1
|
Farid MU, Kharraz JA, Sun J, Boey MW, Riaz MA, Wong PW, Jia M, Zhang X, Deka BJ, Khanzada NK, Guo J, An AK. Advancements in Nanoenabled Membrane Distillation for a Sustainable Water-Energy-Environment Nexus. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307950. [PMID: 37772325 DOI: 10.1002/adma.202307950] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/10/2023] [Indexed: 09/30/2023]
Abstract
The emergence of nano innovations in membrane distillation (MD) has garnered increasing scientific interest. This enables the exploration of state-of-the-art nano-enabled MD membranes with desirable properties, which significantly improve the efficiency and reliability of the MD process and open up opportunities for achieving a sustainable water-energy-environment (WEE) nexus. This comprehensive review provides broad coverage and in-depth analysis of recent innovations in nano-enabled MD membranes, focusing on their role in achieving desirable properties, such as strong liquid-repellence, high resistance to scaling, fouling, and wetting, as well as efficient self-heating and self-cleaning functionalities. The recent developments in nano-enhanced photothermal-catalytic applications for water-energy co-generation within a single MD system are also discussed. Furthermore, the bottlenecks are identified that impede the scale-up of nanoenhanced MD membranes and a future roadmap is proposed for their sustainable commercialiation. This holistic overview is expected to inspire future research and development efforts to fully harness the potential of nano-enabled MD membranes to achieve sustainable integration of water, energy, and the environment.
Collapse
Affiliation(s)
- Muhammad Usman Farid
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
| | - Jehad A Kharraz
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, Abu Dhabi, 127788, United Arab Emirates
| | - Jiawei Sun
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
| | - Min-Wei Boey
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
| | - Muhammad Adil Riaz
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
| | - Pak Wai Wong
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
| | - Mingyi Jia
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
| | - Xinning Zhang
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
| | - Bhaskar Jyoti Deka
- Department of Hydrology, Indian Institute of Technology Roorkee, Haridwar, Uttarakhand, 247667, India
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Haridwar, Uttarakhand, 247667, India
| | - Noman Khalid Khanzada
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
- NYUAD Water Research Center, New York University Abu Dhabi, Abu Dhabi, 129188, United Arab Emirates
| | - Jiaxin Guo
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Alicia Kyoungjin An
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
| |
Collapse
|
2
|
Chang Y, Liu F. Review of Waterproof Breathable Membranes: Preparation, Performance and Applications in the Textile Field. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5339. [PMID: 37570043 PMCID: PMC10419557 DOI: 10.3390/ma16155339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/23/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023]
Abstract
Waterproof breathable membranes (WBMs) characterized by a specific internal structure, allowing air and water vapor to be transferred from one side to the other while preventing liquid water penetration, have attracted much attention from researchers. WBMs combine lamination and other technologies with textile materials to form waterproof breathable fabrics, which play a key role in outdoor sports clothing, medical clothing, military clothing, etc. Herein, a systematic overview of the recent progress of WBMs is provided, including the principles of waterproofness and breathability, common preparation methods and the applications of WBMs. Discussion starts with the waterproof and breathable mechanisms of two different membranes: hydrophilic non-porous membranes and hydrophobic microporous membranes. Then evaluation criteria and common preparation methods for WBMs are presented. In addition, treatment processes that promote water vapor transmission and prominent applications in the textile field are comprehensively analyzed. Finally, the challenges and future perspectives of WBMs are also explored.
Collapse
Affiliation(s)
| | - Fujuan Liu
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, 199 Ren-Ai Road, Suzhou 215123, China;
| |
Collapse
|
3
|
Khatri M, Francis L, Hilal N. Modified Electrospun Membranes Using Different Nanomaterials for Membrane Distillation. MEMBRANES 2023; 13:338. [PMID: 36984725 PMCID: PMC10059126 DOI: 10.3390/membranes13030338] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/19/2023] [Accepted: 03/12/2023] [Indexed: 06/18/2023]
Abstract
Obtaining fresh drinking water is a challenge directly related to the change in agricultural, industrial, and societal demands and pressure. Therefore, the sustainable treatment of saline water to get clean water is a major requirement for human survival. In this review, we have detailed the use of electrospun nanofiber-based membranes (ENMs) for water reclamation improvements with respect to physical and chemical modifications. Although membrane distillation (MD) has been considered a low-cost water reclamation process, especially with the availability of low-grade waste heat sources, significant improvements are still required in terms of preparing efficient membranes with enhanced water flux, anti-fouling, and anti-scaling characteristics. In particular, different types of nanomaterials have been explored as guest molecules for electrospinning with different polymers. Nanomaterials such as metallic organic frameworks (MOFs), zeolites, dioxides, carbon nanotubes (CNTs), etc., have opened unprecedented perspectives for the implementation of the MD process. The integration of nanofillers gives appropriate characteristics to the MD membranes by changing their chemical and physical properties, which significantly enhances energy efficiency without impacting the economic costs. Here, we provide a comprehensive overview of the state-of-the-art status, the opportunities, open challenges, and pitfalls of the emerging field of modified ENMs using different nanomaterials for desalination applications.
Collapse
|
4
|
Abdulhamid MA, Muzamil K. Recent progress on electrospun nanofibrous polymer membranes for water and air purification: A review. CHEMOSPHERE 2023; 310:136886. [PMID: 36265699 DOI: 10.1016/j.chemosphere.2022.136886] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/29/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Developing new polymer membranes with excellent thermal, mechanical, and chemical stability has shown great potential for various environmental remediation applications such as wastewater treatment and air filtration. Polymer membranes have been widely investigated over the past years and utilized to overcome severe ecological issues. Membrane-based technologies play a critical role in water purification and air filtration with the ability to act efficiently and sustainably. Electrospun nanofiber membranes have displayed excellent performance in removing various contaminants from water, such as bacteria, dyes, heavy metals, and oil. These nanofibrous membranes have shown good potential to filter the air from tiny particles, volatile organic compounds, and toxic gases. The performance of polymer membranes can be enhanced by fine-tuning polymer structure, varying surface properties, and strengthening overall membrane porosity. In this review, we discuss the involvement of electrospun nanofibrous membranes in different environmental remediation applications. It further reviews the recent progress of polymer membrane development by utilizing nanoparticles and naturally occurring polymers.
Collapse
Affiliation(s)
- Mahmoud A Abdulhamid
- Sustainable and Resilient Materials Lab, Center for Integrative Petroleum Research (CIPR), College of Petroleum Engineering and Geosciences (CPG), King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, 31261, Saudi Arabia.
| | - Khatri Muzamil
- Nano Fusion Technology Research Lab, Division of Frontier Fibers, Institute for Fiber Engineering (IFES), Interdisciplinary Cluster of Cutting-Edge Research (ICCER), Shishu University, Tokida 3-15-1, Ueda, 386-8567, Japan
| |
Collapse
|
5
|
Francis L, Hilal N. Electrosprayed CNTs on Electrospun PVDF-Co-HFP Membrane for Robust Membrane Distillation. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4331. [PMID: 36500954 PMCID: PMC9740161 DOI: 10.3390/nano12234331] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
In this investigation, the electrospraying of CNTs on an electrospun PVDF-Co-HFP membrane was carried out to fabricate robust membranes for the membrane distillation (MD) process. A CNT-modified PVDF-Co-HFP membrane was heat pressed and characterized for water contact angle, liquid entry pressure (LEP), pore size distribution, tensile strength, and surface morphology. A higher water contact angle, higher liquid entry pressure (LEP), and higher tensile strength were observed in the electrosprayed CNT-coated PVDF-Co-HFP membrane than in the pristine membrane. The MD process test was conducted at varying feed temperatures using a 3.5 wt. % simulated seawater feed solution. The CNT-modified membrane showed an enhancement in the temperature polarization coefficient (TPC) and water permeation flux up to 16% and 24.6%, respectively. Field-effect scanning electron microscopy (FESEM) images of the PVDF-Co-HFP and CNT-modified membranes were observed before and after the MD process. Energy dispersive spectroscopy (EDS) confirmed the presence of inorganic salt ions deposited on the membrane surface after the DCMD process. Permeate water quality and rejection of inorganic salt ions were quantitatively analyzed using ion chromatography (IC) and inductively coupled plasma-mass spectrometry (ICP-MS). The water permeation flux during the 24-h continuous DCMD operation remained constant with a >99.8% inorganic salt rejection.
Collapse
|
6
|
Nayak V, Mannekote Shivanna J, Ramu S, Radoor S, Balakrishna RG. Efficacy of Electrospun Nanofiber Membranes on Fouling Mitigation: A Review. ACS OMEGA 2022; 7:43346-43363. [PMID: 36506161 PMCID: PMC9730468 DOI: 10.1021/acsomega.2c02081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 09/06/2022] [Indexed: 06/17/2023]
Abstract
Despite the advantages of high contaminant removal, operational flexibility, and technical advancements offered, the undesirable fouling property of membranes limits their durability, thus posing restrictions on their usage. An enormous struggle is underway to conquer this major challenge. Most of the earlier reviews include the basic concepts of fouling and antifouling, with respect to particular separation processes such as ultrafiltration, nanofiltration, reverse osmosis and membrane bioreactors, graphene-based membranes, zwitterionic membranes, and so on. As per our knowledge, the importance of nanofiber membranes in challenging the fouling process has not been included in any record to date. Nanofibers with the ability to be embedded in any medium with a high surface to volume ratio play a key role in mitigating the fouling of membranes, and it is important for these studies to be critically analyzed and reported. Our Review hence intends to focus on nanofiber membranes developed with enhanced antifouling and biofouling properties with a brief introduction on fabrication processes and surface and chemical modifications. A summary on surface modifications of preformed nanofibers is given along with different nanofiller combinations used and blend fabrication with efficacy in wastewater treatment and antifouling abilities. In addition, future prospects and advancements are discussed.
Collapse
Affiliation(s)
- Vignesh Nayak
- Institute
of Environmental and Chemical Engineering, Faculty of Chemical Technology, University of Pardubice, Studentská 573, Pardubice-532 10, Czech Republic
| | - Jyothi Mannekote Shivanna
- Department
of Chemistry, AMC Engineering College, Bannerughatta Road, Bengaluru 260083, Karnataka, India
| | - Shwetharani Ramu
- Centre
for Nano and Material Sciences, Jain University, Jain Global Campus, Kanakapura, Bangalore 562112, Karnataka, India
| | - Sabarish Radoor
- Department
of Mechanical and Process Engineering, The Sirindhorn International
Thai-German Graduate School of Engineering (TGGS), King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand
| | - R. Geetha Balakrishna
- Centre
for Nano and Material Sciences, Jain University, Jain Global Campus, Kanakapura, Bangalore 562112, Karnataka, India
| |
Collapse
|
7
|
Jankowski W, Li G, Kujawski W, Kujawa J. Recent development of membranes modified with natural compounds: Preparation methods and applications in water treatment. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
8
|
Swanckaert B, Loccufier E, Geltmeyer J, Rabaey K, De Buysser K, Bonin L, De Clerck K. Sulfonated silica-based cation-exchange nanofiber membranes with superior self-cleaning abilities for electrochemical water treatment applications. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.123001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
9
|
Harimawan A, Wonoputri V, Ariel J, Julian H. Biofouling control of membrane distillation for seawater desalination: Effect of air-backwash and chemical cleaning on biofouling formation. BIOFOULING 2022; 38:889-902. [PMID: 36382389 DOI: 10.1080/08927014.2022.2146496] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
This study explored the applicability of chemical cleaning and air-backwash to alleviate biofouling on seawater membrane distillation (SWMD). Membrane performance and wettability properties maintained at optimum duration and frequency of the treatments, as indicated by low permeate conductivity throughout the tests. The cleaning of the membrane using 2% NaOH by immersing the membrane for 30 min after 240 min operation removed the biofouling layer, indicated by low permeate conductivity of 370 µScm-1 after cleaning. However, more frequent membrane cleaning led to membrane damage, more severe wetting, and membrane hydrophobicity reduction. Ten-second air-backwash after 240 min of operation was also effective in controlling the biofouling, particularly when conducted at air pressure of 1 bar. More frequent air-backwash resulted in more aggravated inorganic fouling and accelerated biofouling formation due to the recurring introduction of air, leading to rapid membrane wetting.
Collapse
Affiliation(s)
- Ardiyan Harimawan
- Chemical Engineering Department, Institut Teknologi Bandung (ITB), Bandung, Indonesia
| | - Vita Wonoputri
- Chemical Engineering Department, Institut Teknologi Bandung (ITB), Bandung, Indonesia
| | - Jonathan Ariel
- Chemical Engineering Department, Institut Teknologi Bandung (ITB), Bandung, Indonesia
| | - Helen Julian
- Chemical Engineering Department, Institut Teknologi Bandung (ITB), Bandung, Indonesia
| |
Collapse
|
10
|
A review on ion-exchange nanofiber membranes: properties, structure and application in electrochemical (waste)water treatment. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120529] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
11
|
Francis L, Ahmed FE, Hilal N. Advances in Membrane Distillation Module Configurations. MEMBRANES 2022; 12:membranes12010081. [PMID: 35054607 PMCID: PMC8778876 DOI: 10.3390/membranes12010081] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 02/04/2023]
Abstract
Membrane Distillation (MD) is a membrane-based, temperature-driven water reclamation process. While research emphasis has been largely on membrane design, upscaling of MD has prompted advancements in energy-efficient module design and configurations. Apart from the four conventional configurations, researchers have come up with novel MD membrane module designs and configurations to improve thermal efficiency. While membrane design has been the focus of many studies, development of appropriate system configurations for optimal energy efficiency for each application has received considerable attention, and is a critical aspect in advancing MD configurations. This review assesses advancements in modified and novel MD configurations design with emphasis on the effects of upscaling and pilot scale studies. Improved MD configurations discussed in this review are the material gap MD, conductive gap MD, permeate gap MD, vacuum-enhanced AGMD/DCMD, submerged MD, flashed-feed MD, dead-end MD, and vacuum-enhanced multi-effect MD. All of these modified MD configurations are designed either to reduce the heat loss by mitigating the temperature polarization or to improve the mass transfer and permeate flux. Vacuum-enhanced MD processes and MD process with non-contact feed solution show promise at the lab-scale and must be further investigated. Hollow fiber membrane-based pilot scale modules have not yet been sufficiently explored. In addition, comparison of various configurations is prevented by a lack of standardized testing conditions. We also reflect on recent pilot scale studies, ongoing hurdles in commercialization, and niche applications of the MD process.
Collapse
|
12
|
Abstract
In the past few decades, the role of nanotechnology has expanded into environmental remediation applications. In this regard, nanofibers have been reported for various applications in water treatment and air filtration. Nanofibers are fibers of polymeric origin with diameters in the nanometer to submicron range. Electrospinning has been the most widely used method to synthesize nanofibers with tunable properties such as high specific surface area, uniform pore size, and controlled hydrophobicity. These properties of nanofibers make them highly sought after as adsorbents, photocatalysts, electrode materials, and membranes. In this review article, a basic description of the electrospinning process is presented. Subsequently, the role of different operating parameters in the electrospinning process and precursor polymeric solution is reviewed with respect to their influence on nanofiber properties. Three key areas of nanofiber application for water treatment (desalination, heavy-metal removal, and contaminant of emerging concern (CEC) remediation) are explored. The latest research in these areas is critically reviewed. Nanofibers have shown promising results in the case of membrane distillation, reverse osmosis, and forward osmosis applications. For heavy-metal removal, nanofibers have been able to remove trace heavy metals due to the convenient incorporation of specific functional groups that show a high affinity for the target heavy metals. In the case of CECs, nanofibers have been utilized not only as adsorbents but also as materials to localize and immobilize the trace contaminants, making further degradation by photocatalytic and electrochemical processes more efficient. The key issues with nanofiber application in water treatment include the lack of studies that explore the role of the background water matrix in impacting the contaminant removal performance, regeneration, and recyclability of nanofibers. Furthermore, the end-of-life disposal of nanofibers needs to be explored. The availability of more such studies will facilitate the adoption of nanofibers for water treatment applications.
Collapse
|
13
|
Alsmaeil AW, Hammami MA, Enotiadis A, Kanj MY, Giannelis EP. Encapsulation of an Anionic Surfactant into Hollow Spherical Nanosized Capsules: Size Control, Slow Release, and Potential Use for Enhanced Oil Recovery Applications and Environmental Remediation. ACS OMEGA 2021; 6:5689-5697. [PMID: 33681608 PMCID: PMC7931374 DOI: 10.1021/acsomega.0c06094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/10/2021] [Indexed: 05/06/2023]
Abstract
A new platform that allows encapsulation of anionic surfactants into nanosized capsules and subsequent release upon deployment is described. The system is based on DOWFAX surfactant molecules incorporated into sub-100 nm hollow silica nanoparticles composed of a mesoporous shell. The particles released 40 wt % of the encapsulated surfactant at 70 °C compared to 24 wt % at 25 °C after 21 and 18 days, respectively. The use of the particles for subsurface applications is assessed by studying the effectiveness of the particles to alter the wettability of hydrophobic surfaces and reduction of the interfacial tension. The release of the surfactant molecules in the suspension reduces the contact angle of a substrate from 105 to 25° over 55 min. A sustained release profile is demonstrated by a continuous reduction of the interfacial tension of an oil suspension, where the interfacial tension is reduced from 62 to 2 mN m-1 over a period of 3 days.
Collapse
Affiliation(s)
- Ahmed Wasel Alsmaeil
- Department
of Chemical and Biomolecular Engineering, College of Engineering, Cornell University, Ithaca, New York 14853, United States
- EXPEC
Advanced Research Center, Saudi Aramco, Dhahran 31261, Saudi Arabia
| | - Mohammed Amen Hammami
- Department
of Materials Science and Engineering, College of Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Apostolos Enotiadis
- Department
of Materials Science and Engineering, College of Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Mazen Yousef Kanj
- College
of Petroleum Engineering & Geosciences, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Emmanuel P. Giannelis
- Department
of Materials Science and Engineering, College of Engineering, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
14
|
Kamelian FS, Mohammadi T, Naeimpoor F, Sillanpää M. One-Step and Low-Cost Designing of Two-Layered Active-Layer Superhydrophobic Silicalite-1/PDMS Membrane for Simultaneously Achieving Superior Bioethanol Pervaporation and Fouling/Biofouling Resistance. ACS APPLIED MATERIALS & INTERFACES 2020; 12:56587-56603. [PMID: 33269590 DOI: 10.1021/acsami.0c17046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Recently, the coupling of biofuel fermentation broths and pervaporation has been receiving increasing attention. Some challenges, such as the destructive effects of constituents of the real fermentation broth on the membrane performances, the lethal effects of the membrane surface chemical modifiers on the microorganisms, and being expensive, are against this concept. For the first time, a continuous study on the one-step and low-cost preparation of superhydrophobic membranes for bioethanol separation is made to address these challenges. In our previous work, spraying as a fast, scalable, and low-cost procedure was applied to fabricate the one-layered active-layer hydrophobic (OALH) silicalite-1/polydimethylsiloxane (PDMS) membrane on the low-cost mullite support. In this work, the spraying method was adopted to fabricate a two-layered active-layer superhydrophobic (TALS) silicalite-1/PDMS membrane, where the novel active layer consisted of two layers with different hydrophobicities and densities. Contact-angle measurements, surface charge determination, scanning electron microscopy, atomic force microscopy, and pervaporation separation using a 5 wt % ethanol solution were used to statically evaluate the fouling/biofouling resistance and pervaporation performances of OALH and TALS membranes in this study. The TALS membrane presented a better resistance and performance. For dynamic experiments, the Box-Behnken design was used to identify the effects of substrates, microorganisms, and nutrient contents as the leading indicators of fermentation broth on the TALS membrane performances for the long-term utilization. The maximum performances of 1.88 kg/m2·h, 32.34, and 59.04 kg/m2·h concerning the permeation flux, separation factor, and pervaporation separation index were obtained, respectively. The dynamic fouling/biofouling resistance of the TALS membrane was also characterized using energy-dispersive X-ray spectroscopy of all the tested membranes. The TALS membrane demonstrated the synergistic resistance of membrane fouling and biofouling. Eventually, the novel TALS membrane was found to have potential for biofuel recovery, especially bioethanol.
Collapse
Affiliation(s)
- Fariba Sadat Kamelian
- Center of Excellence for Membrane Science and Technology, Iran University of Science and Technology (IUST), P.O. Box 16846-13114 Tehran, Iran
- Research and Technology Center of Membrane Processes, School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology (IUST), P.O. Box 16846-13114 Tehran, Iran
- Biotechnology Research Laboratory, School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology (IUST), Narmak, P.O. Box 16846-13114 Tehran, Iran
| | - Toraj Mohammadi
- Center of Excellence for Membrane Science and Technology, Iran University of Science and Technology (IUST), P.O. Box 16846-13114 Tehran, Iran
- Research and Technology Center of Membrane Processes, School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology (IUST), P.O. Box 16846-13114 Tehran, Iran
| | - Fereshteh Naeimpoor
- Center of Excellence for Membrane Science and Technology, Iran University of Science and Technology (IUST), P.O. Box 16846-13114 Tehran, Iran
- Biotechnology Research Laboratory, School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology (IUST), Narmak, P.O. Box 16846-13114 Tehran, Iran
| | - Mika Sillanpää
- Department of Civil and Environmental Engineering, Florida International University, 33199 Miami, Florida, United States
| |
Collapse
|
15
|
Toriello M, Afsari M, Shon HK, Tijing LD. Progress on the Fabrication and Application of Electrospun Nanofiber Composites. MEMBRANES 2020; 10:membranes10090204. [PMID: 32872232 PMCID: PMC7559347 DOI: 10.3390/membranes10090204] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/20/2020] [Accepted: 08/26/2020] [Indexed: 01/09/2023]
Abstract
Nanofibers are one of the most attractive materials in various applications due to their unique properties and promising characteristics for the next generation of materials in the fields of energy, environment, and health. Among the many fabrication methods, electrospinning is one of the most efficient technologies which has brought about remarkable progress in the fabrication of nanofibers with high surface area, high aspect ratio, and porosity features. However, neat nanofibers generally have low mechanical strength, thermal instability, and limited functionalities. Therefore, composite and modified structures of electrospun nanofibers have been developed to improve the advantages of nanofibers and overcome their drawbacks. The combination of electrospinning technology and high-quality nanomaterials via materials science advances as well as new modification techniques have led to the fabrication of composite and modified nanofibers with desired properties for different applications. In this review, we present the recent progress on the fabrication and applications of electrospun nanofiber composites to sketch a progress line for advancements in various categories. Firstly, the different methods for fabrication of composite and modified nanofibers have been investigated. Then, the current innovations of composite nanofibers in environmental, healthcare, and energy fields have been described, and the improvements in each field are explained in detail. The continued growth of composite and modified nanofiber technology reveals its versatile properties that offer alternatives for many of current industrial and domestic issues and applications.
Collapse
Affiliation(s)
- Mariela Toriello
- Faculty of Engineering and Information Technology, University of Technology Sydney (UTS), 15 Broadway, Ultimo, NSW 2007, Australia;
| | - Morteza Afsari
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney (UTS), 15 Broadway, Ultimo, NSW 2007, Australia; (M.A.); (H.K.S.)
| | - Ho Kyong Shon
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney (UTS), 15 Broadway, Ultimo, NSW 2007, Australia; (M.A.); (H.K.S.)
| | - Leonard D. Tijing
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney (UTS), 15 Broadway, Ultimo, NSW 2007, Australia; (M.A.); (H.K.S.)
- Correspondence:
| |
Collapse
|
16
|
Gurave PM, Singh S, Yadav A, Nandan B, Srivastava RK. Electrospinning of a Near Gel Resin To Produce Cross-Linked Fibrous Matrices. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:2419-2426. [PMID: 32052968 DOI: 10.1021/acs.langmuir.9b03870] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Electrospun fibers and matrices have been researched for their utility in various fields; however, because of poor mechanical strength and loss of structural integrity, their commercial viability is limited. A near gel resin (nGR) of polystyrene (PS) was used in the present approach to fabricate cross-linked fibrous matrices of better mechanical strength and oil adsorption while retaining the structural integrity. Electrospinnability of nGR was assessed in bulk (i.e., in styrene monomer) and solution (i.e., in dimethyl formamide) forms with variations in formulation and electrospinning conditions. Ultimately, a uniform cross-linked fibrous matrix of PS was prepared using an oil-in-water emulsion, where the oil phase composed of a monomer (styrene), an initiator (benzoyl peroxide), and a cross-linker (divinylbenzene) was dispersed in a continuous phase of aqueous poly(vinyl alcohol) (PVA). The monomer conversion in the oil phase was carried out below the gel point, and the nGR of PS formed in dispersed droplets was electrospun to fabricate uniform fibrous matrices with the help of a template polymer, that is, PVA. The effect of various material and process parameters on the gelation behavior, electrospinnability, and fiber uniformity was studied and optimized to produce uniform core-sheath fibrous matrices of cross-linked PS. Postelectrospinning heat treatment of matrices was carried out to achieve complete monomer conversion and cross-linking. Fiber formation behavior of the emulsion was assessed using ionic and nonionic surfactants. The cross-link density of the matrices was optimized to achieve the desired structural morphology and dimensional stability. The process of fabrication of emulsion electrospun cross-linked fibers can be further extended to a variety of other monomers in order to enhance the suitability of fibrous matrices for many applications.
Collapse
Affiliation(s)
- Pramod M Gurave
- Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Shweta Singh
- Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Anilkumar Yadav
- Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Bhanu Nandan
- Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Rajiv K Srivastava
- Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
17
|
Cimadoro J, Goyanes S. Reversible swelling as a strategy in the development of smart membranes from electrospun polyvinyl alcohol nanofiber mats. JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1002/pol.20190156] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Jonathan Cimadoro
- Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales, Departamento de Física, Laboratorio de Polímeros y Materiales Compuestos (LP&MC)Instituto de Física de Buenos Aires (IFIBA‐CONICET) Buenos Aires Argentina
| | - Silvia Goyanes
- Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales, Departamento de Física, Laboratorio de Polímeros y Materiales Compuestos (LP&MC)Instituto de Física de Buenos Aires (IFIBA‐CONICET) Buenos Aires Argentina
| |
Collapse
|
18
|
Li X, Qing W, Wu Y, Shao S, Peng LE, Yang Y, Wang P, Liu F, Tang CY. Omniphobic Nanofibrous Membrane with Pine-Needle-Like Hierarchical Nanostructures: Toward Enhanced Performance for Membrane Distillation. ACS APPLIED MATERIALS & INTERFACES 2019; 11:47963-47971. [PMID: 31790582 DOI: 10.1021/acsami.9b17494] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Wetting and fouling phenomena are the main concerns for membrane distillation (MD) in treating high-salinity industrial wastewater. This work developed an omniphobic membrane by growing titanium dioxide (TiO2) nanorods on polyvinylidene fluoride-co-hexafluoropropylene (PVDF-HFP) nanofibers using a hydrothermal technique. The TiO2 nanorods form a uniform pine-needle-like hierarchical nanostructure on PVDF-HFP fibers. A further fluorination treatment provides the membrane with a low-surface-energy omniphobic surface, displaying contact angles of 168° and 153° for water and mineral oil, respectively. Direct contact MD experiments demonstrated that the resulting membrane shows a high and stable salt rejection of >99.9%, while the pristine PVDF-HFP nanofibrous membrane suffers a rejection decline caused by intense pore wetting and oil fouling in the desalination process in the presence of surfactant and mineral oil. The superior antiwetting and antifouling behaviors were ascribed to a nonwetting Cassie-Baxter state established by the accumulation of a great deal of air in the hydrophobized hierarchical re-entrant structures. The development of omniphobic membranes with pine-needle-like hierarchical nanostructures provides an approach to mitigate membrane wetting and fouling in the MD process for the water reclamation from industrial wastewater.
Collapse
Affiliation(s)
- Xianhui Li
- Department of Civil Engineering , The University of Hong Kong , Pokfulam , Hong Kong 999077 , P. R. China
| | - Weihua Qing
- Department of Civil Engineering , The University of Hong Kong , Pokfulam , Hong Kong 999077 , P. R. China
| | - Yifan Wu
- Department of Chemistry , The University of Hong Kong , Pokfulam , Hong Kong 999077 , P. R. China
| | - Senlin Shao
- Department of Civil Engineering , The University of Hong Kong , Pokfulam , Hong Kong 999077 , P. R. China
- School of Civil Engineering , Wuhan University , Wuhan 430072 , P. R. China
| | - Lu Elfa Peng
- Department of Civil Engineering , The University of Hong Kong , Pokfulam , Hong Kong 999077 , P. R. China
| | - Yang Yang
- Department of Chemical Engineering , Imperial College London , London SW7 2AZ , U.K
| | - Peng Wang
- Department of Civil and Environmental Engineering , The Hong Kong Polytechnic University , Hung Hom , Kowloon , Hong Kong 999077 , P. R. China
| | - Fu Liu
- Key Laboratory of Marine Materials and Related Technologies , Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences , Ningbo 315201 , P. R. China
| | - Chuyang Y Tang
- Department of Civil Engineering , The University of Hong Kong , Pokfulam , Hong Kong 999077 , P. R. China
| |
Collapse
|
19
|
Aijaz MO, Karim MR, Alharbi HF, Alharthi NH. Novel optimised highly aligned electrospun PEI-PAN nanofibre mats with excellent wettability. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.121665] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
20
|
Das R, Arunachalam S, Ahmad Z, Manalastas E, Mishra H. Bio-inspired gas-entrapping membranes (GEMs) derived from common water-wet materials for green desalination. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.117185] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
21
|
Electrospun nanofibrous membranes in membrane distillation: Recent developments and future perspectives. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.03.080] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
22
|
Trade-off in membrane distillation with monolithic omniphobic membranes. Nat Commun 2019; 10:3220. [PMID: 31324790 PMCID: PMC6642111 DOI: 10.1038/s41467-019-11209-6] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 06/23/2019] [Indexed: 01/27/2023] Open
Abstract
Omniphobic membranes are attractive for membrane distillation (MD) because of their superior wetting resistance. However, a design framework for MD membrane remains incomplete, due to the complexity of omniphobic membrane fabrication and the lack of fundamental relationship between wetting resistance and water vapor permeability. Here we present a particle-free approach that enables rapid fabrication of monolithic omniphobic membranes for MD desalination. Our monolithic omniphobic membranes display excellent wetting resistance and water purification performance in MD desalination of hypersaline feedwater containing surfactants. We identify that a trade-off exists between wetting resistance and water vapor permeability of our monolithic MD membranes. Utilizing membranes with tunable wetting resistance and permeability, we elucidate the underlying mechanism of such trade-off. We envision that our fabrication method as well as the mechanistic insight into the wetting resistance-vapor permeability trade-off will pave the way for smart design of MD membranes in diverse water purification applications.
Collapse
|
23
|
Shao Y, Han M, Wang Y, Li G, Xiao W, Li X, Wu X, Ruan X, Yan X, He G, Jiang X. Superhydrophobic polypropylene membrane with fabricated antifouling interface for vacuum membrane distillation treating high concentration sodium/magnesium saline water. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.03.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
24
|
Deka BJ, Lee EJ, Guo J, Kharraz J, An AK. Electrospun Nanofiber Membranes Incorporating PDMS-Aerogel Superhydrophobic Coating with Enhanced Flux and Improved Antiwettability in Membrane Distillation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:4948-4958. [PMID: 30978006 DOI: 10.1021/acs.est.8b07254] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Electrospun nanofiber membranes (ENMs) have garnered increasing interest due to their controllable nanofiber structure and high void volume fraction properties in membrane distillation (MD). However, MD technology still faces limitations mainly due to low permeate flux and membrane wetting for feeds containing low surface tension compounds. Perfluorinated superhydrophobic membranes could be an alternative, but it has negative environmental impacts. Therefore, other low surface energy materials such as silica aerogel and polydimethylsiloxane (PDMS) have great relevancy in ENMs fabrication. Herein, we have reported the high flux and nonwettability of ENMs fabricated by electrospraying aerogel/polydimethylsiloxane (PDMS)/polyvinylidene fluoride (PVDF) over electrospinning polyvinylidene fluoride- co-hexafluoropropylene (PVDF-HFP) membrane (E-PH). Among various concentrations of aerogel, the 30% aerogel (E-M3-A30) dual layer membrane achieved highest superhydrophobicity (∼170° water contact angle), liquid entry pressure (LEP) of 129.5 ± 3.4 kPa, short water droplet bouncing performance (11.6 ms), low surface energy (4.18 ± 0.27 mN m-1) and high surface roughness ( Ra: 5.04 μm) with re-entrant structure. It also demonstrated nonwetting MD performance over a continuous 7 days operation of saline water (3.5% of NaCl), high antiwetting with harsh saline water containing 0.5 mM sodium dodecyl sulfate (SDS, 28.9 mN m-1), synthetic algal organic matter (AOM).
Collapse
Affiliation(s)
- Bhaskar Jyoti Deka
- School of Energy and Environment , City University of Hong Kong , Tat Chee Avenue , Kowloon , Hong Kong Special Administrative Region , China
| | - Eui-Jong Lee
- Department of Environmental Engineering , Daegu University , 201 Daegudae-ro , Jillyang, Gyeongsan-si , Gyeongbuk 38453 , Republic of Korea
| | - Jiaxin Guo
- School of Energy and Environment , City University of Hong Kong , Tat Chee Avenue , Kowloon , Hong Kong Special Administrative Region , China
| | - Jehad Kharraz
- School of Energy and Environment , City University of Hong Kong , Tat Chee Avenue , Kowloon , Hong Kong Special Administrative Region , China
| | - Alicia Kyoungjin An
- School of Energy and Environment , City University of Hong Kong , Tat Chee Avenue , Kowloon , Hong Kong Special Administrative Region , China
| |
Collapse
|
25
|
Yu X, Wu X, Si Y, Wang X, Yu J, Ding B. Waterproof and Breathable Electrospun Nanofibrous Membranes. Macromol Rapid Commun 2019; 40:e1800931. [PMID: 30725509 DOI: 10.1002/marc.201800931] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 01/23/2019] [Indexed: 12/20/2022]
Abstract
Waterproof and breathable (W&B) membranes combine fascinating properties of resistance to liquid water penetration and transmitting of water vapor, playing a key role in addressing problems related to health, resources, and energy. Electrospinning is an efficient and advanced way to construct nanofibrous materials with easily tailored wettability and adjustable pore structure, therefore providing an ideal strategy for constructing W&B membranes. In this review, recent progress on electrospun W&B membranes is summarized, involving materials design and fabrication, basic properties of electrospun W&B membranes associated with waterproofness and breathability, as well as their applications. In addition, challenges and future trends of electrospun W&B membranes are discussed.
Collapse
Affiliation(s)
- Xi Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Xiaohui Wu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Yang Si
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai, 201620, China.,Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 200051, China
| | - Xianfeng Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai, 201620, China.,Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 200051, China
| | - Jianyong Yu
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 200051, China
| | - Bin Ding
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai, 201620, China.,Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 200051, China
| |
Collapse
|
26
|
Subramanian N, Qamar A, Alsaadi A, Gallo A, Ridwan MG, Lee JG, Pillai S, Arunachalam S, Anjum D, Sharipov F, Ghaffour N, Mishra H. Evaluating the potential of superhydrophobic nanoporous alumina membranes for direct contact membrane distillation. J Colloid Interface Sci 2019; 533:723-732. [DOI: 10.1016/j.jcis.2018.08.054] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 08/19/2018] [Accepted: 08/20/2018] [Indexed: 11/29/2022]
|
27
|
Arunachalam S, Das R, Nauruzbayeva J, Domingues EM, Mishra H. Assessing omniphobicity by immersion. J Colloid Interface Sci 2019; 534:156-162. [DOI: 10.1016/j.jcis.2018.08.059] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 08/17/2018] [Accepted: 08/20/2018] [Indexed: 11/25/2022]
|
28
|
Alsaadi AS, Alpatova A, Lee JG, Francis L, Ghaffour N. Flashed-feed VMD configuration as a novel method for eliminating temperature polarization effect and enhancing water vapor flux. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.05.060] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
29
|
Croissant JG, Brinker CJ. Biodegradable Silica-Based Nanoparticles: Dissolution Kinetics and Selective Bond Cleavage. Enzymes 2018; 43:181-214. [PMID: 30244807 DOI: 10.1016/bs.enz.2018.07.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Silica-based nanomaterials are extensively used in industrial applications and academic biomedical research, thus properly assessing their toxicity and biodegradability is essential for their safe and effective formulation and use. Unfortunately, there is often a lot of confusion in the literature with respect to the toxicity and biodegradability of silica since various studies have yielded contradictory results. In this contribution, we first endeavor to underscore that the simplistic model of silica should be discarded in favor of a more realistic model recognizing that all silicas are not created equal and should thus be considered in the plural as silicas and silica hybrids, which indeed hold various biocompatibility and biodegradability profiles. We then demonstrated that all silicas are-as displayed in Nature-degradable in water by dissolution, as governed by the laws of kinetics. Lastly, we explore the vast potential of tuning the degradability of silica by materials design using various silica hybrids for redox-, pH-, enzymatic-, and biochelation-mediated lysis mechanisms.
Collapse
Affiliation(s)
- Jonas G Croissant
- Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM, United States; Center for Micro-Engineered Materials, Advanced Materials Laboratory, University of New Mexico, Albuquerque, NM, United States.
| | - C Jeffrey Brinker
- Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM, United States; Center for Micro-Engineered Materials, Advanced Materials Laboratory, University of New Mexico, Albuquerque, NM, United States
| |
Collapse
|
30
|
Domingues EM, Arunachalam S, Nauruzbayeva J, Mishra H. Biomimetic coating-free surfaces for long-term entrapment of air under wetting liquids. Nat Commun 2018; 9:3606. [PMID: 30190456 PMCID: PMC6127334 DOI: 10.1038/s41467-018-05895-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Accepted: 08/01/2018] [Indexed: 01/02/2023] Open
Abstract
Trapping air at the solid-liquid interface is a promising strategy for reducing frictional drag and desalting water, although it has thus far remained unachievable without perfluorinated coatings. Here, we report on biomimetic microtextures composed of doubly reentrant cavities (DRCs) and reentrant cavities (RCs) that can enable even intrinsically wetting materials to entrap air for long periods upon immersion in liquids. Using SiO2/Si wafers as the model system, we demonstrate that while the air entrapped in simple cylindrical cavities immersed in hexadecane is lost after 0.2 s, the air entrapped in the DRCs remained intact even after 27 days (~106 s). To understand the factors and mechanisms underlying this ten-million-fold enhancement, we compared the behaviors of DRCs, RCs and simple cavities of circular and non-circular shapes on immersion in liquids of low and high vapor pressures through high-speed imaging, confocal microscopy, and pressure cells. Those results might advance the development of coating-free liquid repellent surfaces.
Collapse
Affiliation(s)
- Eddy M Domingues
- King Abdullah University of Science and Technology (KAUST), Water Desalination and Reuse Center (WDRC), Biological and Environmental Science and Engineering (BESE) Division, Thuwal, 23955-6900, Saudi Arabia
| | - Sankara Arunachalam
- King Abdullah University of Science and Technology (KAUST), Water Desalination and Reuse Center (WDRC), Biological and Environmental Science and Engineering (BESE) Division, Thuwal, 23955-6900, Saudi Arabia
| | - Jamilya Nauruzbayeva
- King Abdullah University of Science and Technology (KAUST), Water Desalination and Reuse Center (WDRC), Biological and Environmental Science and Engineering (BESE) Division, Thuwal, 23955-6900, Saudi Arabia
| | - Himanshu Mishra
- King Abdullah University of Science and Technology (KAUST), Water Desalination and Reuse Center (WDRC), Biological and Environmental Science and Engineering (BESE) Division, Thuwal, 23955-6900, Saudi Arabia.
| |
Collapse
|
31
|
Bogler A, Bar-Zeev E. Membrane Distillation Biofouling: Impact of Feedwater Temperature on Biofilm Characteristics and Membrane Performance. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:10019-10029. [PMID: 30080406 DOI: 10.1021/acs.est.8b02744] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Membrane distillation (MD) is a temperature driven membrane separation technology that holds great potential for decentralized and sustainable wastewater treatment systems. Yet, similarly to all membrane based systems, microbial fouling (biofouling) might be a critical hurdle for MD wastewater treatment applications. In this study we determined the impact of increasing feedwater temperatures (47 °C, 55 °C, and 65 °C) on biofilm growth and MD performance via dynamic biofouling experiments with Anoxybacillus sp. as a model bacterium. Our results indicated that cell growth was reduced at 47 °C, resulting in moderate distillate water flux decline (30%). Differently, extensive growth of Anoxybacillus sp. at feedwater temperature of 55 °C caused severe distillate water flux decline (78%). Additionally, biofouling induced membrane wetting, which facilitated the passage of bacteria cells and endospores through the membrane structure into the distillate. Although bacterial growth was impaired at feedwater temperatures of 65 °C, excessive production of EPS (compared to bacterial abundance) crippled membrane separation due to severe pore wetting. These results underline the importance of optimized operating conditions and development of antibiofouling and antiwetting membranes for successful implementation of MD in wastewater treatment with high biofouling propensity.
Collapse
Affiliation(s)
- Anne Bogler
- The Jacob Blaustein Institutes for Desert Research, Zuckerberg Institute for Water Research , Ben-Gurion University of the Negev , Sede Boker 84990 , Israel
| | - Edo Bar-Zeev
- The Jacob Blaustein Institutes for Desert Research, Zuckerberg Institute for Water Research , Ben-Gurion University of the Negev , Sede Boker 84990 , Israel
| |
Collapse
|
32
|
Sousa-Castillo A, Furini LN, Tiu BDB, Cao PF, Topçu B, Comesaña-Hermo M, Rodríguez-González B, Baaziz W, Ersen O, Advincula RC, Pérez-Lorenzo M, Correa-Duarte MA. Plasmonic Retrofitting of Membrane Materials: Shifting from Self-Regulation to On-Command Control of Fluid Flow. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1707598. [PMID: 30003590 DOI: 10.1002/adma.201707598] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 02/21/2018] [Indexed: 05/18/2023]
Abstract
This work calls for a paradigm shift in order to change the operational patterns of self-regulated membranes in response to chemical signals. To this end, the fabrication of a retrofitting material is introduced aimed at developing an innovative generation of porous substrates endowed with symbiotic but fully independent sensing and actuating capabilities. This is accomplished by transferring carefully engineered plasmonic architectures onto commercial microfiltration membranes lacking of such features. The integration of these materials leads to the formation of a coating surface proficient for ultrasensitive detection and "on-command" gating. Both functionalities can be synergistically modulated by the spatial and temporal distribution of an impinging light beam offering an unprecedented control over the membrane performance in terms of permeability. The implementation of these hybrid nanocomposites in conventional polymeric porous materials holds great potential in applications ranging from intelligent fluid management to advanced filtration technologies and controlled release.
Collapse
Affiliation(s)
- Ana Sousa-Castillo
- Department of Physical Chemistry, Biomedical Research Center (CINBIO), Southern Galicia Institute of Health Research (IISGS), and Biomedical Research Networking Center for Mental Health (CIBERSAM), Universidade de Vigo, 36310, Vigo, Spain
| | - Leonardo N Furini
- Department of Physical Chemistry, Biomedical Research Center (CINBIO), Southern Galicia Institute of Health Research (IISGS), and Biomedical Research Networking Center for Mental Health (CIBERSAM), Universidade de Vigo, 36310, Vigo, Spain
| | - Brylee David B Tiu
- Department of Bioengineering, University of California Berkeley, Hearst Memorial Mining Building, Berkeley, CA, 94720-1760, USA
| | - Peng-Fei Cao
- Department of Macromolecular Science and Engineering, Case Western Reserve University School of Engineering, Cleveland, OH, 44106, USA
| | - Begüm Topçu
- Department of Physical Chemistry, Biomedical Research Center (CINBIO), Southern Galicia Institute of Health Research (IISGS), and Biomedical Research Networking Center for Mental Health (CIBERSAM), Universidade de Vigo, 36310, Vigo, Spain
| | - Miguel Comesaña-Hermo
- Department of Physical Chemistry, Biomedical Research Center (CINBIO), Southern Galicia Institute of Health Research (IISGS), and Biomedical Research Networking Center for Mental Health (CIBERSAM), Universidade de Vigo, 36310, Vigo, Spain
| | - Benito Rodríguez-González
- Department of Physical Chemistry, Biomedical Research Center (CINBIO), Southern Galicia Institute of Health Research (IISGS), and Biomedical Research Networking Center for Mental Health (CIBERSAM), Universidade de Vigo, 36310, Vigo, Spain
| | - Walid Baaziz
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504 CNRS-Université de Strasbourg, 67037, Strasbourg Cedex 08, France
| | - Ovidiu Ersen
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504 CNRS-Université de Strasbourg, 67037, Strasbourg Cedex 08, France
| | - Rigoberto C Advincula
- Department of Macromolecular Science and Engineering, Case Western Reserve University School of Engineering, Cleveland, OH, 44106, USA
| | - Moisés Pérez-Lorenzo
- Department of Physical Chemistry, Biomedical Research Center (CINBIO), Southern Galicia Institute of Health Research (IISGS), and Biomedical Research Networking Center for Mental Health (CIBERSAM), Universidade de Vigo, 36310, Vigo, Spain
| | - Miguel A Correa-Duarte
- Department of Physical Chemistry, Biomedical Research Center (CINBIO), Southern Galicia Institute of Health Research (IISGS), and Biomedical Research Networking Center for Mental Health (CIBERSAM), Universidade de Vigo, 36310, Vigo, Spain
| |
Collapse
|
33
|
Croissant JG, Fatieiev Y, Almalik A, Khashab NM. Mesoporous Silica and Organosilica Nanoparticles: Physical Chemistry, Biosafety, Delivery Strategies, and Biomedical Applications. Adv Healthc Mater 2018; 7. [PMID: 29193848 DOI: 10.1002/adhm.201700831] [Citation(s) in RCA: 341] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 08/30/2017] [Indexed: 01/08/2023]
Abstract
Predetermining the physico-chemical properties, biosafety, and stimuli-responsiveness of nanomaterials in biological environments is essential for safe and effective biomedical applications. At the forefront of biomedical research, mesoporous silica nanoparticles and mesoporous organosilica nanoparticles are increasingly investigated to predict their biological outcome by materials design. In this review, it is first chronicled that how the nanomaterial design of pure silica, partially hybridized organosilica, and fully hybridized organosilica (periodic mesoporous organosilicas) governs not only the physico-chemical properties but also the biosafety of the nanoparticles. The impact of the hybridization on the biocompatibility, protein corona, biodistribution, biodegradability, and clearance of the silica-based particles is described. Then, the influence of the surface engineering, the framework hybridization, as well as the morphology of the particles, on the ability to load and controllably deliver drugs under internal biological stimuli (e.g., pH, redox, enzymes) and external noninvasive stimuli (e.g., light, magnetic, ultrasound) are presented. To conclude, trends in the biomedical applications of silica and organosilica nanovectors are delineated, such as unconventional bioimaging techniques, large cargo delivery, combination therapy, gaseous molecule delivery, antimicrobial protection, and Alzheimer's disease therapy.
Collapse
Affiliation(s)
- Jonas G. Croissant
- Chemical and Biological Engineering; University of New Mexico; 210 University Blvd NE Albuquerque NM 87131-0001 USA
- Center for Micro-Engineered Materials; Advanced Materials Laboratory; University of New Mexico; MSC04 2790, 1001 University Blvd SE Suite 103 Albuquerque NM 87106 USA
| | - Yevhen Fatieiev
- Smart Hybrid Materials Laboratory (SHMs); Advanced Membranes and Porous Materials Center; King Abdullah University of Science and Technology; Thuwal Riyadh KSA 11442 Saudi Arabia
| | - Abdulaziz Almalik
- Life sciences and Environment Research Institute; Center of Excellence in Nanomedicine (CENM); King Abdulaziz City for Science and Technology (KACST); Riyadh 11461 Saudi Arabia
| | - Niveen M. Khashab
- Smart Hybrid Materials Laboratory (SHMs); Advanced Membranes and Porous Materials Center; King Abdullah University of Science and Technology; Thuwal Riyadh KSA 11442 Saudi Arabia
| |
Collapse
|