1
|
Lan T, Dong Y, Xu Z, Zhang Y, Jiang L, Zhou W, Sui X. Quercetin directed transformation of calcium carbonate into porous calcite and their application as delivery system for future foods. Biomaterials 2023; 301:122216. [PMID: 37413843 DOI: 10.1016/j.biomaterials.2023.122216] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 05/21/2023] [Accepted: 06/23/2023] [Indexed: 07/08/2023]
Abstract
The hierarchically porous property of CaCO3 has attracted considerable attention in the field of active delivery ingredients due to its high adsorption capacity. Here, a facile and high-efficient approach to control the calcification processes of CaCO3 ending with calcite microparticles with superior porosity and stability is reported and evaluated. In this work, a series of quercetin promoted CaCO3 microparticles, using soy protein isolate (SPI) as entrapment agent, was synthesized, characterized, and their digestive behavior and antibacterial activity were evaluated. Results obtained indicated that quercetin showed good ability to direct the calcification pathway of amorphous calcium carbonate (ACC) with the formation of flower- and petal-like structures. The quercetin-loaded CaCO3 microparticles (QCM) had a macro-meso-micropore structure, which was identified to be the calcite form. The macro-meso-micropore structure provided QCM with the largest surface area of 78.984 m2g-1. The loading ratio of SPI to QCM was up to 200.94 μg per mg of QCM. The protein and quercetin composite microparticles (PQM) were produced by simply dissolving the CaCO3 core, and the obtained PQM was used for the delivery of quercetin and protein. Thermogravimetric analysis showed PQM presented with good thermal stability without the CaCO3 core. Furthermore, minor discrepancy was noted in protein conformational structures after removing the CaCO3 core. In vitro digestion revealed that approximately 80% of the loaded quercetin was released from PQM during intestinal digestion, and the released quercetin exhibited efficient transportation across the Caco-2 cell monolayer. More importantly, the PQM digesta retained enhanced antibacterial activities to inhibit growth of Escherichia coli and Staphylococcus aureus. Porous calcites show a high potential as a delivery system for food applications.
Collapse
Affiliation(s)
- Tian Lan
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Yabo Dong
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Zejian Xu
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Yan Zhang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Lianzhou Jiang
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Weibiao Zhou
- Department of Food Science and Technology, National University of Singapore, 117542, Singapore
| | - Xiaonan Sui
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
2
|
Liu M, Pan X, Gan Y, Gao M, Li X, Liu Z, Ma X, Geng M, Meng X, Ma N, Li J. Titanium Carbide MXene Quantum Dots-Modified Hydroxyapatite Hollow Microspheres as pH/Near-Infrared Dual-Response Drug Carriers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:13325-13334. [PMID: 37612781 DOI: 10.1021/acs.langmuir.3c01959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Titanium carbide MXene quantum dots (MQDs) possess intrinsic regulatory properties and selective toxicity to cancer cells. Here, MDQs were selected for the modification of hydroxyapatite (HA) microspheres, and MXene quantum dots-modified hydroxyapatite (MQDs-HA) hollow microspheres with controllable shapes and sizes were prepared as bone drug carriers. The results show that the prepared MQDs-HA hollow microspheres had a large BET surface area (231.2 m2/g), good fluorescence, and low toxicity. In addition, MQDs-HA showed a mild storage-release behavior and good responsiveness of pH and near-infrared (NIR). Thus, the MQDs-HA hollow microspheres have broad application prospects in the field of drug delivery and photothermal therapy.
Collapse
Affiliation(s)
- Miaomiao Liu
- College of Light Industry Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xiaosen Pan
- College of Light Industry Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yuanjing Gan
- College of Light Industry Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Meng Gao
- College of Light Industry Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xinran Li
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300222, China
| | - Zhen Liu
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300222, China
| | - Xiaojun Ma
- College of Light Industry Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Mengru Geng
- College of Light Industry Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xiangqi Meng
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao 266400, China
| | - Ning Ma
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao 266400, China
| | - Jie Li
- College of Light Industry Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| |
Collapse
|
3
|
Nallasamy P, Rajamohamed BS, Jeyaraman J, Kathirvel B, Natarajan S. Regenerative marine waste towards CaCO 3 nanoformulation for Alzheimer's therapy. ENVIRONMENTAL RESEARCH 2023; 225:115631. [PMID: 36889568 DOI: 10.1016/j.envres.2023.115631] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/04/2023] [Accepted: 03/04/2023] [Indexed: 06/18/2023]
Abstract
Alzheimer's disorder (AD) is associated with behavioural and cognitive destruction with due respect to the neurological degeneration. Conventional therapeutic approach for treatment of AD using neuroprotective drugs suffered certain limitations such as poor solubility, insufficient bioavailability, adverse side effects at higher dose and ineffective permeability on blood brain barrier (BBB). Development of nanomaterial based drug delivery system helped to overcome these barriers. Hence the present work focused on encapsulating neuroprotective drug citronellyl acetate within CaCO3 nanoparticles to develop neuroprotective CaCO3 nanoformulation (CA@CaCO3 NFs). CaCO3 was derived from marine conch shell waste, while the neuroprotective drug citronellyl acetate was scrutinized by in-silico high throughput screening. In-vitro findings revealed that CA@CaCO3 nanoformulation exhibited enhanced free radical scavenging activity of 92% (IC50 value - 29.27 ± 2.6 μg/ml), AChE inhibition of 95% (IC50 value - 25.6292 ± 1.5 μg/ml) at its maximum dose (100 μg/ml). CA@CaCO3 NFs attenuated the aggregation of β-amyloid peptide (Aβ) and also disaggregated the preformed mature plaques the major risk factor for AD. Overall, the present study reveals that CaCO3 nanoformulations exhibits potent neuroprotective potential when compared to the CaCO3 nanoparticles alone and citronellyl acetate alone due to the sustained drug release and synergistic effect of CaCO3 nanoparticles and citronellyl acetate depicting the fact that CaCO3 can act as promising drug delivery system for treatment of neurodegenerative and CNS related disorders.
Collapse
Affiliation(s)
- Prakashkumar Nallasamy
- Bionanomaterials Research Lab, Department of Nanoscience and Technology, Alagappa University, Tamilnadu, India
| | | | | | - Brindhadevi Kathirvel
- Center for Transdisciplinary Research (CFTR), Department of Pharmacology, Saveethe Dental College, Saveetha Institute of Medical and Technical Sciences, Saveeth University, Chennai, India
| | - Suganthy Natarajan
- Bionanomaterials Research Lab, Department of Nanoscience and Technology, Alagappa University, Tamilnadu, India.
| |
Collapse
|
4
|
Guo R, Yang Z, Pan X, Ma X, Qiu Y, Li J. NiS Nanosheets Decorated on Hollow Carbon Spheres from Liquefied Wood for Supercapacitors. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:6924-6931. [PMID: 37129080 DOI: 10.1021/acs.langmuir.3c00627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Carbon-based supercapacitors with high performance have a wide foreground among various energy storage devices. In this work, wood-based hollow carbon spheres (WHCS) were prepared from liquefied wood through the processes of emulsification, curing, carbonization, and activation. Then, the hydrodeposition method was used to introduce nickel sulfide (NiS) to the surface of the microspheres, obtaining NiS/WHCS as the supercapacitor electrode. The results show that NiS/WHCS microspheres exhibited a core-shell structure and flower-like morphology with a specific surface (307.55 m2 g-1) and a large total pore volume (0.14 cm3 g-1). Also, the capacitance could be up to 1533.6 F g-1 at a current density of 1 A g-1. In addition, after 1000 charge/discharge cycles, the specific capacitance remained at 72.8% at the initial current density of 5 A g-1. Hence, NiS/WHCS with excellent durability and high specific capacitance is a potential candidate for electrode materials.
Collapse
Affiliation(s)
- Ranran Guo
- College of Light Industry Science and Engineering, Tianjin University of Science and Technology, Tianjin 300222, China
| | - Zhaozhao Yang
- College of Light Industry Science and Engineering, Tianjin University of Science and Technology, Tianjin 300222, China
| | - Xiaosen Pan
- College of Light Industry Science and Engineering, Tianjin University of Science and Technology, Tianjin 300222, China
| | - Xiaojun Ma
- College of Light Industry Science and Engineering, Tianjin University of Science and Technology, Tianjin 300222, China
| | - Yujuan Qiu
- College of Light Industry Science and Engineering, Tianjin University of Science and Technology, Tianjin 300222, China
| | - Jie Li
- College of Light Industry Science and Engineering, Tianjin University of Science and Technology, Tianjin 300222, China
| |
Collapse
|
5
|
Sun H, Zhou X, Zhang Y, Zhang L, Yu X, Ye Z, Laurencin CT. Bone Implants (Bone Regeneration and Bone Cancer Treatments). BIOFABRICATION FOR ORTHOPEDICS 2022:265-321. [DOI: 10.1002/9783527831371.ch10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
6
|
Niu YQ, Liu JH, Aymonier C, Fermani S, Kralj D, Falini G, Zhou CH. Calcium carbonate: controlled synthesis, surface functionalization, and nanostructured materials. Chem Soc Rev 2022; 51:7883-7943. [PMID: 35993776 DOI: 10.1039/d1cs00519g] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Calcium carbonate (CaCO3) is an important inorganic mineral in biological and geological systems. Traditionally, it is widely used in plastics, papermaking, ink, building materials, textiles, cosmetics, and food. Over the last decade, there has been rapid development in the controlled synthesis and surface modification of CaCO3, the stabilization of amorphous CaCO3 (ACC), and CaCO3-based nanostructured materials. In this review, the controlled synthesis of CaCO3 is first examined, including Ca2+-CO32- systems, solid-liquid-gas carbonation, water-in-oil reverse emulsions, and biomineralization. Advancing insights into the nucleation and crystallization of CaCO3 have led to the development of efficient routes towards the controlled synthesis of CaCO3 with specific sizes, morphologies, and polymorphs. Recently-developed surface modification methods of CaCO3 include organic and inorganic modifications, as well as intensified surface reactions. The resultant CaCO3 can then be further engineered via template-induced biomineralization and layer-by-layer assembly into porous, hollow, or core-shell organic-inorganic nanocomposites. The introduction of CaCO3 into nanostructured materials has led to a significant improvement in the mechanical, optical, magnetic, and catalytic properties of such materials, with the resultant CaCO3-based nanostructured materials showing great potential for use in biomaterials and biomedicine, environmental remediation, and energy production and storage. The influences that the preparation conditions and additives have on ACC preparation and stabilization are also discussed. Studies indicate that ACC can be used to construct environmentally-friendly hybrid films, supramolecular hydrogels, and drug vehicles. Finally, the existing challenges and future directions of the controlled synthesis and functionalization of CaCO3 and its expanding applications are highlighted.
Collapse
Affiliation(s)
- Yu-Qin Niu
- Research Group for Advanced Materials & Sustainable Catalysis (AMSC), State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China. .,Qing Yang Institute for Industrial Minerals, You Hua, Qing Yang, Chi Zhou 242804, China
| | - Jia-Hui Liu
- Research Group for Advanced Materials & Sustainable Catalysis (AMSC), State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China. .,Qing Yang Institute for Industrial Minerals, You Hua, Qing Yang, Chi Zhou 242804, China
| | - Cyril Aymonier
- Univ Bordeaux, ICMCB, Bordeaux INP, UMR 5026, CNRS, F-33600 Pessac, France
| | - Simona Fermani
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, I-40126 Bologna, Italy. .,Interdepartmental Centre for Industrial Research Health Sciences & Technologies, University of Bologna, 40064 Bologna, Italy
| | - Damir Kralj
- Laboratory for Precipitation Processes, Ruđer Bošković Institute, P. O. Box 1016, HR-10001 Zagreb, Croatia
| | - Giuseppe Falini
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, I-40126 Bologna, Italy.
| | - Chun-Hui Zhou
- Research Group for Advanced Materials & Sustainable Catalysis (AMSC), State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China. .,Qing Yang Institute for Industrial Minerals, You Hua, Qing Yang, Chi Zhou 242804, China
| |
Collapse
|
7
|
Mechanical Properties of Single-Crystal Calcite and Their Temperature and Strain-Rate Effects. MATERIALS 2022; 15:ma15134613. [PMID: 35806738 PMCID: PMC9267817 DOI: 10.3390/ma15134613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/27/2022] [Accepted: 06/27/2022] [Indexed: 12/07/2022]
Abstract
Calcite is the most stable crystalline phase of calcium carbonate. It is applied or found in composite products, the food industry, biomineralization, archaeology, and geology, and its mechanical properties have attracted more and more attention. In this paper, the mechanical behaviors of single-crystal calcite under uniaxial tension in different directions were simulated with the molecular dynamics method. The obtained elastic moduli are in good agreement with the experimental results. It has been found from further research that single-crystal calcite has typical quasi-brittle failure characteristics, and its elastic modulus, fracture strength, and fracture strain are all strongly anisotropic. The tensile failure is caused by dislocation emission, void formation, and phase transition along the [010] and [421] directions, but by continuous dislocation glide and multiplication along the [421¯] direction. The fracture strength, fracture strain, and elastic modulus are all sensitive to temperature, but only elastic modulus is not sensitive to strain rate. The effects of temperature and logarithmic strain rate on fracture strength are in good agreement with the predictions of fracture dynamics.
Collapse
|
8
|
Yukhajon P, Somboon T, Sansuk S. Fabrication of Porous Phosphate/Carbonate Composites: Smart Fertilizer with Bimodal Controlled-Release Kinetics and Glyphosate Adsorption Ability. ACS OMEGA 2022; 7:15625-15636. [PMID: 35571815 PMCID: PMC9096975 DOI: 10.1021/acsomega.2c00425] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/18/2022] [Indexed: 06/15/2023]
Abstract
A simple method to prepare phosphate/carbonate composites for use as porous sponge-like phosphate fertilizers (ps-PO4Fs) is presented. The composites ps-PO4Fs were prepared by ion-exchange implantation of phosphate onto the surface of vaterite-phase calcium carbonate (CaCO3) microparticles. The ps-PO4Fs obtained under the optimized conditions were found to contain a nanoscale porous network of calcium phosphate covering the CaCO3 support. In addition, ps-PO4Fs exhibited two distinct phosphate release modes having different kinetics: a fast-release step over the initial 24 h period following a parabolic diffusion model, indicating controlled diffusion from external surfaces/edges, and a second slow-release step over the course of a month following the Ritger-Peppas model, indicating the release and diffusion of phosphate adsorbed at specific sites. The ps-PO4Fs also adsorbed glyphosate well because of their porous structure and large surface area. However, glyphosate adsorption prevented phosphate release at concentrations greater than 10 mg L-1. The ps-PO4Fs were tested for their effects on plant growth and showed effects similar to commercial fertilizers. In summary, these smart, eco-friendly, and multifunctional fertilizers having two-stage phosphate release could enable the application of lower amounts of fertilizer and remove excess glyphosate from the environment.
Collapse
Affiliation(s)
- Pratchayaporn Yukhajon
- Materials
Chemistry Research Center, Department of Chemistry and Center of Excellence
for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Titikan Somboon
- Department
of Chemistry, Faculty of Engineering, Rajamangala
University of Technology Isan, Khon Kaen Campus, Khon Kaen 40000, Thailand
| | - Sira Sansuk
- Materials
Chemistry Research Center, Department of Chemistry and Center of Excellence
for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
9
|
Hong D, Wu J, Xiao X, Li X, Xu D, Du C. Antimicrobial Peptides-Loaded Hydroxyapatite Microsphere With Different Hierarchical Structures for Enhanced Drug Loading, Sustained Release and Antibacterial Activity. Front Chem 2021; 9:747665. [PMID: 34722458 PMCID: PMC8551960 DOI: 10.3389/fchem.2021.747665] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 09/27/2021] [Indexed: 11/13/2022] Open
Abstract
Antimicrobial peptides (AMPs) have great potential for clinical treatment of bacterial infection due to the broad-spectrum and highly effective antibacterial activity. However, the easy degradation and inactivation in vivo has been a major obstacle for their application and an effective delivery system is demanding. The surface physicochemical properties of the carrier, including surface potential, surface polarity, pore structure and morphology, have exerted great effects on the adsorption and release behavior of AMPs. This study investigated the influence of micro/nano carriers with different hierarchical structures on the loading, release and biological behavior of AMPs. Three types of AMPs-loaded hydroxyapatite microspheres (HA/AMPs MSs) with different hierarchical structures (needle-like, rod-like, and flake-like) were developed, which was investigated by the surface morphology, chemical composition and surface potential in detail. The different hierarchical structures of hydroxyapatite microspheres (HA MSs) had noticeable impact on the loading and release behavior of AMPs, and the flake-like HA MSs with hierarchical structure showed the highest loading efficiency and long-lasting release over 9 days. Meanwhile, the stability of AMPs released from HA MSs was effectively maintained. Moreover, the antibacterial test indicated that the flake-like HA/AMPs MSs showed more sustained antibacterial properties among three composites. In view of the excellent biocompatibility and osteogenic property, high loading efficiency and the long-term release properties of HA MSs with hierarchical structure, the HA/AMPs MSs have a great potential in bone tissue engineering.
Collapse
Affiliation(s)
- Dandan Hong
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, China.,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China.,Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, and Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China
| | - Jingjing Wu
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, China.,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China.,Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, and Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China
| | - Xuemin Xiao
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, China.,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China.,Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, and Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China
| | - Xueyang Li
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, China.,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China.,Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, and Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China
| | - Dong Xu
- Department of Colorectal Surgery, Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chang Du
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, China.,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China.,Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, and Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| |
Collapse
|
10
|
Liu L, Liang X, Xu X, Zhang X, Wen J, Chen K, Su X, Teng Z, Lu G, Xu J. Magnetic mesoporous embolic microspheres in transcatheter arterial chemoembolization for liver cancer. Acta Biomater 2021; 130:374-384. [PMID: 34082098 DOI: 10.1016/j.actbio.2021.05.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 05/15/2021] [Accepted: 05/20/2021] [Indexed: 02/07/2023]
Abstract
Transcatheter arterial chemoembolization (TACE) is the main treatment for liver cancer. Although many embolic agents have been exploited in TACE, embolic agents combining embolization, drug loading, and imaging properties have not yet been constructed. Herein, we report a new magnetic mesoporous embolic microsphere that can simultaneously be loaded with doxorubicin (Dox), block vessels, and be observed by magnetic resonance imaging (MRI). The microspheres were prepared by decorating magnetic polystyrene/Fe3O4 particles with mesoporous organosilica microparticles (denoted as PS/Fe3O4@MONs). The PS/Fe3O4@MONs were uniformly spherical and large (50 µm), with a high specific surface area, uniform mesopores, and a Dox loading capacity of 460.8 µg mg-1. Dox-loaded PS/Fe3O4@MONs (PS/Fe3O4@MON@Dox) effectively inhibited liver cancer cell growth. A VX2 rabbit liver tumor model was constructed to study the efficacy of TACE with PS/Fe3O4@MON@Dox. In vivo, PS/Fe3O4@MON@Dox could be smoothly delivered through an arterial catheter to achieve chemoembolization. Moreover, PS/Fe3O4@MON@Dox and residual tumor parenchyma could be distinguished on MRI, which is of great significance for evaluating the efficacy of TACE. Histopathology showed that PS/Fe3O4@MON@Dox could be deposited in the tumor vessels, completely blocking the blood supply. Overall, PS/Fe3O4@MON@Dox showed good drug loading, embolization and imaging performance as well as potential for use in TACE. STATEMENT OF SIGNIFICANCE: Transcatheter arterial chemoembolization (TACE) is the main treatment for liver cancer. Although many embolic agents have been exploited in TACE, embolic agents combining embolization, drug-loading, and imaging properties have not yet been constructed. In this work, we prepared magnetic mesoporous microspheres as a new embolic agent that can simultaneously load doxorubicin (Dox), block blood vessels and enable magnetic resonance imaging. Overall, this new embolic microsphere-mediated TACE strategy for liver cancer showed good therapeutic effects, and the PS/Fe3O4@MON@Dox embolic microspheres provide a new avenue for improving the efficacy of TACE for liver cancer and postoperative evaluation.
Collapse
|
11
|
Li J, Liu M, Qiu Y, Gan Y, Jiang H, Liu B, Wei H, Ma N. Urchin-like Hydroxyapatite/Graphene Hollow Microspheres as pH-Responsive Bone Drug Carriers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:4137-4146. [PMID: 33813823 DOI: 10.1021/acs.langmuir.0c03640] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Hydroxyapatite (HA) is the main inorganic component of human bones and teeth. It has good biocompatibility and bioactivity, which promotes its good application prospects in the field of bone drug carriers. In this study, tetraethylenepentamine-graphene (rGO-TEPA)/CaCO3:HA composite microspheres were prepared via microwave hydrothermal synthesis using rGO-TEPA/CaCO3 solid microspheres as intermediates. Furthermore, the incompletely transformed CaCO3 was removed by soaking in a citric acid buffer to obtain rGO-TEPA/HA hollow composite microspheres. The two types of as-prepared composite microspheres exhibited sea urchin-like structures, large BET surface areas, and good dispersibility. Mouse preosteoblast cells (MC3T3-E1) were used for in vitro cytotoxicity experiments. The in vitro cell viability test showed that the two composite drug carriers exhibited noncytotoxicity. Moreover, the doxorubicin (DOX) loading and releasing investigations revealed that the two types of prepared carriers had mild storage-release behaviors and good pH responsiveness. Hence, these rGO-TEPA/HA hollow microspheres have promising applications as bone drug carriers.
Collapse
Affiliation(s)
- Jie Li
- College of Light Industry Science and Engineering, Tianjin University of Science and Technology, 300222 Tianjin, China
| | - Miaomiao Liu
- College of Light Industry Science and Engineering, Tianjin University of Science and Technology, 300222 Tianjin, China
| | - Yujuan Qiu
- College of Light Industry Science and Engineering, Tianjin University of Science and Technology, 300222 Tianjin, China
| | - Yuanjing Gan
- College of Light Industry Science and Engineering, Tianjin University of Science and Technology, 300222 Tianjin, China
| | - Hongkun Jiang
- Key Laboratory of Superlight Material and Surface Technology of Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, 150001 Harbin, China
| | - Boyue Liu
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, 300384 Tianjin, China
| | - Hao Wei
- Key Laboratory of Superlight Material and Surface Technology of Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, 150001 Harbin, China
| | - Ning Ma
- Key Laboratory of Superlight Material and Surface Technology of Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, 150001 Harbin, China
| |
Collapse
|
12
|
Synthesis and characterization of porous CaCO 3 microspheres templated by yeast cells and the application as pH value-sensitive anticancer drug carrier. Colloids Surf B Biointerfaces 2020; 199:111545. [PMID: 33373843 DOI: 10.1016/j.colsurfb.2020.111545] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 12/12/2020] [Accepted: 12/19/2020] [Indexed: 11/23/2022]
Abstract
Using yeast as organic template and PDDA/PSS with opposite charge as polyelectrolyte, CaCO3 was deposited on yeast cells by Layer-by-Layer self-assembly method, and then porous calcium carbonate hybrid microspheres (CaCO3-HMPs) were prepared by calcination. The CaCO3-HMPs were characterized by FT-IR, XRD, SEM and TG. It was found that the prepared CaCO3-HMPs were nearly spherical, with visible pores on the surface, small particle size uniformity (d = 3 μ m) and good dispersion. Doxorubicin hydrochloride (DOX) was used as the model drug to study drug loading and release properties of CaCO3-HMPs. Then, the drug loading, DOX release under different pH conditions, and the degradation of CaCO3-HMPs under different pH conditions were investigated. The drug release test results showed that the DOX-loaded microspheres released more drugs (99 %) at pH = 4.8 than pH = 7. It indicated that the CaCO3-HMPs were pH sensitive. The cytotoxicity of DOX-loaded microspheres was also studied. It was found that CaCO3-HMPs had good biocompatibility. In addition, compared with DOX group, cytotoxicity test results showed that the DOX-loaded microspheres had the same efficacy but sustained drug release for up to 120 h. Therefore, the CaCO3-HMP microspheres have good application prospects as anticancer drug carriers.
Collapse
|
13
|
Cheng L, Cai Z, Zhao J, Wang F, Lu M, Deng L, Cui W. Black phosphorus-based 2D materials for bone therapy. Bioact Mater 2020; 5:1026-1043. [PMID: 32695934 PMCID: PMC7355388 DOI: 10.1016/j.bioactmat.2020.06.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/22/2020] [Accepted: 06/08/2020] [Indexed: 02/08/2023] Open
Abstract
Since their discovery, Black Phosphorus (BP)-based nanomaterials have received extensive attentions in the fields of electromechanics, optics and biomedicine, due to their remarkable properties and excellent biocompatibility. The most essential feature of BP is that it is composed of a single phosphorus element, which has a high degree of homology with the inorganic components of natural bone, therefore it has a full advantage in the treatment of bone defects. This review will first introduce the source, physicochemical properties, and degradation products of BP, then introduce the remodeling process of bone, and comprehensively summarize the progress of BP-based materials for bone therapy in the form of hydrogels, polymer membranes, microspheres, and three-dimensional (3D) printed scaffolds. Finally, we discuss the challenges and prospects of BP-based implant materials in bone immune regulation and outlook the future clinical application.
Collapse
Affiliation(s)
- Liang Cheng
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China
| | - Zhengwei Cai
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China
- Jiaxing Key Laboratory of Basic Research and Clinical Translation on Orthopedic Biomaterials, Department of Orthopaedics, The Second Affiliated Hospital of Jiaxing University, 1518 North Huancheng Road, Jiaxing 314000, PR China
| | - Jingwen Zhao
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China
| | - Fei Wang
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China
| | - Min Lu
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China
| | - Lianfu Deng
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China
| | - Wenguo Cui
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China
- Jiaxing Key Laboratory of Basic Research and Clinical Translation on Orthopedic Biomaterials, Department of Orthopaedics, The Second Affiliated Hospital of Jiaxing University, 1518 North Huancheng Road, Jiaxing 314000, PR China
| |
Collapse
|
14
|
Du Z, Wang C, Zhang R, Wang X, Li X. Applications of Graphene and Its Derivatives in Bone Repair: Advantages for Promoting Bone Formation and Providing Real-Time Detection, Challenges and Future Prospects. Int J Nanomedicine 2020; 15:7523-7551. [PMID: 33116486 PMCID: PMC7547809 DOI: 10.2147/ijn.s271917] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 08/28/2020] [Indexed: 12/15/2022] Open
Abstract
During continuous innovation in the preparation, characterization and application of various bone repair materials for several decades, nanomaterials have exhibited many unique advantages. As a kind of representative two-dimensional nanomaterials, graphene and its derivatives (GDs) such as graphene oxide and reduced graphene oxide have shown promising potential for the application in bone repair based on their excellent mechanical properties, electrical conductivity, large specific surface area (SSA) and atomic structure stability. Herein, we reviewed the updated application of them in bone repair in order to present, as comprehensively, as possible, their specific advantages, challenges and current solutions. Firstly, how their advantages have been utilized in bone repair materials with improved bone formation ability was discussed. Especially, the effects of further functionalization or modification were emphasized. Then, the signaling pathways involved in GDs-induced osteogenic differentiation of stem cells and immunomodulatory mechanism of GDs-induced bone regeneration were discussed. On the other hand, their applications as contrast agents in the field of bone repair were summarized. In addition, we also reviewed the progress and related principles of the effects of GDs parameters on cytotoxicity and residues. At last, the future research was prospected.
Collapse
Affiliation(s)
- Zhipo Du
- Department of Orthopedics, The Fourth Central Hospital of Baoding City, Baoding072350, Hebei Province, People’s Republic of China
| | - Cunyang Wang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing100083, People’s Republic of China
| | - Ruihong Zhang
- Department of Research and Teaching, The Fourth Central Hospital of Baoding City, Baoding072350, Hebei Province, People’s Republic of China
| | - Xiumei Wang
- Key Laboratory of Advanced Materials of Ministry of Education, Tsinghua University, Beijing100084, People’s Republic of China
| | - Xiaoming Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing100083, People’s Republic of China
| |
Collapse
|
15
|
Li L, Yang Y, Lv Y, Yin P, Lei T. Porous calcite CaCO3 microspheres: Preparation, characterization and release behavior as doxorubicin carrier. Colloids Surf B Biointerfaces 2020; 186:110720. [DOI: 10.1016/j.colsurfb.2019.110720] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/25/2019] [Accepted: 12/10/2019] [Indexed: 11/15/2022]
|
16
|
Synthesis of Polymer Assembled Mesoporous CaCO3 Nanoparticles for Molecular Targeting and pH-Responsive Controlled Drug Release. ADVANCES IN POLYMER TECHNOLOGY 2020. [DOI: 10.1155/2020/8749238] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
CaCO3 nanoparticles are very suitable as intelligent carriers because of their ideal biocompatibility and biodegradability, especially their sensitivity to pH. In this paper, we use mesoporous CaCO3 nanoparticles as intelligent carrier, sodium alginate, and chitosan as alternating assembly materials, folic acid as target molecules, and exploit layer-by-layer assembly technology to achieve sensitive molecular targeting and pH response drug release. Mesoporous CaCO3 hybrid nanoparticles have high drug loading on doxorubicin. The effects of different pH values on drug release in vitro were studied by regulating simulated body fluids with different pH values. The cytotoxicity, targeting effect, and drug release of human cervical cancer cell line (HeLa) were studied by cell vitality and imaging experiments. All the evidence suggests that the smart mesoporous CaCO3 nanoparticles may be a potential clinical application platform for cancer therapy.
Collapse
|
17
|
Carbon Biomaterials. Biomater Sci 2020. [DOI: 10.1016/b978-0-12-816137-1.00025-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Zhu C, Ding Z, Lu Q, Lu G, Xiao L, Zhang X, Dong X, Ru C, Kaplan DL. Injectable Silk-Vaterite Composite Hydrogels with Tunable Sustained Drug Release Capacity. ACS Biomater Sci Eng 2019; 5:6602-6609. [PMID: 33423479 DOI: 10.1021/acsbiomaterials.9b01313] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Improving the efficiency of chemotherapy remains a key challenge in drug delivery. Many drug carriers have been designed to achieve multifunctional factors as part of their performance, including controlled release, dispersibility in aqueous environments, and targeting to cancer sites. However, it is difficult to optimize multiple properties simultaneously for a single carrier system. Here, synergistic carriers composed of vaterite microspheres and silk nanofiber hydrogels were developed to improve the dispersibility of vaterite spheres and the control of drug delivery without compromising the injectability or sensitivity to pH. The vaterite microspheres were dispersed homogeneously and remained stable in the silk nanofiber hydrogels. Doxorubicin (DOX) was effectively loaded on the vaterite spheres and silk nanofibers, forming synergistic silk-vaterite hydrogel delivery systems. The sustained delivery of DOX was tuned and controlled by vaterite stability and the DOX content loaded on the spheres and nanofibers. The cytotoxicity was regulated via the controlled delivery of DOX, suggesting the possibility of optimizing chemotherapeutic strategies. These silk-vaterite delivery hydrogels suggest a useful strategy for designing novel delivery systems for improved delivery and therapeutic benefits.
Collapse
Affiliation(s)
- Caihong Zhu
- Research Center of Robotics and Micro System & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, 178 Ganjiang East Road, Suzhou 215021, People's Republic of China.,National Engineering Laboratory for Modern Silk, Soochow University, 199 Renai Road, Suzhou 215123, People's Republic of China
| | - Zhaozhao Ding
- National Engineering Laboratory for Modern Silk, Soochow University, 199 Renai Road, Suzhou 215123, People's Republic of China
| | - Qiang Lu
- National Engineering Laboratory for Modern Silk, Soochow University, 199 Renai Road, Suzhou 215123, People's Republic of China
| | - Guozhong Lu
- Department of Burns and Plastic Surgery, The Affiliated Hospital of Jiangnan University, 585 Xingyuan North Road, Wuxi 214041, People's Republic of China
| | - Liying Xiao
- National Engineering Laboratory for Modern Silk, Soochow University, 199 Renai Road, Suzhou 215123, People's Republic of China
| | - Xiaoyi Zhang
- National Engineering Laboratory for Modern Silk, Soochow University, 199 Renai Road, Suzhou 215123, People's Republic of China
| | - Xiaodan Dong
- National Engineering Laboratory for Modern Silk, Soochow University, 199 Renai Road, Suzhou 215123, People's Republic of China
| | - Changhai Ru
- Research Center of Robotics and Micro System & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, 178 Ganjiang East Road, Suzhou 215021, People's Republic of China
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby St, Medford, Massachusetts 02155, United States
| |
Collapse
|
19
|
Liu Y, Shen W, Cui H. Combined Transition-Metal/Enzyme Dual Catalytic System for Highly Intensive Glow-Type Chemiluminescence-Functionalized CaCO3 Microspheres. Anal Chem 2019; 91:10614-10621. [DOI: 10.1021/acs.analchem.9b01774] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Yating Liu
- CAS Key Laboratory of Soft Matter Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Wen Shen
- CAS Key Laboratory of Soft Matter Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Hua Cui
- CAS Key Laboratory of Soft Matter Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
20
|
A highly sensitive label-free electrochemical immunosensor based on AuNPs-PtNPs-MOFs for nuclear matrix protein 22 analysis in urine sample. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2018.12.044] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
21
|
Li J, Zhang X, Zhao M, Wu L, Luo K, Pu Y, He B. Tumor-pH-Sensitive PLLA-Based Microsphere with Acid Cleavable Acetal Bonds on the Backbone for Efficient Localized Chemotherapy. Biomacromolecules 2018; 19:3140-3148. [PMID: 29883542 DOI: 10.1021/acs.biomac.8b00734] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Nanoparticle- and microsphere-based drug delivery systems (DDSs) have attracted wide attention in cancer therapy; those DDSs that are responsive to tumor environment can selectively identify tumor and normal tissues and therefore have shown enhanced anticancer efficacy and alleviated systemic toxicity. Here, tumor-pH-sensitive polymeric microspheres, which are prepared by multiblock poly(l-lactide) with pH-sensitive acetal bonds in the backbone, are employed to efficiently load water-soluble anticancer drug doxorubicin hydrochloride (DOX·HCl, drug loading content: ∼10%). The pH-sensitive DOX-loaded hollow microspheres were in the size range 2-10 μm and exhibited acid-accelerated degradation of polymer matrix and drug release, and thereby efficient in vitro cancer cell inhibition. The microspheres were further intratumorally injected into breast-tumor-bearing mice, and the in vivo anticancer experiment showed that pH-sensitive DOX-loaded microsphere showed better antitumor efficiency and prolonged life-span than its counterpart that does not have pH-responsive property. Moreover, negligible organ toxicity, especially cardiotoxicity that generally exists in DOX-involved chemotherapy where DOX is administrated by intravenous injection, was observed for DOX-loaded microspheres. Hence, tumor-pH-sensitive polymeric microspheres have appeared to be a simple and efficient platform for delivering hydrophilic anticancer drug with excellent anticancer efficacy and low systemic toxicity.
Collapse
Affiliation(s)
- Junhua Li
- National Engineering Research Center for Biomaterials , Sichuan University , Chengdu 610064 , China
| | - Xuequan Zhang
- School of Chemical Engineering , Sichuan University , Chengdu 610065 , China
| | - Mingying Zhao
- School of Chemical Engineering , Sichuan University , Chengdu 610065 , China
| | - Lihuang Wu
- National Engineering Research Center for Biomaterials , Sichuan University , Chengdu 610064 , China
| | - Kui Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology , West China Hospital, Sichuan University , Chengdu 610041 , China
| | - Yuji Pu
- National Engineering Research Center for Biomaterials , Sichuan University , Chengdu 610064 , China
| | - Bin He
- National Engineering Research Center for Biomaterials , Sichuan University , Chengdu 610064 , China
| |
Collapse
|
22
|
Zhang L, Peng G, Li J, Liang L, Kong Z, Wang H, Jia L, Wang X, Zhang W, Shen JW. Molecular dynamics study on the configuration and arrangement of doxorubicin in carbon nanotubes. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.04.097] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
23
|
Wang L, Yu L, Zeng C, Wang C, Zhang L. Fabrication of PAA-PETPTA Janus Microspheres with Respiratory Function for Controlled Release of Guests with Different Sizes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:7106-7116. [PMID: 29801415 DOI: 10.1021/acs.langmuir.8b01055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Poly(acrylic acid)-poly(ethoxylated trimethylolpropane triacrylate) (PAA-PETPTA) Janus microspheres with "respiratory" function for controlled release were prepared by polymerization of acrylic acid-ethoxylated trimethylolpropane triacrylate (AA-ETPTA) Janus microdroplets in a continuous oil phase in a simple capillary-based microfluidic device with the assistance of UV radiation. The flow rate ratios of AA and ETPTA phases and surfactant content in the continuous oil phase have a significant effect on the structure of the Janus microspheres. PAA part in the Janus microspheres has respiratory function for loading and release due to the different stimuli responses to different pHs. The hollow structure of PETPTA part with different sizes of opening serves as the host materials for PAA and could control release rate further due to the different opening sizes. The obtained PAA-PETPTA Janus microspheres showed high rhodamine B (RhB) loading of 860 mg g-1 and different controlled-release behavior in water with different pHs. The release rate increases with the increase of pH and the contact area of PAA part with water. The maximum controlled-release time for RhB was about 3 h in water with pH of 5. In addition, the Janus microspheres also showed controlled-release behavior for larger size guests, e.g., 150 nm polystyrene beads, which indicated a wide range of application. The loading and release behaviors for guests, for instance, for RhB, have almost no change even after six times of reuse, which indicated a high stability.
Collapse
Affiliation(s)
- Liwei Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemical Engineering , Nanjing Tech University , Nanjing 210009 , P. R. China
| | - Liang Yu
- Chemical Technology , Luleå University of Technology , SE-971 87 Luleå , Sweden
| | - Changfeng Zeng
- College of Mechanical and Power Engineering , Nanjing Tech University , No. 5 Xin Mofan Road , Nanjing 210009 , P. R. China
| | - Chongqing Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemical Engineering , Nanjing Tech University , Nanjing 210009 , P. R. China
| | - Lixiong Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemical Engineering , Nanjing Tech University , Nanjing 210009 , P. R. China
| |
Collapse
|
24
|
Qu Y, He F, Yu C, Liang X, Liang D, Ma L, Zhang Q, Lv J, Wu J. Advances on graphene-based nanomaterials for biomedical applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 90:764-780. [PMID: 29853147 DOI: 10.1016/j.msec.2018.05.018] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 03/26/2018] [Accepted: 05/03/2018] [Indexed: 02/07/2023]
Abstract
Graphene-based nanomaterials, such as graphene oxide and reduced graphene oxide, have been attracting increasing attention in the field of biology and biomedicine over the past few years. Incorporation of these novel materials with drug, gene, photosensitizer and other cargos to construct novel delivery systems has witnessed rapid advance on the basis of their large surface area, distinct surface properties, excellent biocompatibility and pH sensitivity. Moreover, the inherent photothermal effect of these appealing materials enables them with the ability of killing targeting cells via a physical mechanism. Recently, more attentions have been attached to tissue engineering, including bone, neural, cardiac, cartilage, musculoskeletal, and skin/adipose tissue engineering, due to the outstanding mechanical strength, stiffness, electrical conductivity, various two-dimensional (2D) and three-dimensional (3D) morphologies of graphene-based nanomaterials. Herein, emerging applications of these nanomaterials in bio-imaging, drug/gene delivery, phototherapy, multimodality therapy and tissue engineering were comprehensively reviewed. Inevitably, the burgeon of this kind of novel materials leads to the endeavor to consider their safety so that this issue has been deeply discussed and summarized in our review. We hope that this review offers an overall understanding of these nanomaterials for later in-depth investigations.
Collapse
Affiliation(s)
- Ying Qu
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Science, Shandong University, Jinan, Shandong, 250012, China
| | - Feng He
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Science, Shandong University, Jinan, Shandong, 250012, China
| | - Chenggong Yu
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Science, Shandong University, Jinan, Shandong, 250012, China
| | - Xuewu Liang
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Science, Shandong University, Jinan, Shandong, 250012, China
| | - Dong Liang
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Science, Shandong University, Jinan, Shandong, 250012, China
| | - Long Ma
- Department of Analytical Chemistry, the testing center of Shandong Bureau, Jinan, Shandong, 250014, China
| | - Qiuqiong Zhang
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Science, Shandong University, Jinan, Shandong, 250012, China
| | - Jiahui Lv
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Science, Shandong University, Jinan, Shandong, 250012, China
| | - Jingde Wu
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Science, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
25
|
Zhang J, Zhao M, Tian X, Lv X, Chen Z, Zhou K, Ren X, Zhang P, Mei X. Protein-mediated mineralization of edaravone into injectable, pH-sensitive microspheres used for potential minimally invasive treatment of osteomyelitis. NEW J CHEM 2018. [DOI: 10.1039/c7nj04745b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Osteomyelitis, an infection within bone, is difficult to treat.
Collapse
Affiliation(s)
- Jie Zhang
- Jinzhou Medical University
- Jinzhou
- People's Republic of China
| | - Mengen Zhao
- Jinzhou Medical University
- Jinzhou
- People's Republic of China
| | - Xiaohan Tian
- Jinzhou Medical University
- Jinzhou
- People's Republic of China
| | - Xinyan Lv
- Jinzhou Medical University
- Jinzhou
- People's Republic of China
| | - Zhenhua Chen
- Jinzhou Medical University
- Jinzhou
- People's Republic of China
| | - Kang Zhou
- Jinzhou Medical University
- Jinzhou
- People's Republic of China
| | - Xiuli Ren
- Jinzhou Medical University
- Jinzhou
- People's Republic of China
| | - Peng Zhang
- Jinzhou Medical University
- Jinzhou
- People's Republic of China
| | - Xifan Mei
- Jinzhou Medical University
- Jinzhou
- People's Republic of China
| |
Collapse
|
26
|
An evaluation of colloidal and crystalline properties of CaCO 3 nanoparticles for biological applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 78:305-314. [DOI: 10.1016/j.msec.2017.04.037] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 04/05/2017] [Accepted: 04/06/2017] [Indexed: 11/22/2022]
|
27
|
Fu YN, Li Y, Li G, Yang L, Yuan Q, Tao L, Wang X. Adaptive Chitosan Hollow Microspheres as Efficient Drug Carrier. Biomacromolecules 2017; 18:2195-2204. [DOI: 10.1021/acs.biomac.7b00592] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ya-nan Fu
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, People’s Republic of China
| | - Yongsan Li
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, People’s Republic of China
- The Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, People’s Republic of China
| | - Guofeng Li
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, People’s Republic of China
| | - Lei Yang
- Cancer Institute and Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing 100021, People’s Republic of China
| | - Qipeng Yuan
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, People’s Republic of China
| | - Lei Tao
- The Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, People’s Republic of China
| | - Xing Wang
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, People’s Republic of China
| |
Collapse
|