta
- School of Chemical Science, National Institute of Science Education and Research (NISER), HBNI Bhubaneswar, Bhimpur-Padanpur, Via Jatni, Khurda, Odisha, 752050, India
| | - Ranjit Mishra
- School of Chemical Science, National Institute of Science Education and Research (NISER), HBNI Bhubaneswar, Bhimpur-Padanpur, Via Jatni, Khurda, Odisha, 752050, India
| | - Sudip Barman
- School of Chemical Science, National Institute of Science Education and Research (NISER), HBNI Bhubaneswar, Bhimpur-Padanpur, Via Jatni, Khurda, Odisha, 752050, India
| |
Collapse
|
31
|
Jo HG, Kim KH, Ahn HJ. Well-dispersed Pt/RuO 2-decorated mesoporous N-doped carbon as a hybrid electrocatalyst for Li-O 2 batteries. RSC Adv 2021; 11:12209-12217. [PMID: 35423766 PMCID: PMC8697036 DOI: 10.1039/d1ra00740h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/14/2021] [Indexed: 12/26/2022] Open
Abstract
Despite their high energy density, the poor cycling performance of lithium-oxygen (Li-O2) batteries limits their practical application. Therefore, to improve cycling performance, considerable attention has been paid to the development of an efficient electrocatalyst for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). Catalysts that can more effectively reduce the overpotential and improve the cycling performance for the OER during charging are of particular interest. In this study, porous carbon derived from protein-based tofu was investigated as a catalyst support for the oxygen electrode (O2-electrode) of Li-O2 batteries, wherein ORR and OER occur. The porous carbon was synthesized using carbonization and KOH activation, and RuO2 and Pt electrocatalysts were introduced to improve the electrical conductivity and catalytic performance. The well-dispersed Pt/RuO2 electrocatalysts on the porous N-doped carbon support (Pt/RuO2@ACT) showed excellent ORR and OER catalytic activity. When incorporated into a Li-O2 battery, the Pt/RuO2@ACT O2-electrode exhibited a high specific discharge capacity (5724.1 mA h g-1 at 100 mA g-1), a low discharge-charge voltage gap (0.64 V at 2000 mA h g-1), and excellent cycling stability (43 cycles with a limit capacity of 1000 mA h g-1). We believe that the excellent performance of the Pt/RuO2@ACT electrocatalyst is promising for accelerating the commercialization of Li-O2 batteries.
Collapse
Affiliation(s)
- Hyun-Gi Jo
- Department of Materials Science and Engineering, Seoul National University of Science and Technology Seoul 01811 Korea +82029736657 +82029706622
| | - Kue-Ho Kim
- Department of Materials Science and Engineering, Seoul National University of Science and Technology Seoul 01811 Korea +82029736657 +82029706622
| | - Hyo-Jin Ahn
- Department of Materials Science and Engineering, Seoul National University of Science and Technology Seoul 01811 Korea +82029736657 +82029706622
| |
Collapse
|
32
|
Hu C, Song E, Wang M, Chen W, Huang F, Feng Z, Liu J, Wang J. Partial-Single-Atom, Partial-Nanoparticle Composites Enhance Water Dissociation for Hydrogen Evolution. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2001881. [PMID: 33510999 PMCID: PMC7816713 DOI: 10.1002/advs.202001881] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 09/20/2020] [Indexed: 05/26/2023]
Abstract
The development of an efficient electrocatalyst toward the hydrogen evolution reaction (HER) is of significant importance in transforming renewable electricity to pure and clean hydrogen by water splitting. However, the construction of an active electrocatalyst with multiple sites that can promote the dissociation of water molecules still remains a great challenge. Herein, a partial-single-atom, partial-nanoparticle composite consisting of nanosized ruthenium (Ru) nanoparticles (NPs) and individual Ru atoms as an energy-efficient HER catalyst in alkaline medium is reported. The formation of this unique composite mainly results from the dispersion of Ru NPs to small-size NPs and single atoms (SAs) on the Fe/N codoped carbon (Fe-N-C) substrate due to the thermodynamic stability. The optimal catalyst exhibits an outstanding HER activity with an ultralow overpotential (9 mV) at 10 mA cm-2 (η 10), a high turnover frequency (8.9 H2 s-1 at 50 mV overpotential), and nearly 100% Faraday efficiency, outperforming the state-of-the-art commercial Pt/C and other reported HER electrocatalysts in alkaline condition. Both experimental and theoretical calculations reveal that the coexistence of Ru NPs and SAs can improve the hydride coupling and water dissociation kinetics, thus synergistically enhancing alkaline hydrogen evolution performance.
Collapse
Affiliation(s)
- Chun Hu
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049China
- Center of Materials Science and Optoelectronics EngineeringUniversity of the Chinese Academy of SciencesBeijing100049China
| | - Erhong Song
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050China
| | - Maoyu Wang
- School of ChemicalBiological, and Environmental EngineeringOregon State UniversityCorvallisOR97331USA
| | - Wei Chen
- Department of MechanicalMaterials and Aerospace EngineeringIllinois Institute of TechnologyChicagoIL60616USA
| | - Fuqiang Huang
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050China
| | - Zhenxing Feng
- School of ChemicalBiological, and Environmental EngineeringOregon State UniversityCorvallisOR97331USA
| | - Jianjun Liu
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049China
| | - Jiacheng Wang
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049China
| |
Collapse
|
33
|
Huang W, Zhang J, Liu D, Xu W, Wang Y, Yao J, Tan HT, Dinh KN, Wu C, Kuang M, Fang W, Dangol R, Song L, Zhou K, Liu C, Xu JW, Liu B, Yan Q. Tuning the Electronic Structures of Multimetal Oxide Nanoplates to Realize Favorable Adsorption Energies of Oxygenated Intermediates. ACS NANO 2020; 14:17640-17651. [PMID: 33316158 DOI: 10.1021/acsnano.0c08571] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Highly active oxygen evolution reaction (OER) electrocatalysts are important to effectively transform renewable electricity to fuel and chemicals. In this work, we construct a series of multimetal oxide nanoplate OER electrocatalysts through successive cation exchange followed by electrochemical oxidation, whose electronic structure and diversified metal active sites can be engineered via the mutual synergy among multiple metal species. Among the examined multimetal oxide nanoplates, CoCeNiFeZnCuOx nanoplates exhibit the optimal adsorption energy of OER intermediates. Together with the high electrochemical active surface area, the CoCeNiFeZnCuOx nanoplates manage to deliver a small overpotential of 211 mV at an OER current density of 10 mA cm-2 (η10) with a Tafel slope as low as 21 mV dec-1 in 1 M KOH solution, superior to commercial IrO2 (339 mV at η10, Tafel slope of 55 mV dec-1), which can be stably operated at 10 mA cm-2 (at an overpotential of 211 mV) and 100 mA cm-2 (at an overpotential of 307 mV) for 100 h.
Collapse
Affiliation(s)
- Wenjing Huang
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798
| | - Junming Zhang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459
| | - Daobin Liu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798
| | - Wenjie Xu
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Yu Wang
- Environmental Process Modelling Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 CleanTech Loop, Singapore 637141
| | - Jiandong Yao
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798
| | - Hui Teng Tan
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798
| | - Khang Ngoc Dinh
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798
| | - Chen Wu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798
| | - Min Kuang
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798
| | - Wei Fang
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798
| | - Raksha Dangol
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798
| | - Li Song
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Kun Zhou
- Environmental Process Modelling Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 CleanTech Loop, Singapore 637141
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 50 Nanyang Avenue, Singapore 639798
| | - Chuntai Liu
- Key Laboratory of Materials Processing and Mold, Ministry of Education, Zhengzhou University, Zhengzhou 450002, China
| | - Jian Wei Xu
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634
| | - Bin Liu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459
| | - Qingyu Yan
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798
| |
Collapse
|
34
|
Akbayrak M, Önal AM. Binder- free iridium based electrocatalysts: Facile preparation, high activity and outstanding stability for hydrogen evolution reaction in acidic medium. J Colloid Interface Sci 2020; 580:11-20. [DOI: 10.1016/j.jcis.2020.06.117] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/24/2020] [Accepted: 06/27/2020] [Indexed: 11/26/2022]
|
35
|
Fan A, Zheng P, Qin C, Zhang X, Dai X, Ren D, Fang X, Luan C, Yang J. Few-layer MoS2 and Pt nanoparticles Co-anchored on MWCNTs for efficient hydrogen evolution over a wide pH range. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136927] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
36
|
Fernandes DM, Rocha M, Rivera-Cárcamo C, Serp P, Freire C. Ru single atoms and nanoparticles on carbon nanotubes as multifunctional catalysts. Dalton Trans 2020; 49:10250-10260. [PMID: 32672264 DOI: 10.1039/d0dt02096f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the last decade we have witnessed increasing interest in the production of renewable energy and value-added chemicals through sustainable and low-cost technologies where catalysts play a crucial role. Herein, we report the application of a Ru/CNT material containing a mixture of Ru single atoms and Ru nanoparticles as a multifunctional catalyst for both the catalytic reduction of nitroarenes and the electrocatalytic oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). The catalytic activity of the Ru-CNT material was evaluated in the reduction of 4-nitrophenol (4-NP), 4-nitroaniline (4-NA) and 2-nitrophenol (2-NP) in the presence of sodium borohydride as a reducing agent at room temperature, showing high catalytic activity with normalized rate constants (knor) of 19.0 × 103, 57.7 × 103 and 16.6 × 103 min-1 mmol-1 respectively. Furthermore, the catalyst could be reused in at least 10 cycles without catalytic activity loss, confirming the high stability and robustness of the material. The Ru/CNT material also showed good ORR electrocatalytic activity in alkaline medium with Eonset of 0.76 V vs. RHE, a diffusion-limited current density of 3.89 mA cm-2 and ñO2 of 3.3. In addition, Ru/CNT was remarkably insensitive to methanol with a current retention of 93% (51% for Pt/C) and competitive electrochemical stability of 80% after 20 000 s. Moreover, Ru/CNT was active for the OER with jmax = 29.5 mA cm-2 at E = 1.86 V vs. RHE, η10 = 0.50 V and good stability (η10 changed to 0.01 V and jmax only decreased by ≈12% after 500 cycles).
Collapse
Affiliation(s)
- Diana M Fernandes
- REQUIMTE/LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal.
| | | | | | | | | |
Collapse
|
37
|
Synthesis of NiHPO4–Ni(OH)2 nanowire-assembled bouquets for electrocatalytic oxidation of methanol and urea. J APPL ELECTROCHEM 2020. [DOI: 10.1007/s10800-020-01463-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
38
|
Efficient Multifunctional Catalytic and Sensing Properties of Synthesized Ruthenium Oxide Nanoparticles. Catalysts 2020. [DOI: 10.3390/catal10070780] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Ruthenium oxide is one of the most active electrocatalyst for oxygen evolution (OER) and oxygen reduction reaction (ORR). Herein, we report simple wet chemical route to synthesize RuO2 nanoparticles at controlled temperature. The structural, morphological and surface area studies of the synthesized nanoparticles were conducted with X-ray diffraction, electron microscopy and BETsurface area studies. The bifunctional electrocatalytic performance of RuO2 nanoparticles was studied under different atmospheric conditions for OER and ORR, respectively, versus reversible hydrogen electrode (RHE) in alkaline medium. Low Tafel slopes of RuO2 nanoparticles were found to be ~47 and ~49 mV/dec for OER and ORR, respectively, in oxygen saturated 0.5 M KOH system. Moreover, the catalytic activity of RuO2 nanoparticles was examined against the Horseradish peroxidase enzyme (HRP) at high temperature, and the nanoparticles were applied as a sensor for the detection of H2O2 in the solution.
Collapse
|
39
|
Shi Z, Wang X, Ge J, Liu C, Xing W. Fundamental understanding of the acidic oxygen evolution reaction: mechanism study and state-of-the-art catalysts. NANOSCALE 2020; 12:13249-13275. [PMID: 32568352 DOI: 10.1039/d0nr02410d] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The oxygen evolution reaction (OER), as the anodic reaction of water electrolysis (WE), suffers greatly from low reaction kinetics and thereby hampers the large-scale application of WE. Seeking active, stable, and cost-effective OER catalysts in acidic media is therefore of great significance. In this perspective, studying the reaction mechanism and exploiting advanced anode catalysts are of equal importance, where the former provides guidance for material structural engineering towards a better catalytic activity. In this review, we first summarize the currently proposed OER catalytic mechanisms, i.e., the adsorbate evolution mechanism (AEM) and lattice oxygen evolution reaction (LOER). Subsequently, we critically review several acidic OER electrocatalysts reported recently, with focus on structure-performance correlation. Finally, a few suggestions on exploring future OER catalysts are proposed.
Collapse
Affiliation(s)
- Zhaoping Shi
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, PR China
| | | | | | | | | |
Collapse
|
40
|
Jiang B, Huang A, Wang T, Shao Q, Zhu W, Liao F, Cheng Y, Shao M. Rhodium/graphitic-carbon-nitride composite electrocatalyst facilitates efficient hydrogen evolution in acidic and alkaline electrolytes. J Colloid Interface Sci 2020; 571:30-37. [PMID: 32179306 DOI: 10.1016/j.jcis.2020.03.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 03/06/2020] [Accepted: 03/07/2020] [Indexed: 01/28/2023]
Abstract
Exploring the highly efficient and durable electrocatalysts for hydrogen evolution reaction (HER) is vitally necessary for sustainable energy conversion and storage system. Herein, we fabricate an interfacial engineered Rh-carbon nitride as advanced electrocatalysts for HER in the acidic and alkaline electrolytes. The interface between Rh nanocrystals and carbon nitride may adjust the electronic structure of Rh, which results in high activity for HER. The optimal Rh-carbon nitride shows low overpotential at current density of -10 mA·cm-2 and small Tafel slope (13 mV and 25.0 mV dec-1 in 0.5 M H2SO4, 46 mV and 42.0 mV dec-1 in 1.0 M KOH, respectively), which is superior to that of commercial Pt/C (21 mV and 28.5 mV dec-1 in 0.5 M H2SO4, 55 mV and 44.0 mV dec-1 in 1.0 M KOH, respectively). Importantly, this composite also exhibits long-term stability in 0.5 M H2SO4 and 1.0 M KOH. The excellent HER performances can be attribute to the interface between Rh and carbon nitride, which downshifts their d-band center positions, tuning the adsorption ability for hydrogen and accelerating the HER kinetics. This work may open up an efficient method to design metal/carbon hybrid for electrocatalysis.
Collapse
Affiliation(s)
- Binbin Jiang
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, PR China; Anhui Key Laboratory of Photoelectric-Magnetic Functional Materials, School of Chemistry and Chemical Engineering, Anqing Normal University, Anqing 246011, China
| | - Aijian Huang
- School of Electronics Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, PR China; Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Tao Wang
- Anhui Key Laboratory of Photoelectric-Magnetic Functional Materials, School of Chemistry and Chemical Engineering, Anqing Normal University, Anqing 246011, China
| | - Qi Shao
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, PR China
| | - Wenxiang Zhu
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, PR China
| | - Fan Liao
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, PR China.
| | - Yafei Cheng
- Jiangsu Laboratory of Advanced Functional Materials, School of Chemistry and Material Engineering, Changshu Institute of Technology, Changshu 215500, China.
| | - Mingwang Shao
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, PR China.
| |
Collapse
|
41
|
Jiang Y, Lu Y. Designing transition-metal-boride-based electrocatalysts for applications in electrochemical water splitting. NANOSCALE 2020; 12:9327-9351. [PMID: 32315016 DOI: 10.1039/d0nr01279c] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Investigating renewable and clean energy materials as alternatives to fossil fuels can be foreseen as a potential solution to the global problems of energy shortages and environmental pollution. Recently, transition metal boride (TMB)-based materials have emerged as the rising star as efficient electrocatalysts for hydrogen evolution reaction (HER) and/or oxygen evolution reaction (OER). In this review, an overview of the most recent developments in the use of TMB-based materials as electrocatalysts for HER/OER or overall water splitting has been presented. Initially, we provide a comprehensive introduction of the fundamentals of electrochemical water splitting. Then, the synthesis approaches of TMB materials are summarized and compared. Emphasis is put on the various strategies for further improving the electrocatalytic performance of TMBs. Finally, challenges and future perspectives for TMBs in water-splitting applications are proposed.
Collapse
Affiliation(s)
- Yuanyuan Jiang
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, China.
| | - Yizhong Lu
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, China.
| |
Collapse
|
42
|
Zhao X, Fan Y, Wang H, Gao C, Liu Z, Li B, Peng Z, Yang JH, Liu B. Cobalt Phosphide-Embedded Reduced Graphene Oxide as a Bifunctional Catalyst for Overall Water Splitting. ACS OMEGA 2020; 5:6516-6522. [PMID: 32258887 PMCID: PMC7114733 DOI: 10.1021/acsomega.9b04143] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 03/06/2020] [Indexed: 05/08/2023]
Abstract
It is highly desirable to design high-efficiency stable and low-price catalysts in the electrocatalysis field. Herein, we reported a cobalt phosphide (Co2P)-loaded reduced graphene oxide (rGO) composite catalyst (rGO/Co2P) prepared via the convenient hydrothermal and H2 reduction methods. The rGO/Co2P catalyst reduced at 800 °C (rGO/Co2P-800) shows superior electrocatalytic activities for hydrogen evolution reaction and oxygen evolution reaction in 1.0 M KOH solution, achieving an overpotential of 134 and 378 mV, respectively, at a current density of 10 mA cm-2. Moreover, the catalyst can not only maintain stability for a long time in alkaline solution but also in acid media because of the protection of the rGO layers. The superior performance of this catalyst is attributed to the synergy between the carbon layer and transition-metal phosphides. The Co2P nanoparticles have a high degree of dispersion, which prevents agglomeration, thereby exposing more active sites. Moreover, rGO protects the exposed metal particles while providing more electroconductivity to the material. This work provides an efficient route for the development of bifunctional electrocatalysts with excellent performance and stability, which provides new ideas toward overall water splitting.
Collapse
Affiliation(s)
- Xiaoxi Zhao
- College
of Chemistry and Chemical Engineering, Henan
Polytechnic University, 2001 Century Avenue, Jiaozuo 454000, PR China
| | - Yanping Fan
- College
of Chemistry and Chemical Engineering, Henan
Polytechnic University, 2001 Century Avenue, Jiaozuo 454000, PR China
| | - Haiyang Wang
- College
of Chemistry and Molecular Engineering, School of Chemical Engineering,
Henan Institutes of Advanced Technology, Henan Key Laboratory of Green
Catalytic Hydrogenation, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China
| | - Caiyan Gao
- College
of Chemistry and Molecular Engineering, School of Chemical Engineering,
Henan Institutes of Advanced Technology, Henan Key Laboratory of Green
Catalytic Hydrogenation, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China
| | - Zhongyi Liu
- College
of Chemistry and Molecular Engineering, School of Chemical Engineering,
Henan Institutes of Advanced Technology, Henan Key Laboratory of Green
Catalytic Hydrogenation, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China
| | - Baojun Li
- College
of Chemistry and Molecular Engineering, School of Chemical Engineering,
Henan Institutes of Advanced Technology, Henan Key Laboratory of Green
Catalytic Hydrogenation, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China
| | - Zhikun Peng
- College
of Chemistry and Molecular Engineering, School of Chemical Engineering,
Henan Institutes of Advanced Technology, Henan Key Laboratory of Green
Catalytic Hydrogenation, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China
- E-mail: (Z.P.)
| | - Jing-He Yang
- College
of Chemistry and Molecular Engineering, School of Chemical Engineering,
Henan Institutes of Advanced Technology, Henan Key Laboratory of Green
Catalytic Hydrogenation, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China
- E-mail: (J.-H.Y.)
| | - Baozhong Liu
- College
of Chemistry and Chemical Engineering, Henan
Polytechnic University, 2001 Century Avenue, Jiaozuo 454000, PR China
- E-mail: (B.L.)
| |
Collapse
|
43
|
Li R, Hu B, Yu T, Chen H, Wang Y, Song S. Insights into Correlation among Surface-Structure-Activity of Cobalt-Derived Pre-Catalyst for Oxygen Evolution Reaction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1902830. [PMID: 32154075 PMCID: PMC7055576 DOI: 10.1002/advs.201902830] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/08/2019] [Indexed: 05/29/2023]
Abstract
Rational design of unique pre-catalysts for highly active catalysts toward catalyzing the oxygen evolution reaction (OER) is a great challenge. Herein, a Co-derived pre-catalyst that allows gradual exposure of CoOOH that acts as the active center for OER catalysis is obtained by both phosphate ion surface functionalization and Mo inner doping. The obtained catalyst reveals an excellent OER activity with a low overpotential of 265 mV at a current density of 10 mA cm-2 and good durability in alkaline electrolyte, which is comparable to the majority of Co-based OER catalysts. Specifically, the surface functionalization produces lots of Co-PO4 species with oxygen vacancies which can trigger the surface self-reconstruction of pre-catalyst for a favorable OER reaction. Density functional theory calculations reveal that the Mo doping optimizes adsorption-free energy of *OOH formation and thus accelerates intrinsic electrocatalytic activity. Expanding on these explorations, a series of transition metal oxide pre-catalysts are obtained using this general design strategy. The work offers a fundamental understanding toward the correlation among surface-structure-activity for the pre-catalyst design.
Collapse
Affiliation(s)
- Ruchun Li
- The Key Lab of Low‐carbon Chemistry and Energy Conservation of Guangdong ProvinceSchool of Materials Science and EngineeringSchool of Chemical Engineering and TechnologySun Yat‐sen UniversityGuangzhou510275China
| | - Bihua Hu
- The Key Lab of Low‐carbon Chemistry and Energy Conservation of Guangdong ProvinceSchool of Materials Science and EngineeringSchool of Chemical Engineering and TechnologySun Yat‐sen UniversityGuangzhou510275China
| | - Tongwen Yu
- The Key Lab of Low‐carbon Chemistry and Energy Conservation of Guangdong ProvinceSchool of Materials Science and EngineeringSchool of Chemical Engineering and TechnologySun Yat‐sen UniversityGuangzhou510275China
| | - Haixin Chen
- The Key Lab of Low‐carbon Chemistry and Energy Conservation of Guangdong ProvinceSchool of Materials Science and EngineeringSchool of Chemical Engineering and TechnologySun Yat‐sen UniversityGuangzhou510275China
| | - Yi Wang
- The Key Lab of Low‐carbon Chemistry and Energy Conservation of Guangdong ProvinceSchool of Materials Science and EngineeringSchool of Chemical Engineering and TechnologySun Yat‐sen UniversityGuangzhou510275China
| | - Shuqin Song
- The Key Lab of Low‐carbon Chemistry and Energy Conservation of Guangdong ProvinceSchool of Materials Science and EngineeringSchool of Chemical Engineering and TechnologySun Yat‐sen UniversityGuangzhou510275China
| |
Collapse
|
44
|
Xu J, Lian Z, Wei B, Li Y, Bondarchuk O, Zhang N, Yu Z, Araujo A, Amorim I, Wang Z, Li B, Liu L. Strong Electronic Coupling between Ultrafine Iridium–Ruthenium Nanoclusters and Conductive, Acid-Stable Tellurium Nanoparticle Support for Efficient and Durable Oxygen Evolution in Acidic and Neutral Media. ACS Catal 2020. [DOI: 10.1021/acscatal.9b05611] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Junyuan Xu
- International Iberian Nanotechnology Laboratory (INL), Avenida Mestre Jose Veiga, 4715-330 Braga, Portugal
| | - Zan Lian
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, 110016 Shenyang, China
| | - Bin Wei
- International Iberian Nanotechnology Laboratory (INL), Avenida Mestre Jose Veiga, 4715-330 Braga, Portugal
| | - Yue Li
- International Iberian Nanotechnology Laboratory (INL), Avenida Mestre Jose Veiga, 4715-330 Braga, Portugal
- Center of Chemistry, Chemistry Department, University of Minho, Gualtar Campus, 4710-057 Braga, Portugal
| | - Oleksandr Bondarchuk
- International Iberian Nanotechnology Laboratory (INL), Avenida Mestre Jose Veiga, 4715-330 Braga, Portugal
| | - Nan Zhang
- International Iberian Nanotechnology Laboratory (INL), Avenida Mestre Jose Veiga, 4715-330 Braga, Portugal
| | - Zhipeng Yu
- International Iberian Nanotechnology Laboratory (INL), Avenida Mestre Jose Veiga, 4715-330 Braga, Portugal
- Laboratory of Catalysis and Materials (LSRE-LCM), Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Ana Araujo
- International Iberian Nanotechnology Laboratory (INL), Avenida Mestre Jose Veiga, 4715-330 Braga, Portugal
| | - Isilda Amorim
- International Iberian Nanotechnology Laboratory (INL), Avenida Mestre Jose Veiga, 4715-330 Braga, Portugal
- Center of Chemistry, Chemistry Department, University of Minho, Gualtar Campus, 4710-057 Braga, Portugal
| | - Zhongchang Wang
- International Iberian Nanotechnology Laboratory (INL), Avenida Mestre Jose Veiga, 4715-330 Braga, Portugal
| | - Bo Li
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, 110016 Shenyang, China
| | - Lifeng Liu
- International Iberian Nanotechnology Laboratory (INL), Avenida Mestre Jose Veiga, 4715-330 Braga, Portugal
| |
Collapse
|
45
|
Meng Y, Huang X, Lin H, Zhang P, Gao Q, Li W. Carbon-Based Nanomaterials as Sustainable Noble-Metal-Free Electrocatalysts. Front Chem 2019; 7:759. [PMID: 31781542 PMCID: PMC6861163 DOI: 10.3389/fchem.2019.00759] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 10/22/2019] [Indexed: 11/17/2022] Open
Abstract
Nowadays, due to the worldwide growth demand of energy, over consumption of fossil fuel as well as their accompanying increased negative environmental impacts, the development of renewable energy systems, such as fuel cells and water electrolyzers, is becoming one of the "holy grail" for researchers. However, their large-scale applications have been severely limited by precious and unsustainable noble-metal electrocatalysts. Hence, it is highly desirable to develop robust electrocatalysts composed exclusively of low-cost and earth-abundant elements, to reduce or replace expensive and scarce noble-metals. Carbon-based nanomaterials, including heteroatoms-doped carbons and carbon-encapsulated metal materials, have recently attracted great interests because they show remarkable electrocatalytic performance and long-term stability for energy-related reactions, such as oxygen reduction reaction (ORR), hydrogen and oxygen evolution reactions (OER), hydrazine oxidation reaction (HzOR), etc. This review summarizes the recent progress in heteroatoms-doped carbon and carbon-encapsulated metal materials, highlighting the promise as cost-efficient electrocatalysts. Finally, a prospective on the future development of these promising materials is offered.
Collapse
Affiliation(s)
- Yuying Meng
- Institute of Advanced Wear & Corrosion Resistant and Functional Materials, Jinan University, Guangzhou, China
| | - Xiaoqing Huang
- Department of Chemistry, Jinan University, Guangzhou, China
| | - Huaijun Lin
- Institute of Advanced Wear & Corrosion Resistant and Functional Materials, Jinan University, Guangzhou, China
| | - Peng Zhang
- Institute of Advanced Wear & Corrosion Resistant and Functional Materials, Jinan University, Guangzhou, China
| | - Qingsheng Gao
- Department of Chemistry, Jinan University, Guangzhou, China
| | - Wei Li
- Institute of Advanced Wear & Corrosion Resistant and Functional Materials, Jinan University, Guangzhou, China
| |
Collapse
|
46
|
Yu J, He Q, Yang G, Zhou W, Shao Z, Ni M. Recent Advances and Prospective in Ruthenium-Based Materials for Electrochemical Water Splitting. ACS Catal 2019. [DOI: 10.1021/acscatal.9b02457] [Citation(s) in RCA: 299] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jie Yu
- Department of Building and Real Estate, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 999077, China
| | - Qijiao He
- Department of Building and Real Estate, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 999077, China
| | - Guangming Yang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 5, Xin Mofan Road, Nanjing 210009, PR China
| | - Wei Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 5, Xin Mofan Road, Nanjing 210009, PR China
| | - Zongping Shao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 5, Xin Mofan Road, Nanjing 210009, PR China
- Department of Chemical Engineering, Curtin University, Perth, Western Australia 6845, Australia
| | - Meng Ni
- Department of Building and Real Estate, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 999077, China
- Environmental Energy Research Group, Research Institute for Sustainable Urban Development (RISUD), The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 999077, China
| |
Collapse
|
47
|
Chakraborty D, Nandi S, Illathvalappil R, Mullangi D, Maity R, Singh SK, Haldar S, Vinod CP, Kurungot S, Vaidhyanathan R. Carbon Derived from Soft Pyrolysis of a Covalent Organic Framework as a Support for Small-Sized RuO 2 Showing Exceptionally Low Overpotential for Oxygen Evolution Reaction. ACS OMEGA 2019; 4:13465-13473. [PMID: 31460475 PMCID: PMC6705268 DOI: 10.1021/acsomega.9b01777] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 07/25/2019] [Indexed: 05/23/2023]
Abstract
Electrochemical water splitting is the most energy-efficient technique for producing hydrogen and oxygen, the two valuable gases. However, it is limited by the slow kinetics of the anodic oxygen evolution reaction (OER), which can be improved using catalysts. Covalent organic framework (COF)-derived porous carbon can serve as an excellent catalyst support. Here, we report high electrocatalytic activity of two composites, formed by supporting RuO2 on carbon derived from two COFs with closely related structures. These composites catalyze oxygen evolution from alkaline media with overpotentials as low as 210 and 217 mV at 10 mA/cm2, respectively. The Tafel slopes of these catalysts (65 and 67 mV/dec) indicate fast kinetics compared to commercial RuO2. The observed activity is the highest among all RuO2-based heterogeneous OER catalysts-a touted benchmark OER catalyst. The high catalytic activity arises from the extremely small-sized (∼3-4 nm) RuO2 nanoparticles homogeneously dispersed in a micro-mesoporous (BET = 517 m2/g) COF-derived carbon. The porous graphenic carbon favors mass transfer, while its N-rich framework anchors the catalytic nanoparticles, making it highly stable and recyclable. Crucially, the soft pyrolysis of the COF enables the formation of porous carbon and simultaneous growth of small RuO2 particles without aggregation.
Collapse
Affiliation(s)
- Debanjan Chakraborty
- Department
of Chemistry and Centre for Energy Science, Indian Institute
of Science Education and Research, Pune 411008, India
| | - Shyamapada Nandi
- Department
of Chemistry and Centre for Energy Science, Indian Institute
of Science Education and Research, Pune 411008, India
| | - Rajith Illathvalappil
- Physical
and Materials Chemistry Division, CSIR-National
Chemical Laboratory, Pune 411008, India
| | - Dinesh Mullangi
- Department
of Chemistry and Centre for Energy Science, Indian Institute
of Science Education and Research, Pune 411008, India
| | - Rahul Maity
- Department
of Chemistry and Centre for Energy Science, Indian Institute
of Science Education and Research, Pune 411008, India
| | - Santosh K. Singh
- Physical
and Materials Chemistry Division, CSIR-National
Chemical Laboratory, Pune 411008, India
| | - Sattwick Haldar
- Department
of Chemistry and Centre for Energy Science, Indian Institute
of Science Education and Research, Pune 411008, India
| | | | - Sreekumar Kurungot
- Physical
and Materials Chemistry Division, CSIR-National
Chemical Laboratory, Pune 411008, India
| | - Ramanathan Vaidhyanathan
- Department
of Chemistry and Centre for Energy Science, Indian Institute
of Science Education and Research, Pune 411008, India
| |
Collapse
|
48
|
Creus J, De Tovar J, Romero N, García-Antón J, Philippot K, Bofill R, Sala X. Ruthenium Nanoparticles for Catalytic Water Splitting. CHEMSUSCHEM 2019; 12:2493-2514. [PMID: 30957439 DOI: 10.1002/cssc.201900393] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/05/2019] [Indexed: 05/12/2023]
Abstract
Both global warming and limited fossil resources make the transition from fossil to solar fuels an urgent matter. In this regard, the splitting of water activated by sunlight is a sustainable and carbon-free new energy conversion scheme able to produce efficient technological devices. The availability of appropriate catalysts is essential for the proper kinetics of the two key processes involved, namely, the oxygen evolution reaction (OER) and the hydrogen evolution reaction (HER). During the last decade, ruthenium nanoparticle derivatives have emerged as true potential substitutes for the state-of-the-art platinum and iridium oxide species for the HER and OER, respectively. Thus, after a summary of the most common methods for catalyst benchmarking, this review covers the most significant developments of ruthenium-based nanoparticles used as catalysts for the water-splitting process. Furthermore, the key factors that govern the catalytic performance of these nanocatalysts are discussed in view of future research directions.
Collapse
Affiliation(s)
- Jordi Creus
- Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, 08193, Bellaterra, Catalonia, Spain
- Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, 31077, Toulouse Cédex 04, France
- Université de Toulouse, UPS, INPT, LCC, 31077, Toulouse Cédex 04, France
| | - Jonathan De Tovar
- Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, 08193, Bellaterra, Catalonia, Spain
| | - Nuria Romero
- Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, 08193, Bellaterra, Catalonia, Spain
| | - Jordi García-Antón
- Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, 08193, Bellaterra, Catalonia, Spain
| | - Karine Philippot
- Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, 31077, Toulouse Cédex 04, France
- Université de Toulouse, UPS, INPT, LCC, 31077, Toulouse Cédex 04, France
| | - Roger Bofill
- Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, 08193, Bellaterra, Catalonia, Spain
| | - Xavier Sala
- Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, 08193, Bellaterra, Catalonia, Spain
| |
Collapse
|
49
|
Kim JC, Oh SI, Kang W, Yoo HY, Lee J, Kim DW. Superior anodic oxidation in tailored Sb-doped SnO2/RuO2 composite nanofibers for electrochemical water treatment. J Catal 2019. [DOI: 10.1016/j.jcat.2019.04.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
50
|
Wu Y, Song M, Chai Z, Wang X. Assembling Bi2MoO6/Ru/g-C3N4 for Highly Effective Oxygen Generation from Water Splitting under Visible-Light Irradiation. Inorg Chem 2019; 58:7374-7384. [DOI: 10.1021/acs.inorgchem.9b00524] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Yuhang Wu
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia 010021, P. R. China
| | - Meiting Song
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia 010021, P. R. China
| | - Zhanli Chai
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia 010021, P. R. China
| | - Xiaojing Wang
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia 010021, P. R. China
| |
Collapse
|