1
|
Li F, Lin J, Lichtfouse E, Qi H, Peng L, Yu Y, Gao L. DNA Sensors for the Detection of Mercury Ions. BIOSENSORS 2025; 15:275. [PMID: 40422014 DOI: 10.3390/bios15050275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/11/2025] [Accepted: 04/27/2025] [Indexed: 05/28/2025]
Abstract
Ecosystem pollution by mercury ions (Hg2+) is a major health concern, yet classical analytical methods for mercury analysis are limited. This paper reviews the advances in Hg2+ detection using DNA as recognition elements in the sensors. DNA as a recognition molecule is inexpensive, simple, and appropriate for real-time detection of Hg2+. This paper discusses the DNA-based sensors that were used for the detection of Hg2+. These can be carried out by electrochemistry, field effect transistors (FET), Raman spectroscopy, colorimetry, and fluorescence resonance energy transfer (FRET). The detection principles and the advantages of DNA in these sensors are also revealed. Finally, the paper provides an overview of prospects and potential challenges in the field.
Collapse
Affiliation(s)
- Feng Li
- Department of Thoracic Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang 212013, China
| | - Jinxin Lin
- Department of Thoracic Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang 212013, China
| | - Eric Lichtfouse
- International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, No. 28 Xianning West Rd, Xi'an 710049, China
| | - Haifeng Qi
- Department of Thoracic Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang 212013, China
| | - Lang Peng
- Department of Thoracic Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang 212013, China
| | - Yangyang Yu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei 230039, China
| | - Li Gao
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
- School of Life Sciences, Qinghai Normal University, Xining 810008, China
| |
Collapse
|
2
|
Yasuda S, Morihiro K, Koga S, Okamoto A. Amplified Production of a DNA Decoy Catalyzed by Intracellular MicroRNA. Angew Chem Int Ed Engl 2025; 64:e202424421. [PMID: 39901657 PMCID: PMC11976199 DOI: 10.1002/anie.202424421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/30/2025] [Accepted: 01/30/2025] [Indexed: 02/05/2025]
Abstract
DNA decoys inhibit cellular transcription factors and are expected to be among the nucleic acid drugs used to downregulate the transcription process. However, spatially controlling the on/off efficacy of DNA decoys to avoid side effects on normal cells is challenging. To reduce undesired decoy function in normal cells, we adopted catalytic hairpin assembly (CHA) to produce a DNA duplex from a hairpin DNA pair in response to a specific microRNA (miRNA). We designed the DNA hairpin pairs to form a DNA decoy that binds to nuclear factor kappa B (NF-κB), whose overexpression is related to many diseases, including cancer. The transformation of the DNA hairpin pair to the NF-κB DNA decoy was catalyzed by miR-21, which is expressed in various types of cancers. Intracellular CHA progression and the inhibitory effect against NF-κB were observed only in miR-21 overexpressing cancer cells. The intracellular miR-21-catalyzed production of the NF-κB DNA decoy has the potential to reduce side effects on normal cells, thereby strengthening the therapeutic profile of the CHA-decoy system. The ability to customize the combination of catalytic miRNA and target transcription factors would allow our technology to serve as a "personalized drug discovery system" for a variety of challenging diseases, including cancer.
Collapse
Affiliation(s)
- Soshu Yasuda
- Department of Chemistry and BiotechnologyGraduate School of EngineeringThe University of Tokyo7-3-1 Hongo, Bunkyo-kuTokyo 113–8656Japan
| | - Kunihiko Morihiro
- Department of Chemistry and BiotechnologyGraduate School of EngineeringThe University of Tokyo7-3-1 Hongo, Bunkyo-kuTokyo 113–8656Japan
| | - Shuichiro Koga
- Department of Chemistry and BiotechnologyGraduate School of EngineeringThe University of Tokyo7-3-1 Hongo, Bunkyo-kuTokyo 113–8656Japan
| | - Akimitsu Okamoto
- Department of Chemistry and BiotechnologyGraduate School of EngineeringThe University of Tokyo7-3-1 Hongo, Bunkyo-kuTokyo 113–8656Japan
| |
Collapse
|
3
|
Song J, Zhang C, Fu S, Xu X. Visualized lateral flow assay for logic determination of co-existing viral RNA fragments. Biosens Bioelectron 2024; 261:116519. [PMID: 38917515 DOI: 10.1016/j.bios.2024.116519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/16/2024] [Accepted: 06/21/2024] [Indexed: 06/27/2024]
Abstract
Different types of pathogenic viruses that have common transmission path can be co-infected, inducing distinct disease procession in comparison to that infection of one. Also, in the post COVID-19 time, more types of respiratory infectious virus are becoming prevalent and are concurrent. Those bring an urgent need for detection of co-existing viruses. Here, we propose a visualized lateral flow assay for logic determination of co-existing viral RNA fragments. In the presence of specific viral RNA inputs, DNAzyme is de-blocked according to defined logic, and catalyzes the hydrolysis of hairpin-structural substrate. One of cleaved substrates contains DNAzyme domain to realize dual signal amplification, which obtains copious of the other cleaved substrates. The cleaved substrates act as linking strands for bridging DNA-modified gold nanoparticles onto lateral flow strip to induce coloration on test line. "AND", "OR" and "INHIBIT" controlled lateral flow assays are respectively demonstrated for co-existing viral RNA detection, and the visual results can be obtained by the same kind of prepared strip, without need of re-fabricating strips according to logic systems. The work provides a flexible, convenient, visual and logic-processing strategy for simultaneous analysis of co-existing viruses.
Collapse
Affiliation(s)
- Juanjuan Song
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Chuhao Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Siting Fu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Xiaowen Xu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China.
| |
Collapse
|
4
|
Bi X, Li S, Yang F, Yuan R, Xiang Y. Cascaded autocatalytic hairpin assembly molecular circuit for amplified fluorescent aptamer luteinising hormone assay. Talanta 2024; 275:126150. [PMID: 38692046 DOI: 10.1016/j.talanta.2024.126150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/07/2024] [Accepted: 04/23/2024] [Indexed: 05/03/2024]
Abstract
The quantitative detection of luteinising hormone (LH) is critical for the study of the physiological mechanism of reproductive function and the assessment of infertility and the clinical treatment of reproductive disorders. However, conventional approaches for LH detection are mostly based on an antibody recognition module with the limitations of sensitivity, simplicity and cost. The development of robust LH sensing methods is therefore highly demanded for facilitating the diagnosis of LH-related diseases. We establish a convenient, amplified and sensitive fluorescent aptamer LH assay based on new target-triggered and cascaded autocatalytic hairpin assembly (C-aCHA) circuit amplification means via initiator sequence replication. Target LH molecules bind the aptamers in the aptamer/initiator duplexes to release the initiator sequences, which trigger CHA formation of DNA three-way junctions (TWJs) and the unfolding of fluorescently quenched signal hairpins to show amplified fluorescence. The TWJs further activate another CHA cycle for the yield of more initiator sequences to form the C-aCHA circuit amplification cycles, which lead to the unfolding of many signal hairpins to exhibit substantially magnified fluorescence recovery for detecting LH down to 8.56 pM in the range from 10 pM to 50 nM. In addition, the monitoring of trace LH in diluted serums by this sensing approach has been also verified. Our LH assay clearly outperforms current existing antibody-based methods and the C-aCHA signal amplification strategy can be easily extended as a robust means for sensitively monitoring various biomolecular markers with simple replacement of the corresponding aptamers for diverse applications.
Collapse
Affiliation(s)
- Xin Bi
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Chongqing, 400715, PR China
| | - Shunmei Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Chongqing, 400715, PR China
| | - Fang Yang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Chongqing, 400715, PR China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Chongqing, 400715, PR China
| | - Yun Xiang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Chongqing, 400715, PR China.
| |
Collapse
|
5
|
Yin Z, Li S, Liu X, Yuan R, Xiang Y. A metal ion-coordinated DNA probe for sensitive fluorescence detection of metallothionein via a dual nucleic acid amplification strategy. Dalton Trans 2023; 52:18473-18479. [PMID: 38014455 DOI: 10.1039/d3dt03346e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Sensitively monitoring metallothionein (MT), a heavy metal-binding protein with substantial cysteine content, is of significance for evaluating heavy metal poisoning in both humans and animals. Based on a new metal ion-coordinated DNA probe and the heavy metal ion binding capability of MT, as well as the substantial signal enhancement of the hybridization chain reaction (HCR) and rolling circle amplification (RCA), we demonstrate a highly sensitive fluorescence MT detection assay. MT binds the metal ions in the hairpin structured, metal ion-coordinated DNA probe to switch its hairpin structure into ssDNA, which triggers subsequent RCA reactions and HCRs to open plenty of fluorescently quenched signal hairpins to exhibit drastically amplified fluorescence recovery for assaying MT down to 0.58 nM within a dynamic range of 1-320 nM. In addition, the investigation of low contents of MT in diluted human serum by such an assay has also been verified, indicating its promising application potential for diagnosing heavy metal poisoning.
Collapse
Affiliation(s)
- Zihao Yin
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| | - Shunmei Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| | - Xiaoju Liu
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| | - Yun Xiang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
6
|
Cheng X, Li X, Kang Y, Zhang D, Yu Q, Chen J, Li X, Du L, Yang T, Gong Y, Yi M, Zhang S, Zhu S, Ding S, Cheng W. Rapid in situ RNA imaging based on Cas12a thrusting strand displacement reaction. Nucleic Acids Res 2023; 51:e111. [PMID: 37941139 PMCID: PMC10711451 DOI: 10.1093/nar/gkad953] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/09/2023] [Accepted: 10/12/2023] [Indexed: 11/10/2023] Open
Abstract
RNA In situ imaging through DNA self-assembly is advantaged in illustrating its structures and functions with high-resolution, while the limited reaction efficiency and time-consuming operation hinder its clinical application. Here, we first proposed a new strand displacement reaction (SDR) model (Cas12a thrusting SDR, CtSDR), in which Cas12a could overcome the inherent reaction limitation and dramatically enhance efficiency through energy replenishment and by-product consumption. The target-initiated CtSDR amplification was established for RNA analysis, with order of magnitude lower limit of detection (LOD) than the Cas13a system. The CtSDR-based RNA in situ imaging strategy was developed to monitor intra-cellular microRNA expression change and delineate the landscape of oncogenic RNA in 66 clinic tissue samples, possessing a clear advantage over classic in situ hybridization (ISH) in terms of operation time (1 h versus 14 h) while showing comparable sensitivity and specificity. This work presents a promising approach to developing advanced molecular diagnostic tools.
Collapse
Affiliation(s)
- Xiaoxue Cheng
- The Center for Clinical Molecular Medical detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
- Biobank Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Xiaosong Li
- The Center for Clinical Molecular Medical detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Yuexi Kang
- The Center for Clinical Molecular Medical detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Decai Zhang
- Laboratory Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510000, PR China
| | - Qiubo Yu
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Junman Chen
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Xinyu Li
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Li Du
- The Center for Clinical Molecular Medical detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Tiantian Yang
- The Center for Clinical Molecular Medical detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Yao Gong
- The Center for Clinical Molecular Medical detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Ming Yi
- The Center for Clinical Molecular Medical detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Songzhi Zhang
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Shasha Zhu
- The Center for Clinical Molecular Medical detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Shijia Ding
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Wei Cheng
- The Center for Clinical Molecular Medical detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
- Biobank Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
7
|
Su J, Sun C, Du J, Xing X, Wang F, Dong H. RNA-Cleaving DNAzyme-Based Amplification Strategies for Biosensing and Therapy. Adv Healthc Mater 2023; 12:e2300367. [PMID: 37084038 DOI: 10.1002/adhm.202300367] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/29/2023] [Indexed: 04/22/2023]
Abstract
Since their first discovery in 1994, DNAzymes have been extensively applied in biosensing and therapy that act as recognition elements and signal generators with the outstanding properties of good stability, simple synthesis, and high sensitivity. One subset, RNA-cleaving DNAzymes, is widely employed for diverse applications, including as reporters capable of transmitting detectable signals. In this review, the recent advances of RNA-cleaving DNAzyme-based amplification strategies in scaled-up biosensing are focused, the application in diagnosis and disease treatment are also discussed. Two major types of RNA-cleaving DNAzyme-based amplification strategies are highlighted, namely direct response amplification strategies and combinational response amplification strategies. The direct response amplification strategies refer to those based on novel designed single-stranded DNAzyme, and the combinational response amplification strategies mainly include two-part assembled DNAzyme, cascade reactions, CHA/HCR/RCA, DNA walker, CRISPR-Cas12a and aptamer. Finally, the current status of DNAzymes, the challenges, and the prospects of DNAzyme-based biosensors are presented.
Collapse
Affiliation(s)
- Jiaxin Su
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry & Biological Engineering, University of Science & Technology Beijing, 30 Xueyuan Road, Beijing, 100083, China
| | - Chenyang Sun
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry & Biological Engineering, University of Science & Technology Beijing, 30 Xueyuan Road, Beijing, 100083, China
| | - Jinya Du
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry & Biological Engineering, University of Science & Technology Beijing, 30 Xueyuan Road, Beijing, 100083, China
| | - Xiaotong Xing
- Marshall Laboratory of Biomedical Engineering, Shenzhen Key Laboratory for Nano-Biosensing Technology, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Fang Wang
- Marshall Laboratory of Biomedical Engineering, Shenzhen Key Laboratory for Nano-Biosensing Technology, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518060, China
- Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen, Guangdong, 518060, P. R. China
| | - Haifeng Dong
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry & Biological Engineering, University of Science & Technology Beijing, 30 Xueyuan Road, Beijing, 100083, China
- Marshall Laboratory of Biomedical Engineering, Shenzhen Key Laboratory for Nano-Biosensing Technology, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518060, China
| |
Collapse
|
8
|
Jiang H, Li Y, Lv X, Deng Y, Li X. Recent advances in cascade isothermal amplification techniques for ultra-sensitive nucleic acid detection. Talanta 2023; 260:124645. [PMID: 37148686 PMCID: PMC10156408 DOI: 10.1016/j.talanta.2023.124645] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/30/2023] [Accepted: 05/03/2023] [Indexed: 05/08/2023]
Abstract
Nucleic acid amplification techniques have always been one of the hot spots of research, especially in the outbreak of COVID-19. From the initial polymerase chain reaction (PCR) to the current popular isothermal amplification, each new amplification techniques provides new ideas and methods for nucleic acid detection. However, limited by thermostable DNA polymerase and expensive thermal cycler, PCR is difficult to achieve point of care testing (POCT). Although isothermal amplification techniques overcome the defects of temperature control, single isothermal amplification is also limited by false positives, nucleic acid sequence compatibility, and signal amplification capability to some extent. Fortunately, efforts to integrating different enzymes or amplification techniques that enable to achieve intercatalyst communication and cascaded biotransformations may overcome the corner of single isothermal amplification. In this review, we systematically summarized the design fundamentals, signal generation, evolution, and application of cascade amplification. More importantly, the challenges and trends of cascade amplification were discussed in depth.
Collapse
Affiliation(s)
- Hao Jiang
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Yuan Li
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Xuefei Lv
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China.
| | - Yulin Deng
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Xiaoqiong Li
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
9
|
Yao S, Zou R, Chen F, Gong H, Cai C. Engineering of catalytic hairpin-rigidified Y-shaped DNA-functionalized nanomachine to rapidly detect mRNA. Mikrochim Acta 2023; 190:210. [PMID: 37169940 DOI: 10.1007/s00604-023-05708-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 02/19/2023] [Indexed: 05/13/2023]
Abstract
The catalytic hairpin-rigidified Y-shaped DNA through layer-by-layer assembly has been fixed on the surface of copper sulfide nanoparticles for the detection of survivin mRNA. The distance between the CHA probes fixed on the Y-shaped DNA is significantly shortened. The results show that the fluorescence of this nanomachine reached the maximum value in 50 min (excitation wavelength at 488 nm and emission wavelength 526 nm), and its reaction rate is more than 5-fold faster than that of the free-CHA control system. In addition, the nanomachine showed high sensitivity (LOD of 3.5 pM) and high specificity for the survivin mRNA detection. Given its fast response time and excellent detection performance, we envision that the catalytic hairpin-rigidified Y-shaped DNA-functionalized nanomachine will offer potential applications in disease diagnostics and clinical applications.
Collapse
Affiliation(s)
- Shufen Yao
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, China
| | - Rong Zou
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, China
| | - Feng Chen
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, China.
| | - Hang Gong
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, China
| | - Changqun Cai
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, China.
| |
Collapse
|
10
|
Li D, Lv Y, Xia H, Huang J, Liu W, Yu J, Jing G, Liu W, Sun Y, Li W. Target-activated multivalent sensing platform for improving the sensitivity and selectivity of Hg2+ detection. Anal Chim Acta 2023; 1256:341123. [PMID: 37037627 DOI: 10.1016/j.aca.2023.341123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/17/2023] [Accepted: 03/18/2023] [Indexed: 04/03/2023]
Abstract
Sensitivity and selectivity are critical parameters to evaluate the performance of sensors. For trace detection, it remains a challenge to design a new sensor that achieves high sensitivity and selectivity simultaneously. Here, we present a target-activated dual Mg2+-dependent DNAzyme (MNAzyme) that served as a simple sensing model to explore the multivalency in improving the analytical sensitivity and selectivity for target detection. Mercury ion (Hg2+), a notorious toxic metal ion, was selected as a model target. In the presence of Hg2+, the thymine-rich regions of the hairpin probe and primer could hybridize to form a stable duplex via the thymine-Hg2+-thymine structure. Then, an intact enzyme sequence was exposed and two separate enzyme fragments were close to each other, generating a dual MNAzyme. Benefiting from the localized high-concentration of the enzyme strand, the dual MNAzyme showed a remarkable improvement in binding stability. The catalytic rate constant of the dual MNAzyme was theoretically 1.60 times higher than that of the monomeric counterpart, and the sensitivity and selectivity had 4.50 and 1.44-fold enhancement, respectively. When the dual MNAzyme was used for sensor applications, the limit of detection was determined to be 0.04 and 0.2 nM via UV-vis spectrophotometer and naked eye, respectively. Meanwhile, the method offered desirable selectivity toward Hg2+ against other metal ions. With the advantages of simple operation, high sensitivity, and desirable selectivity, the developed multivalent sensing platform could be easily expanded in the future for the on-site detection of other low-abundance analytes.
Collapse
Affiliation(s)
- Dongyan Li
- College of Chemical Engineering, Xiangtan University, Xiangtan, 411105, China
| | - Yuxiong Lv
- College of Chemical Engineering, Xiangtan University, Xiangtan, 411105, China
| | - Huaiyue Xia
- College of Chemical Engineering, Xiangtan University, Xiangtan, 411105, China
| | - Jing Huang
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, 410004, China
| | - Wenjie Liu
- College of Chemical Engineering, Xiangtan University, Xiangtan, 411105, China
| | - Jianna Yu
- College of Chemical Engineering, Xiangtan University, Xiangtan, 411105, China
| | - Guoxing Jing
- College of Chemical Engineering, Xiangtan University, Xiangtan, 411105, China
| | - Wen Liu
- College of Chemical Engineering, Xiangtan University, Xiangtan, 411105, China
| | - Yingying Sun
- College of Chemical Engineering, Xiangtan University, Xiangtan, 411105, China
| | - Wenshan Li
- College of Chemical Engineering, Xiangtan University, Xiangtan, 411105, China.
| |
Collapse
|
11
|
Hu M, Hu Y, Wu T. A multifunctional monolithic interfacial sensor based on gold nanoparticle. Talanta 2023; 259:124546. [PMID: 37062087 DOI: 10.1016/j.talanta.2023.124546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/05/2023] [Accepted: 04/09/2023] [Indexed: 04/18/2023]
Abstract
The spatial and temporal uneven distribution of complex biochemical reactions creates the diversity of biological systems. And the microenvironment confers fine regulation of these reactions, a stunning example of which is liquid-liquid phase separation (LLPS). LLPS can form a separate compartment without the physical separation formed by conventional membrane structures, and the reactions within the interface have specific reaction dynamics. Inspired by this, we report an interfacial sensor based on gold nanoparticles showing that interfacial factors have similar properties operating in natural biological environments and sensors. It repels molecules outside the interface and adjusts the DNA conformation within the interface to produce unique dynamics. The sensor adopts a modular design, allowing functional modules assembled on a single nanoparticle to avoid complex designs. We demonstrate the functionality of logical operations, using apurinic/apyrimidinic endonuclease 1 and micro RNA as inputs, showing that the sensor has the ability and potential to become a multifunctional platform with clear interface nature.
Collapse
Affiliation(s)
- Minghao Hu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yuqiang Hu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Tongbo Wu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
12
|
Li Y, Si Q, Liu C, Huang Z, Chen Q, Jiao T, Chen X, Chen Q, Wei J. Construction of a self-sufficient DNA circuit for amplified detection of kanamycin. Food Chem 2023; 418:136048. [PMID: 36996659 DOI: 10.1016/j.foodchem.2023.136048] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 03/21/2023] [Accepted: 03/25/2023] [Indexed: 03/29/2023]
Abstract
Improper use of kanamycin can lead to trace kanamycin residues in animal-derived foods, which can pose a potential threat to public health. Isothermal enzyme-free DNA circuits have provided a versatile toolbox for detecting kanamycin residues in complicated food samples, yet they are always limited by low amplification efficiency and intricate design. Herein, we present a simple-yet-robust nonenzymatic self-driven hybridization chain reaction (SHCR) amplifier for kanamycin determination with 5800-fold sensitivity over that of the conventional HCR circuit. The analyte kanamycin-activated SHCR circuitry can generate numerous new initiators to promote the reaction and improve the amplification efficiency, thus achieving an exponential signal gain. With precise target recognition and multilayer amplification capability, our self-sustainable SHCR aptasensor facilitated the highly sensitive and reliable analysis of kanamycin in buffer, milk, and honey samples, thus holding great potential for the amplified detection of trace contaminants in liquid food matrices.
Collapse
|
13
|
Shen Y, Gao X, Lu HJ, Nie C, Wang J. Electrochemiluminescence-based innovative sensors for monitoring the residual levels of heavy metal ions in environment-related matrices. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
14
|
Wei Q, Huang H, Wang S, Liu F, Xu J, Luo Z. A Novel Fluorescent Aptamer Sensor with DNAzyme Signal Amplification for the Detection of CEA in Blood. SENSORS (BASEL, SWITZERLAND) 2023; 23:1317. [PMID: 36772357 PMCID: PMC9920513 DOI: 10.3390/s23031317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Carcinoembryonic antigen (CEA) is a tumor-specific biomarker; however, its low levels in the early stages of cancer make it difficult to detect. To address the need for analysis of ultra-low-level substances, we designed and synthesized a fluorescent aptamer sensor with DNAzyme signal amplification and used it for the detection of CEA in blood. In the presence of the target protein, the aptamer sequence in the recognition probe binds to the target protein and opens the hairpin structure, hybridizes with the primer and triggers a polymerization reaction in the presence of polymerase to generate double-stranded DNA with two restriction endonuclease Nb.BbvCl cleavage sites. At the same time, the target protein is displaced and continues to bind to another recognition probe, triggering a new round of polymerization reaction, forming a cyclic signal amplification triggered by the target. The experimental results show that the blood detection with CEA has a high sensitivity and a wide detection range. The detection range: 10 fg/mL~10 ng/mL, with a detection limit of 5.2 fg/mL. In addition, the sensor can be used for the analysis of complex biological samples such as blood.
Collapse
Affiliation(s)
- Qingmin Wei
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, China
| | - Huakui Huang
- Yulin Campus, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, China
| | - Shulong Wang
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, China
| | - Fa Liu
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, China
| | - Jiayao Xu
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, China
| | - Zhihui Luo
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, China
| |
Collapse
|
15
|
Cui M, Zhang D, Wang Q, Chao J. An intelligent, autocatalytic, DNAzyme biocircuit for amplified imaging of intracellular microRNAs. NANOSCALE 2023; 15:578-587. [PMID: 36533380 DOI: 10.1039/d2nr05165f] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
DNAzymes hold great promise as transducing agents for the analysis of intracellular biomarkers. However, their low intracellular delivery efficiency and limited signal amplification capability (including an additional supply of cofactors) hinder their application in low-abundance biomarker analysis. Herein, a general strategy to design an intelligent, autocatalytic, DNAzyme biocircuit is developed for amplified microRNA imaging in living cells. The DNAzyme biocircuit is constructed based on a nanodevice composed of catalytic hairpin assembly (CHA) and DNAzyme biocatalytic functional units, sustained by Au nanoparticles (AuNPs) and MnO2 nanosheets (CD/AM nanodevices). Once the CD/AM nanodevices are endocytosed by cells, the MnO2 nanosheets are reduced by intracellular glutathione (GSH), which not only releases the different units of the DNAzyme circuit, but also generates the cofactor Mn2+ for DNAzyme autocatalysis. The intracellular analytes could trigger the coordinated cross-activation of CHA and autocatalytic DNAzymes on AuNPs, enabling reliable and accurate detection of miRNAs in living cells. This intelligent autocatalytic multilayer DNAzyme biocircuit can effectively avoid signal leakage and obtain high amplification gain, expanding the application of programmable complex DNA nanocircuits in biosensing, nanomaterial assembly, and biomedicine.
Collapse
Affiliation(s)
- Meirong Cui
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, P. R. China.
| | - Dan Zhang
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, P. R. China.
| | - Qingfu Wang
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, P. R. China.
| | - Jie Chao
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, P. R. China.
| |
Collapse
|
16
|
Toehold-mediated biosensors: Types, mechanisms and biosensing strategies. Biosens Bioelectron 2022; 220:114922. [DOI: 10.1016/j.bios.2022.114922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022]
|
17
|
Liu Y, Zhu P, Huang J, He H, Ma C, Wang K. Integrating DNA nanostructures with DNAzymes for biosensing, bioimaging and cancer therapy. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
18
|
Fluorescence resonance energy transfer-based nanomaterials for the sensing in biological systems. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.12.061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
19
|
Xing C, Lin Q, Gao X, Cao T, Chen J, Liu J, Lin Y, Wang J, Lu C. Intracellular miRNA Imaging Based on a Self-Powered and Self-Feedback Entropy-Driven Catalyst-DNAzyme Circuit. ACS APPLIED MATERIALS & INTERFACES 2022; 14:39866-39872. [PMID: 36018586 DOI: 10.1021/acsami.2c11923] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
DNAzyme-based signal amplification circuits promote the advances in low-abundant miRNA imaging in living cells. However, due to the insufficient cofactor in living cells and unsustainable target utilization, self-powered and self-feedback DNAzyme amplification circuits have rarely been achieved. Here, a MnO2 nanosheet-mediated self-powered and self-feedback entropy-driven catalyst (EDC)-DNAzyme nanoprobe (MnPFEDz) was demonstrated for sensitive imaging of intracellular microRNA (miRNA). In this strategy, MnPFEDz was formed by adsorbing EDC modules and substrate probes on MnO2 nanosheets. The MnO2 nanosheets acted not only as glutathione (GSH)-responsive nanocarriers for efficient delivery of DNA probes but also as a DNAzyme cofactor supplier to power the DNAzyme biocatalysis and promote signal transduction in a feedback way. When entering the cells, GSH could decompose MnO2 nanosheets to generate numerous Mn2+ ion cofactors, leading to the release of DNA probes. Subsequently, the target miRNA initiated EDC cycles to generate amplified fluorescence signals and exposed the complete DNAzyme. Meanwhile, each of the exposed DNAzyme then cleaved the substrate probes with the help of Mn2+ ion cofactors and released a new trigger analogue for the next round of EDC cycles, initiating additional fluorescence signals in a feedback way. As a multiple signal amplification strategy, the MnPFEDz nanoprobe facilitated the effective detection of intracellular molecules with enhanced sensitivity and provided a versatile strategy for the construction of self-powered and self-feedback DNA circuits in living cells.
Collapse
Affiliation(s)
- Chao Xing
- Fujian Key Laboratory of Functional Marine Sensing Materials, Center for Advanced Marine Materials and Smart Sensors, College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, P. R. China
| | - Qitian Lin
- College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
| | - Xue Gao
- Fujian Key Laboratory of Functional Marine Sensing Materials, Center for Advanced Marine Materials and Smart Sensors, College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, P. R. China
| | - Ting Cao
- Fujian Key Laboratory of Functional Marine Sensing Materials, Center for Advanced Marine Materials and Smart Sensors, College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, P. R. China
| | - Jing Chen
- Fujian Key Laboratory of Functional Marine Sensing Materials, Center for Advanced Marine Materials and Smart Sensors, College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, P. R. China
| | - Jialing Liu
- Fujian Key Laboratory of Functional Marine Sensing Materials, Center for Advanced Marine Materials and Smart Sensors, College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, P. R. China
| | - Yuhong Lin
- Institute of Nanobiomaterials and Immunology, School of Life Science, Taizhou University, Taizhou 318000, China
| | - Jun Wang
- Fujian Key Laboratory of Functional Marine Sensing Materials, Center for Advanced Marine Materials and Smart Sensors, College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, P. R. China
| | - Chunhua Lu
- College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
| |
Collapse
|
20
|
Wang Y, Chen Y, Wan Y, Hong C, Shang J, Li F, Liu X, Wang F. An Autocatalytic DNA Circuit Based on Hybridization Chain Assembly for Intracellular Imaging of Polynucleotide Kinase. ACS APPLIED MATERIALS & INTERFACES 2022; 14:31727-31736. [PMID: 35786848 DOI: 10.1021/acsami.2c08523] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Polynucleotide kinase (PNK) plays an essential role in various cellular events by regulating phosphorylation processes, and abnormal homeostasis of PNK could cause many human diseases. Herein, we proposed an autocatalytic hybridization system (AHS) through the elaborate integration of hybridization chain assembly (HCA) and catalytic DNA assembly (CDA) that enables a highly efficient positive feedback amplification. The PNK-targeting AHS biosensor is composed of three modules: a recognition module, an HCA amplification module, and a CDA autocatalytic module. In the presence of PNK, the recognition module could transform the PNK input into an exposed nucleic acid initiator (I). Then the initiator strand I could trigger the autonomous HCA process in the amplification module, and the resulted HCA products could reassemble the split CDA trigger strand T, subsequently inducing the CDA process in the autocatalytic module to form abundant DNA duplex products. Consequently, the embedded initiator strand I was liberated from the CDA duplex product to autonomously trigger the new rounds of HCA circuit. The rational integration and cooperative cross-activation between the HCA and CDA module could prominently accelerate the reaction and realize the exponential amplification efficiency by initiator regeneration. As a result, the self-sustainable AHS amplifier could implement the sensitive detection of PNK in vitro and in biological samples and further fulfill accurate monitoring of the intracellular PNK activity and the effective screening of PNK inhibitors. This work paves a way for exploiting highly efficient artificial DNA circuits to analyze low-abundance biomarkers, holding great potential in biochemical research and clinical diagnosis.
Collapse
Affiliation(s)
- Yushi Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Yingying Chen
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Yeqing Wan
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Chen Hong
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Jinhua Shang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Fengzhe Li
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Xiaoqing Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Fuan Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| |
Collapse
|
21
|
Su Z, Wen Q, Li S, Guo L, Li M, Xiong Y, Li W, Ren J. A G-quadruplex/hemin structure-undamaged method to inhibit peroxidase-mimic DNAzyme activity for biosensing development. Anal Chim Acta 2022; 1221:340143. [DOI: 10.1016/j.aca.2022.340143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/28/2022] [Accepted: 07/02/2022] [Indexed: 11/29/2022]
|
22
|
Tian Z, Zhou C, Zhang C, Wu M, Duan Y, Li Y. Recent advances of catalytic hairpin assembly and its application in bioimaging and biomedicine. J Mater Chem B 2022; 10:5303-5322. [PMID: 35766024 DOI: 10.1039/d2tb00815g] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Catalytic hairpin assembly (CHA) appears to be a particularly appealing nucleic acid circuit because of its powerful amplification capability, simple protocols, and enzyme-free and isothermal conditions, and can combine with various signal output modes for the biosensing of various analytes. Especially in the last five years, vast CHA related studies have sprung up. With the deep exploration of the CHA mechanism, some novel and excellent CHA strategies have been proposed; meanwhile the CHA cascade strategies with various amplification techniques further improve the analysis performance. Furthermore, diverse CHA based biosensors have been tactfully engineered and extensively employed in imaging applications in living cells and in vivo ascribed to its gentle reaction, efficient amplification and universality. Hence, we present a comprehensive and systematic summary of the progress in CHA and its application in bioimaging and biomedicine to date. At first, we introduced the mechanism and diversification of CHA in detail, including the newly developed CHA and its ingenious combination with a variety of other technologies. Concurrently, we summarized the latest application progress of different CHA strategies in bioimaging and biomedicine, highlighting the merits and drawbacks of representative approaches. Finally, we put forward some views on the challenges and prospects of CHA in bioimaging and biomedicine in the future.
Collapse
Affiliation(s)
- Ziyi Tian
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China.
| | - Chen Zhou
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China.
| | - Chuyan Zhang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China.
| | - Mengfan Wu
- Research Center of Analytical Instrumentation, School of Mechanical Engineering, Sichuan University, Chengdu 610065, China.
| | - Yixiang Duan
- Research Center of Analytical Instrumentation, School of Mechanical Engineering, Sichuan University, Chengdu 610065, China.
| | - Yongxin Li
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
23
|
Cheng Z, Wei J, Gu L, Zou L, Wang T, Chen L, Li Y, Yang Y, Li P. DNAzyme-based biosensors for mercury (Ⅱ) detection: Rational construction, advances and perspectives. JOURNAL OF HAZARDOUS MATERIALS 2022; 431:128606. [PMID: 35278952 DOI: 10.1016/j.jhazmat.2022.128606] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/17/2022] [Accepted: 02/27/2022] [Indexed: 06/14/2023]
Abstract
Mercury contamination is one of the most severe issues in society due to its threats to public health and the ecological system. However, traditional methods for mercury ion detection are still limited by their time-consuming procedures, requirement of expensive instruments, and low selectivity. In recent decades, tremendous progress has been made in the development of functional nucleic acid-based, especially DNAzyme sensors for mercury (Ⅱ) (Hg2+) determination, including RNA-cleaving DNAzymes and G-quadruplex-based DNAzymes in particular. Researchers have heavily studied the construction of Hg2+ sensors, mainly originating from in vitro selection-derived DNAzymes, by incorporating T-Hg2+-T recognition moieties in existing DNAzyme scaffolds, and interfacing Hg2+-sensitive sequences with nanomaterials. In the last case, the employment of materials (as quenchers, signal transducers and DNA immobilizers) enriches the application scenarios of current Hg2+-DNAzymes, due to a combination of their functions. We summarize a broad range of sensing approaches, including optical, electrochemical, and other sensing methods, and compare their features. This review elaborates on the rational design strategies for engineering DNAzymes to selectively sense Hg2+, critically discusses their properties in different application scenarios, and summarizes recent advances in this field. Additionally, current progress, challenges and future perspectives are also discussed. This minireview provides deeper insights into the chemistry of these functional nucleic acids when working with Hg2+, explains the design ideas of DNAzyme-sensors in each platform, and reveals potential opportunities in developing more advanced DNAzyme sensors for the highly selective and sensitive recognition of Hg2+. ENVIRONMENTAL IMPLICATION: Mercury is one of the most toxic metallic contaminants due to its high toxicity, non-biodegradability, and serious human health risks when accumulated in the body. In the recent decade, intensive studies have focused on exploring mercury sensors by combining DNAzymes with various sensing methods, paving a promising avenue to gain ultra-high sensitivity and selectivity. However, so far, no review has introduced the recent advances on DNAzyme-based sensors for mercury detection in a critical way. In this review, we comprehensively summarized the studies on DNAzyme-based sensors for mercury detection using various sensing techniques including optical, electrochemical and other sensing methods.
Collapse
Affiliation(s)
- Zehua Cheng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Jinchao Wei
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Liqiang Gu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Liang Zou
- School of Medicine, Chengdu University, Chengdu 610106, China
| | - Ting Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Ling Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Yuqing Li
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China; Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Yu Yang
- Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Peng Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.
| |
Collapse
|
24
|
Xu J, Liu M, Zhao W, Wang S, Gui M, Li H, Yu R. DNAzyme-based cascade signal amplification strategy for highly sensitive detection of lead ions in the environment. JOURNAL OF HAZARDOUS MATERIALS 2022; 429:128347. [PMID: 35101754 DOI: 10.1016/j.jhazmat.2022.128347] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/12/2022] [Accepted: 01/22/2022] [Indexed: 06/14/2023]
Abstract
Lead ions are one of many common environmental pollutants, that can cause posing a serious threat to people's health, thus, their efficient and sensitive detection is important. We propose a cascade signal amplification sensor using a DNAzyme-based strand displacement amplification (SDA) and hybridization chain reaction (HCR) for the high-sensitivity detection of Pb2+. In the demonstrated sensor system, the target metal ion can activate DNAzyme to cause a strand displacement reaction. Under the synergistic action of polymerase and nickase, large numbers of DNA strands are generated that can initiate HCR. The subsequent HCR can restore the fluorescence intensity of the FAM quenched for the fluorescence resonance energy transfer effect, which exhibits a strong fluorescence signal. The DNAzyme-based sensor allowed the detection of Pb2+ down to 16.8 pM and resulted in a good dynamic line relationship ranging from 50 pM to 500 nM, and the biosensor also showed good selectivity. Furthermore, we confirmed that the proposed sensor can still detect lead ions in complex environments such as lake water, milk, and serum. We believe these findings will provide new ideas for the detection of toxic elements ions in the environment and food.
Collapse
Affiliation(s)
- Jiamin Xu
- Jiangxi Normal University, Nanchang 330022, PR China
| | - Mingbin Liu
- Jiangxi Normal University, Nanchang 330022, PR China
| | - Weihua Zhao
- Jiangxi Normal University, Nanchang 330022, PR China
| | - Suqin Wang
- Jiangxi Normal University, Nanchang 330022, PR China.
| | - Minfang Gui
- Jiangxi Normal University, Nanchang 330022, PR China
| | - Hongbo Li
- Jiangxi Normal University, Nanchang 330022, PR China; Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, PR China; State Key Laboratory for Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, PR China.
| | - Ruqin Yu
- State Key Laboratory for Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, PR China.
| |
Collapse
|
25
|
|
26
|
Wang Q, Zhou H, Hao T, Hu K, Qin L, Ren X, Guo Z, Wang S, Hu Y. A fully integrated fast scan cyclic voltammetry electrochemical method: Improvements in reaction kinetics and signal stability for specific Ag(I) and Hg(II) analysis. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
27
|
Catalytic hairpin assembly as cascade nucleic acid circuits for fluorescent biosensor: design, evolution and application. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116582] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
28
|
Simple Enzyme-Free Biosensor for Highly Sensitive and Selective Detection of miR-21 Based on Multiple Signal Amplification Strategy. JOURNAL OF ANALYSIS AND TESTING 2022. [DOI: 10.1007/s41664-022-00214-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
29
|
Huang W, Zhan D, Xie Y, Li X, Lai G. Dual CHA-mediated high-efficient formation of a tripedal DNA walker for constructing a novel proteinase-free dual-mode biosensing strategy. Biosens Bioelectron 2022; 197:113708. [PMID: 34763154 DOI: 10.1016/j.bios.2021.113708] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 09/30/2021] [Accepted: 10/12/2021] [Indexed: 12/14/2022]
Abstract
DNA walkers have been recognized as a type of powerful signal amplification tool for biosensors, but how to adopt a proper strategy to increase their amplification efficiency is still highly desirable. Herein we design a dual-catalytic hairpin assembly (CHA)-mediated strategy for the high-efficient formation of a tripedal Mg2+-dependent DNAzyme (MNAzyme)-DNA walker, and thus develop a novel proteinase-free dual-mode biosensing method for the kanamycin (Kana) antibiotic assay. The first CHA is initiated by a target-biorecognition reaction, which can produce the DNA walker and also induce the target recycling. The second CHA is initiated by a special base sequence designed as a one-half substrate of the MNAzyme. Upon the first CHA-triggered DNA walking at a magnetic bead (MB) track, this "pseudo-target" sequence can be released to induce another CHA-cycle for the formation of the same DNA walker. Meanwhile, the other one-half substrate strand exposed on the MB surface will trigger the quantitative hybridization chain reaction (HCR)-assembly of a G-quadruplex DNAzyme (G-DNAzyme)-enriched double-stranded DNA polymer. So the enzymatic reaction of G-DNAzymes enabled the convenient colorimetric and photoelectrochemical dual-mode signal transduction of the method. Due to the dual-CHA facilitation to the tripedal and three-dimensional DNA walking and synergetic signal amplification of HCR, this method exhibits very low detection limits of 9.4 and 0.55 fg mL-1, respectively. In combination with its wide linear range, automated manipulation, and excellent selectivity, repeatability and reliability, the proposed method is expected to be used for the convenient semiquantitative screening and accurate determination of possible antibiotic residues in complicated matrices.
Collapse
Affiliation(s)
- Wan Huang
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, 435002, China
| | - Danyan Zhan
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, 435002, China
| | - Yiming Xie
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, 435002, China
| | - Xin Li
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, 435002, China
| | - Guosong Lai
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, 435002, China.
| |
Collapse
|
30
|
Zhao S, Yang S, Xu H, Tang X, Wang H, Yu L, Qiu X, Wang Y, Gao M, Chang K, Chen M. Enzyme-free and copper-free strategy based on cyclic click chemical-triggered hairpin stacking circuit for accurate detection of circulating microRNAs. Anal Chim Acta 2022; 1191:339282. [PMID: 35033257 DOI: 10.1016/j.aca.2021.339282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 11/01/2022]
Abstract
Accurate detection of circulating microRNAs (miRNAs) plays a vital role in the diagnosis of various diseases. However, enzyme-free amplification detection remains challenging. Here, we report an enzyme-free fluorescence resonance energy transfer assay termed "3C-TASK" (cyclic click chemical-triggered hairpin stacking kit) for the detection of circulating miRNA. In this strategy, the miRNA could initiate copper-free click chemical ligation reactions and the ligated products then trigger another hairpin stacking circuit. The first signal amplification was achieved through the recycling of the target miRNA in the click chemical ligation circuit, and the second signal amplification was realized through the recycling of ligated probes in a hairpin stacking circuit driven by thermodynamics. The two-step chain reaction event triggered by miRNAs was quantified by the fluorescence signal value so that accurate detection of target miRNA could be achieved. The 3C-TASK was easily controlled because no enzyme was involved in the entire procedure. Although simple, this strategy showed sensitivity with a detection limit of 8.63 pM and specificity for distinguishing miRNA sequences with single-base variations. In addition, the applicability of this method in complex biological samples was verified by detecting target miRNA in diluted plasma samples. Hence, our method achieved sensitive and specific detection of miRNA and may offer a new perspective for the broader application of enzyme-free chemical reaction and DNA circuits in biosensing.
Collapse
Affiliation(s)
- Shuang Zhao
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University, 30 Gaotanyan, Shapingba District, Chongqing, 400038, China
| | - Sha Yang
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University, 30 Gaotanyan, Shapingba District, Chongqing, 400038, China
| | - Hanqing Xu
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University, 30 Gaotanyan, Shapingba District, Chongqing, 400038, China
| | - Xiaoqi Tang
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University, 30 Gaotanyan, Shapingba District, Chongqing, 400038, China
| | - Hongwei Wang
- Department of Oncology, Southwest Hospital, Army Medical University, 30 Gaotanyan, Shapingba District, Chongqing, 400038, China
| | - Lianyu Yu
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University, 30 Gaotanyan, Shapingba District, Chongqing, 400038, China
| | - Xiaopei Qiu
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University, 30 Gaotanyan, Shapingba District, Chongqing, 400038, China
| | - Yunxia Wang
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University, 30 Gaotanyan, Shapingba District, Chongqing, 400038, China
| | - Mingxuan Gao
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University, 30 Gaotanyan, Shapingba District, Chongqing, 400038, China.
| | - Kai Chang
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University, 30 Gaotanyan, Shapingba District, Chongqing, 400038, China.
| | - Ming Chen
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University, 30 Gaotanyan, Shapingba District, Chongqing, 400038, China; College of Pharmacy and Laboratory Medicine, Army Medical University, 30 Gaotanyan, Shapingba District, Chongqing, 400038, China; State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, 30 Gaotanyan, Shapingba District, Chongqing, 400038, China.
| |
Collapse
|
31
|
Yang C, Deng H, He J, Zhang X, Gao J, Shang X, Zuo S, Yuan R, Xu W. Amplifiable ratiometric fluorescence biosensing of nanosilver multiclusters populated in three-way-junction DNA branches. Biosens Bioelectron 2021; 199:113871. [PMID: 34915217 DOI: 10.1016/j.bios.2021.113871] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/05/2021] [Accepted: 12/06/2021] [Indexed: 02/06/2023]
Abstract
To explore the fluorescence bio-responsiveness of emissive silver nanoclusters (AgNCs) populated in DNA-branched scaffolds is intriguing yet challenging. In response to a desired targeting model (T*) as a vehicle, herein a customized three-way-junction DNA construct (TWJDC) is assembled via competitive hybridizing cascade among three stem-loop hairpins with specific base sequences, where the repeated recycling of T* enables the exponentially amplifiable output of rigid TWJDC. As designed, these stable hybridization products are highly T*-stimulated responsive and constructing-directional. In the three branched-arms, the unpaired sticky ends provide isotropic binding sites for a signaling hairpin encoded with two C-rich templates of green- and red-AgNCs clustering. The identical ligation of signal probe with three arms of TWJDC liberates its locked stem, enabling the separate growth of red-clusters in three branches. As demonstrated, three clusters of red-AgNCs possess advantageous self-enhancing fluorescent performance relative to single or two cluster(s), good biocompatibility and low cytotoxicity. Utilizing the bicolor AgNCs as dual-emitters with reversely changed emission intensity, we developed an innovative ratiometric strategy displaying sensitively linear dose-dependence on variable T* down to 1.9 pM, which can afford a promising platform for biosensing, bioanalysis, cell imaging, or even clinical theranostics.
Collapse
Affiliation(s)
- Chunli Yang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Huilin Deng
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Jiayang He
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Xiaolong Zhang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Jiaxi Gao
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Xin Shang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Siyu Zuo
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China.
| | - Wenju Xu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China.
| |
Collapse
|
32
|
Song X, Ding Q, Zhang J, Sun R, Yin L, Wei W, Pu Y, Liu S. Smart Catalyzed Hairpin Assembly-Induced DNAzyme Nanosystem for Intracellular UDG Imaging. Anal Chem 2021; 93:13687-13693. [PMID: 34583508 DOI: 10.1021/acs.analchem.1c03332] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Uracil DNA glycosylase (UDG) is one of the key initiators for the base excision repair pathway. Since abnormal UDG expression is associated with various diseases, sensitive detection of UDG activity is critical for early clinical diagnosis. Here, a smart catalyzed hairpin assembly (CHA)-DNAzyme nanosystem is developed for intracellular UDG imaging by incorporating CHA and DNAzyme onto MnO2 nanosheets. In this strategy, the biodegradable MnO2 nanosheets are employed as nanocarriers for efficiently adsorbing and delivering five DNA probes into cells by endocytosis. Then, the MnO2 nanosheets are degraded by cellular glutathione to release the DNA modules at the same intracellular position. Liberated Mn2+, an indispensable DNAzyme cofactor, was used to promote catalytic cleavage for facilitating the cascade process in cells. Based on the uracil site-recognition and -excision operation of the target UDG, the activated CHA-DNAzyme nanosystem generates lots of DNAzyme-assisted CHA products, turning on the fluorescence resonance energy transfer response. This autocatalytic CHA-DNAzyme nanosystem provides a detectable minimum UDG concentration of 0.23 mU/mL, which is comparable to some reported UDG detection approaches. As a multiple signal amplification strategy, the CHA-DNAzyme nanosystem realizes the UDG imaging in living cells with enhanced sensitivity, indicating great promise in the prediction and diagnosis of early-stage cancer.
Collapse
Affiliation(s)
- Xiaolei Song
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Qin Ding
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Juan Zhang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Rongli Sun
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Lihong Yin
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Wei Wei
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, PR China.,Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210009, PR China
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Songqin Liu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210009, PR China
| |
Collapse
|
33
|
Xue Y, Wang Y, Feng S, Yan M, Huang J, Yang X. Label-Free and Sensitive Electrochemical Biosensor for Amplification Detection of Target Nucleic Acids Based on Transduction Hairpins and Three-Leg DNAzyme Walkers. Anal Chem 2021; 93:8962-8970. [PMID: 34130449 DOI: 10.1021/acs.analchem.1c01522] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Nucleic acids are regarded as reliable biomarkers for the early diagnosis of various diseases. By ingeniously combining a transduction hairpin (THP) with the toehold-mediated strand displacement reaction (TSDR) to form three-leg DNAzyme walkers, for the first time, we constructed a label-free and sensitive electrochemical sensing system for the amplification detection of target nucleic acids. With microRNA-155 (miR-155) as a model target, the feasibility of the biosensing strategy and the conformational states of DNA in the recognition process were studied in detail on the basis of electrochemical and dual polarization interferometry techniques. With the assistance of THP, miR-155 indirectly triggered the TSDR between three hairpins (H1, H2, and H3), then massive Mg2+-dependent three-leg DNAzyme walkers were formed in aqueous solutions. After the binding/cleaving/moving process of three-leg DNAzyme walkers on the electrode surface modified with substrate hairpins (SHPs), a number of single-stranded DNAs (ssDNAs) were generated. Hence, the interaction of methylene blue (MB) with the duplex section of SHPs was impeded, which brought about a decreased electrochemical signal. Benefiting from the cyclic amplification of the TSDR and the higher cleavage activity of three-leg DNAzyme walkers, the proposed sensing strategy showed remarkable improvement in sensitivity with a low detection limit of 0.27 fM for miR-155. Owing to the precise design of the THP, this method exhibited excellent specificity to distinguish miR-155 from the single-base and triplex-base mismatched sequences. This sensing strategy importing the flexible THP can be utilized to detect various nucleic acid biomarkers by only redesigning the THP without changing the main circuit or reporter constructs, showing the great versatility and potential for the early diagnostics and biological analysis.
Collapse
Affiliation(s)
- Yu Xue
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Changchun, Jilin 130022, China
- University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yu Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Changchun, Jilin 130022, China
- University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Sinuo Feng
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Changchun, Jilin 130022, China
- University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Mengxia Yan
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Changchun, Jilin 130022, China
- University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jianshe Huang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Changchun, Jilin 130022, China
| | - Xiurong Yang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Changchun, Jilin 130022, China
- University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
34
|
Ratiometric fluorescent detection and imaging of microRNA in living cells with manganese dioxide nanosheet-active DNAzyme. Talanta 2021; 233:122518. [PMID: 34215133 DOI: 10.1016/j.talanta.2021.122518] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 05/09/2021] [Accepted: 05/11/2021] [Indexed: 12/31/2022]
Abstract
MicroRNAs (miRNAs) play an important role in multiple biological processes and can be used as biomarkers for clinical disease diagnosis, so their detection is of great importance. Here, manganese dioxide (MnO2) nanosheet acts as carrier to deliver DNAzyme probes into cells through endocytosis, where intracellular glutathione (GSH) reduces the MnO2 nanosheet to manganese ions (Mn2+) and releases the probes. The generated Mn2+ can be further used as an effective cofactor to activate the DNAzyme probe, and cleave the DNA strand into two fragments. Then, the miRNA-155 in the cells can hybridize with the cleaved fragment to cause the fluorescence signal change of the probe. The proposed proportional fluorescent method has been applied to the imaging of miRNA-155 in HeLa cells and HepG2 cells with the estimated detection limit (LOD) as 1.6 × 10-12 M. The new method can provide great help for cancer diagnosis and biological research related to miRNA.
Collapse
|
35
|
Wang S. Construction of DNA Biosensors for Mercury (II) Ion Detection Based on Enzyme-Driven Signal Amplification Strategy. Biomolecules 2021; 11:biom11030399. [PMID: 33800447 PMCID: PMC8001444 DOI: 10.3390/biom11030399] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 02/03/2023] Open
Abstract
Mercury ion (Hg2+) is a well-known toxic heavy metal ion. It is harmful for human health even at low concentrations in the environment. Therefore, it is very important to measure the level of Hg2+. Many methods, reviewed in several papers, have been established on DNA biosensors for detecting Hg2+. However, few reviews on the strategy of enzyme-driven signal amplification have been reported. In this paper, we reviewed this topic by dividing the enzymes into nucleases and DNAzymes according to their chemical nature. Initially, we introduce the nucleases including Exo III, Exo I, Nickase, DSN, and DNase I. In this section, the Exo III-driven signal amplification strategy was described in detail. Because Hg2+ can help ssDNA fold into dsDNA by T-Hg-T, and the substrate of Exo III is dsDNA, Exo III can be used to design Hg2+ biosensor very flexibly. Then, the DNAzyme-assisted signal amplification strategies were reviewed in three categories, including UO22+-specific DNAzymes, Cu2+-specific DNAzymes and Mg2+-specific DNAzymes. In this section, the Mg2+-specific DNAzyme was introduced in detail, because this DNAzyme has highly catalytic activity, and Mg2+ is very common ion which is not harmful to the environment. Finally, the challenges and future perspectives were discussed.
Collapse
Affiliation(s)
- Shuchang Wang
- School of Life Sciences, East China Normal University, Shanghai 200241, China
| |
Collapse
|
36
|
Zhu L, Ye J, Yan M, Yu L, Peng Y, Huang J, Yang X. Sensitive and Programmable "Signal-Off" Electrochemiluminescence Sensing Platform Based on Cascade Amplification and Multiple Quenching Mechanisms. Anal Chem 2021; 93:2644-2651. [PMID: 33395267 DOI: 10.1021/acs.analchem.0c04839] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A versatile and sensitive quantum dot (QD)-based "signal-off" electrochemiluminescence (ECL) sensing system was constructed using target-initiated dual Mg2+-dependent DNAzyme (MNAzyme) recycling and catalytic hairpin assembly (CHA) amplification strategies. After the cascade amplification, numerous ferrocene-labeled Y-shaped DNA complexes generated on the QD-modified electrode surface. In the presence of hemin, moreover, the terminal sequence of the formed complex could assemble into hemin/G-quadruplex. Therefore, the highly efficient ECL quenching was achieved due to the multiple quenching mechanisms, including electron/energy transfer between ferrocene and QDs, the steric hindrance effects, and the horseradish peroxidase-mimicking activity of hemin/G-quadruplex. Furthermore, owing to the flexibility in regulating the recognition sequences of MNAzyme, the assaying targets can be programmed. Based on the cascade amplification and multiple ECL quenching mechanisms, the developed programmable "signal-off" ECL sensing platform demonstrates excellent sensitivity and the detection limits of 35.00 aM, 3.71 fM, and 0.28 pM (S/N = 3) for target DNA, aptamer substrate (ATP as a model), and ion (Ag+ as a model), respectively.
Collapse
Affiliation(s)
- Liping Zhu
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Jing Ye
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Mengxia Yan
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.,State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Linying Yu
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.,State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Yao Peng
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Jianshe Huang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Xiurong Yang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.,State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| |
Collapse
|
37
|
Toehold-mediated strand displacement reaction formation of three-way junction DNA structure combined with nicking enzyme signal amplification for highly sensitive colorimetric detection of Salmonella Typhimurium. Anal Chim Acta 2020; 1139:138-145. [DOI: 10.1016/j.aca.2020.09.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/11/2020] [Indexed: 12/29/2022]
|
38
|
He JH, Cheng YY, Zhang QQ, Liu H, Huang CZ. Carbon dots-based fluorescence resonance energy transfer for the prostate specific antigen (PSA) with high sensitivity. Talanta 2020; 219:121276. [DOI: 10.1016/j.talanta.2020.121276] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/23/2020] [Accepted: 05/25/2020] [Indexed: 01/09/2023]
|
39
|
Li B, Pan W, Liu C, Guo J, Shen J, Feng J, Luo T, Situ B, Zhang Y, An T, Xu C, Zheng W, Zheng L. Homogenous Magneto-Fluorescent Nanosensor for Tumor-Derived Exosome Isolation and Analysis. ACS Sens 2020; 5:2052-2060. [PMID: 32594744 DOI: 10.1021/acssensors.0c00513] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Tumor-derived exosomes carrying unique surface proteins have shown great promise as novel biomarkers for liquid biopsies. However, point-of-care analysis for tumor-derived exosomes in the blood with low-cost and easy processing is still challenging. Herein, we develop an integrated approach, homogenous magneto-fluorescent exosome (hMFEX) nanosensor, for rapid and on-site tumor-derived exosomes analysis. Tumor-derived exosomes are captured immunomagnetically, which further initiates the aptamer-triggered assembly of DNA three-way junctions in homogenous solution containing aggregation-induced emission luminogens and graphene oxide, resulting in an amplified fluorescence signal. By integrating magnetic isolation and enhanced fluorescence measurement, the hMFEX nanosensor detects tumor-derived exosomes in the dynamic range spanning 5 orders of magnitude with high specificity, and the limit of detection is 6.56 × 104 particles/μL. Analyzing tumor-derived exosomes in limited volume plasma from breast cancer patients demonstrates the excellent clinical diagnostic efficacy of the hMFEX nanosensor. This study provides new insights into the point-of-care testing of tumor-derived exosomes for cancer diagnostics.
Collapse
Affiliation(s)
- Bo Li
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Weilun Pan
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Chunchen Liu
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jingyun Guo
- Breast Center, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jianlei Shen
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Junjie Feng
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Tingting Luo
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Bo Situ
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Ye Zhang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Taixue An
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Chunzuan Xu
- The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Wancheng Zheng
- The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Lei Zheng
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
40
|
Cui MR, Li XL, Xu JJ, Chen HY. Acid-Switchable DNAzyme Nanodevice for Imaging Multiple Metal Ions in Living Cells. ACS APPLIED MATERIALS & INTERFACES 2020; 12:13005-13012. [PMID: 32100993 DOI: 10.1021/acsami.0c00987] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Metal-assisted deoxyribozyme catalysis (DNAzyme) has been a general platform for constructing highly sensitive and selective detection sensors of metal ions. However, the "always on" mode of the traditional DNAzyme sensors greatly limits their application in the visual analysis of endogenous metal ions in a complex physiological microenvironment. To overcome this obstacle, a smart acid-switchable DNAzyme nanodevice is designed to control the DNAzyme activity in living cells and achieve simultaneous visualization of metal ions (Zn2+ and Pb2+) in situ. This nanodevice is built on DNAzyme precursors (DPs) and acid-switchable DNA (SW-DNA), precisely responding to pH variations in the range of 4.5-7.0, and the state of the three-strand hybridization of DPs successfully renders the DNAzymes inactive before being transported into cells. Once the nanodevice is taken up into living cells, the SW-DNA will change the configuration from linear to triplex in the acidic intracellular compartments (lysosomes, pH ∼4.5 to 5.0) and then the strands hybridized with the SW-DNA are liberated and subsequently react with DPs to form the active DNAzyme, which can further realize multi-imaging of intracellular metal ions. Moreover, this strategy has broad prospects as a powerful platform for constructing various acid-switchable nanodevices for visual analysis of multiple biomolecules in living cells.
Collapse
Affiliation(s)
- Mei-Rong Cui
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Xiang-Ling Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Life Science and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
41
|
Wang J, Chen S, Yuan R, Hu F. DNA branched junctions induced the enhanced fluorescence recovery of FAM-labeled probes on rGO for detecting Pb 2. Anal Bioanal Chem 2020; 412:2455-2463. [PMID: 32078003 DOI: 10.1007/s00216-020-02458-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 01/27/2020] [Indexed: 12/18/2022]
Abstract
The reduced graphene oxide (rGO) could strongly adsorb and quench the fluorescence of dye-labeled single-stranded DNA (ssDNA); thus, it is widely applied in fluorescent sensors. However, these sensors may suffer from a limited sensitivity due to the low fluorescence recovery when adding the complementary DNA (cDNA) sequence. In this work, the powerful DNA branched junctions were constructed to improve the fluorescence recovery of FAM-labeled probe on rGO. In the presence of target Pb2+, the ribonucleotide (rA) in the substrate was cleaved specifically and the catalytic hairpin assembly of three metastable hairpins was further initiated, accompanied by the formation of DNA branched junctions. Then, the liberated Pb2+ could be recyclable. Impressively, the DNA branched junctions not only hybridize with the FAM-labeled probes with a high efficiency, but also are significantly undesirable for the rGO. Thus, a high fluorescence recovery of FAM-labeled probe on rGO was expected. The integration of the high fluorescence recovery and dual-cycle signal amplification endows the sensing strategy with a good performance for Pb2+ detection, including low detection limit (0.17 nM), good selectivity, and satisfactory practical applicability. The proposed DNA branched junctions offer a novel avenue to improve the fluorescence recovery of the dye-labeled probes on rGO for biological analysis.
Collapse
Affiliation(s)
- Juanli Wang
- Chongqing Engineering Laboratory of Nanomaterials & Sensor Technologies, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Shihong Chen
- Chongqing Engineering Laboratory of Nanomaterials & Sensor Technologies, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China.
| | - Ruo Yuan
- Chongqing Engineering Laboratory of Nanomaterials & Sensor Technologies, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Fangxin Hu
- Institute of Materials Science & Devices, Suzhou University of Science and Technology, Suzhou, 215009, Jiangsu, China
| |
Collapse
|
42
|
Xie Y, Niu F, Yu A, Lai G. Proximity Binding-Triggered Assembly of Two MNAzymes for Catalyzed Release of G-Quadruplex DNAzymes and an Ultrasensitive Homogeneous Bioassay of Platelet-Derived Growth Factor. Anal Chem 2019; 92:593-598. [DOI: 10.1021/acs.analchem.9b05002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Yiming Xie
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, Department of Chemistry, Hubei Normal University, Huangshi, Hubei 435002, PR China
| | - Feina Niu
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, Department of Chemistry, Hubei Normal University, Huangshi, Hubei 435002, PR China
| | - Aimin Yu
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, Department of Chemistry, Hubei Normal University, Huangshi, Hubei 435002, PR China
- Department of Chemistry and Biotechnology, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Guosong Lai
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, Department of Chemistry, Hubei Normal University, Huangshi, Hubei 435002, PR China
| |
Collapse
|
43
|
Liu J, Zhang Y, Xie H, Zhao L, Zheng L, Ye H. Applications of Catalytic Hairpin Assembly Reaction in Biosensing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1902989. [PMID: 31523917 DOI: 10.1002/smll.201902989] [Citation(s) in RCA: 217] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 08/15/2019] [Indexed: 05/26/2023]
Abstract
Nucleic acids are considered as perfect programmable materials for cascade signal amplification and not merely as genetic information carriers. Among them, catalytic hairpin assembly (CHA), an enzyme-free, high-efficiency, and isothermal amplification method, is a typical example. A typical CHA reaction is initiated by single-stranded analytes, and substrate hairpins are successively opened, resulting in thermodynamically stable duplexes. CHA circuits, which were first proposed in 2008, present dozens of systems today. Through in-depth research on mechanisms, the CHA circuits have been continuously enriched with diverse reaction systems and improved analytical performance. After a short time, the CHA reaction can realize exponential amplification under isothermal conditions. Under certain conditions, the CHA reaction can even achieve 600 000-fold signal amplification. Owing to its promising versatility, CHA is able to be applied for analysis of various markers in vitro and in living cells. Also, CHA is integrated with nanomaterials and other molecular biotechnologies to produce diverse readouts. Herein, the varied CHA mechanisms, hairpin designs, and reaction conditions are introduced in detail. Additionally, biosensors based on CHA are presented. Finally, challenges and the outlook of CHA development are considered.
Collapse
Affiliation(s)
- Jumei Liu
- Department of Clinical Laboratory, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, 361003, P. R. China
| | - Ye Zhang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Huabin Xie
- Department of Clinical Laboratory, Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Xiamen, 361006, P. R. China
| | - Li Zhao
- School of Medicine, Xiamen University, Xiamen, 361102, P. R. China
| | - Lei Zheng
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Huiming Ye
- Department of Clinical Laboratory, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, 361003, P. R. China
- School of Medicine, Xiamen University, Xiamen, 361102, P. R. China
| |
Collapse
|
44
|
A triply amplified electrochemical lead(II) sensor by using a DNAzyme and via formation of a DNA-gold nanoparticle network induced by a catalytic hairpin assembly. Mikrochim Acta 2019; 186:559. [DOI: 10.1007/s00604-019-3612-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 06/14/2019] [Indexed: 10/26/2022]
|
45
|
Li J, Wang S, Jiang B, Xiang Y, Yuan R. Target-induced structure switching of aptamers facilitates strand displacement for DNAzyme recycling amplification detection of thrombin in human serum. Analyst 2019; 144:2430-2435. [PMID: 30816386 DOI: 10.1039/c9an00030e] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
To monitor the thrombin concentration under the condition of abnormal blood coagulation is of clinical significance for the diagnosis of various diseases. Here, on the basis of the aptamer structure switching induced by the target molecules and the signal amplification strategy via recycling of metal-ion dependent DNAzymes, we have established a sensitive and simple fluorescent aptasensor for detecting thrombin in human serum. The thrombin target specifically binds to the aptamer sequence and causes a corresponding conformational structure switching, which leads to the formation of a toehold sequence to facilitate the strand migration displacement reaction for the generation of functional metal-ion dependent DNAzymes. These DNAzymes further cleave the fluorescently quenched hairpin substrates cyclically to yield substantially amplified fluorescence recovery for sensitively detecting thrombin in the dynamic range from 0.01 nM to 50 nM. Such an aptasensor shows a detection limit of 6.9 pM and can achieve the monitoring of thrombin in diluted human serum with high selectivity, offering a universal sensing strategy for the construction of various sensitive and simple aptasensors to detect different biomarker molecules.
Collapse
Affiliation(s)
- Jin Li
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, P. R. China.
| | | | | | | | | |
Collapse
|
46
|
Xiang L, Zhang F, Chen C, Cai C. A general scheme for fluorometric detection of multiple oligonucleotides by using RNA-cleaving DNAzymes: application to the determination of microRNA-141 and H5N1 virus DNA. Mikrochim Acta 2019; 186:511. [PMID: 31280365 DOI: 10.1007/s00604-019-3595-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 06/09/2019] [Indexed: 12/20/2022]
Abstract
A widely applicably method is described for fluorometric determination of targets such as microRNA and viral DNA. It is making use of a Mg(II)-dependent DNAzyme and a G-quadruplex. In the absence of analyte, an inactive DNAzyme is formed by the hybridization of split DNAzymes and substrate. On addition of target analyte, the end of each strand of the split DNAzymes bind the analyte. This leads to the generation of an active DNAzyme. In the presence of Mg(II), the activated DNAzyme is formed and can cleave the substrate strand. Hence, the caged G-quadruplex sequences will be released. These released G-quadruplexes combine with thioflavin T to generate a G-quadruplex/thioflavin T complex and thereby cause amplified fluorescence. The method shows a 70 pM detection limit for H5N1 and works over a wide linear range 1 nM to 400 nM. Conceivably, this detection scheme has a wide scope in that it may be applied to other assays for microRNAs and DNAs by variation of the type of DNAzyme. Graphical abstract Schematic presentation of target detection: the DNAzyme cannot cleave the substrate strand when target is absent. Once the target is added, the active DNAzyme can cleave the substrate strand in the presence of Mg2+, resulting in significant fluorescence enhancement when the release of the caged G-quadruplex sequences binding with 2-[4-(dimethylamino)phenyl]-3,6-dimethylbenzothiazolium chloride (ThT).
Collapse
Affiliation(s)
- Ling Xiang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, China
| | - Feng Zhang
- College of Science, Hunan Agricultural University, Changsha, 410128, China
| | - Chunyan Chen
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, China.
| | - Changqun Cai
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, China.
| |
Collapse
|
47
|
Yin J, Wang J, Yang X, Wu T, Wang H, Zhou X. Poly(adenine)-mediated DNA-functionalized gold nanoparticles for sensitive detection of mercury ions in aqueous media. RSC Adv 2019; 9:18728-18733. [PMID: 35516856 PMCID: PMC9064783 DOI: 10.1039/c9ra03041g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/28/2021] [Accepted: 06/04/2019] [Indexed: 11/21/2022] Open
Abstract
In this work, a facile and sensitive colorimetric sensor for Hg2+ ions based on poly (adenine)-mediated DNA-functionalized gold nanoparticles (Au NPs) is reported. One DNA sequence consisting of poly-A and T-rich DNA was designed rationally. Poly-A was used as an anchoring block to bind tightly to Au NPs, and T-rich DNA was utilized for specific recognition of Hg2+ ions. With the assistance of poly-A, T-rich DNA was easily introduced onto the surface of Au NPs and kept an upright orientation. In the presence of Hg2+ ions, T base binding with Hg2+ ions results in the formation of "T-Hg2+-T" among the Au NPs, which caused aggregation of the Au NPs and a subsequent change in the color of the solution, from wine red to grayish blue. On this occasion, the limit of detection (LOD) was 3.75 nM Hg2+ ions with a linear range from 5 nM to 200 nM, as measured by UV-Vis spectroscopy. Moreover, successful application of this method for the detection of Hg2+ ions in real samples was demonstrated.
Collapse
Affiliation(s)
- Jinjin Yin
- College of Chemical Engineering and Materials Science, State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology Tianjin 300457 China
| | - Jiuchao Wang
- College of Chemical Engineering and Materials Science, State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology Tianjin 300457 China
| | - Xiyue Yang
- College of Chemical Engineering and Materials Science, State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology Tianjin 300457 China
| | - Tao Wu
- College of Chemical Engineering and Materials Science, State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology Tianjin 300457 China
| | - Huashan Wang
- College of Chemical Engineering and Materials Science, State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology Tianjin 300457 China
| | - Xiaoming Zhou
- College of Chemical Engineering and Materials Science, State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology Tianjin 300457 China
| |
Collapse
|
48
|
Yao Y, Li N, Zhang X, Ong'achwa Machuki J, Yang D, Yu Y, Li J, Tang D, Tian J, Gao F. DNA-Templated Silver Nanocluster/Porphyrin/MnO 2 Platform for Label-Free Intracellular Zn 2+ Imaging and Fluorescence-/Magnetic Resonance Imaging-Guided Photodynamic Therapy. ACS APPLIED MATERIALS & INTERFACES 2019; 11:13991-14003. [PMID: 30901195 DOI: 10.1021/acsami.9b01530] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Developing a theranostic platform that integrates diagnosis and treatment in one single nanostructure is necessary for efficient tumor treatment. Here, we presented a novel theranostic nanoprobe for nonlabeled fluorescence imaging of Zn2+ and 635 nm red light-triggered photodynamic therapy (PDT) by a multifunctional DNA-templated silver nanocluster/porphyrin/MnO2 nanoplatform. MnO2 nanosheets adsorbed hairpin DNA-silver nanoclusters (AgNCs) and porphyrin (P) by facile physisorption, which accelerate the transfection of nanoprobes and P into tumor cells. After entering the cells, the biodegradation of MnO2 nanosheets by glutathione and acidic hydrogen peroxide released AgNCs for label-free Zn2+ fluorescence imaging by the hairpin DNA-fueled dynamic self-assembly of three-way DNA junction architectures, and the released Mn2+ could act as an effective magnetic resonance imaging (MRI) contrast agent. In addition, MnO2 was decomposed in the acidic H2O2-ample environment and produced O2 to overbear hypoxia-related PDT resistance, highly efficient PDT was obtained by excess singlet oxygen (1O2) release of P-AgNCs-MnO2 nanoprobes under light irradiation compared with free P. In vitro and in vivo studies confirmed that P-AgNCs-MnO2 exhibited high fluorescence specificity, excellent PDT effect, and good biocompatibility and could be used as a contrast agent for MRI. This theranostic platform provided a new avenue for the fluorescence and MRI diagnosis of tumors and efficient tumor treatment.
Collapse
Affiliation(s)
- Yao Yao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy , Xuzhou Medical University , 221004 Xuzhou , China
| | - Na Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy , Xuzhou Medical University , 221004 Xuzhou , China
| | - Xing Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy , Xuzhou Medical University , 221004 Xuzhou , China
| | - Jeremiah Ong'achwa Machuki
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy , Xuzhou Medical University , 221004 Xuzhou , China
| | - Dongzhi Yang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy , Xuzhou Medical University , 221004 Xuzhou , China
| | - Yanyan Yu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy , Xuzhou Medical University , 221004 Xuzhou , China
| | - Jingjing Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy , Xuzhou Medical University , 221004 Xuzhou , China
| | - Daoquan Tang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy , Xuzhou Medical University , 221004 Xuzhou , China
| | - Jiangwei Tian
- School of Traditional Chinese Pharmacy , China Pharmaceutical University , 211198 Nanjing , China
| | - Fenglei Gao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy , Xuzhou Medical University , 221004 Xuzhou , China
| |
Collapse
|
49
|
Wang J, Wang Y, Liu S, Wang H, Zhang X, Song X, Yu J, Huang J. Primer remodeling amplification-activated multisite-catalytic hairpin assembly enabling the concurrent formation of Y-shaped DNA nanotorches for the fluorescence assay of ochratoxin A. Analyst 2019; 144:3389-3397. [PMID: 30990481 DOI: 10.1039/c9an00316a] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
DNA can be configured into unique high-order structures due to its significantly high programmability, such as a three-way junction-based structure (denoted Y-shaped DNA), for further applications. Herein, we report a label-free fluorescent signal-on biosensor based on the target-driven primer remodeling rolling circle amplification (RCA)-activated multisite-catalytic hairpin assembly (CHA) enabling the concurrent formation of Y-shaped DNA nanotorches (Y-DNTs) for ultrasensitive detection of ochratoxin A (OTA). Two kinds of masterfully-designed probes, termed Complex I and II, were pre-prepared by the combination of a circular template (CT) with an OTA aptamer (S1), a substrate probe (S2) and hairpin probe 1 (HP1), respectively. Target OTA specifically binds to Complex I, resulting in the release of the remnant element in S2 and successive remodeling into a mature primer for RCA by phi29 DNA polymerase, thus a usable primer-CT complex is produced, which actuates primary RCA. Then, numerous Complex II probes can anneal with the first-generation RCA product (RP) with multiple sites to activate the CHA process. With the participation of endonuclease IV (Endo IV) and phi29, HP1 as a pre-primer containing a tetrahydrofuran abasic site mimic (AP site) in Complex II is converted into a mature primer to initiate additional rounds of RCA. So, countless Y-DNTs are formed concurrently containing a G-quadruplex structure that enables the N-methylmesoporphyrin IX (NMM) to be embedded, generating remarkably strong fluorescence signals. The biosensor was demonstrated to enable rapid and accurate highly efficient and selective detection of OTA with an improved detection limit of as low as 0.0002 ng mL-1 and a widened dynamic range of over 4 orders of magnitude. Meanwhile, this method was proven to be capable of being used to analyze actual samples. Therefore, this proposed strategy may be established as a useful and practical platform for the ultrasensitive detection of mycotoxins in food safety testing.
Collapse
Affiliation(s)
- Jingfeng Wang
- School of Biological Sciences and Technology, University of Jinan, Jinan 250022, P.R. China.
| | - Yu Wang
- School of Biological Sciences and Technology, University of Jinan, Jinan 250022, P.R. China.
| | - Su Liu
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, P.R. China
| | - Haiwang Wang
- School of Biological Sciences and Technology, University of Jinan, Jinan 250022, P.R. China.
| | - Xue Zhang
- School of Biological Sciences and Technology, University of Jinan, Jinan 250022, P.R. China.
| | - Xiaolei Song
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, P.R. China
| | - Jinghua Yu
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P.R. China
| | - Jiadong Huang
- School of Biological Sciences and Technology, University of Jinan, Jinan 250022, P.R. China. and Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P.R. China
| |
Collapse
|
50
|
Wang J, Wang Y, Liu S, Wang H, Zhang X, Song X, Huang J. Base excision repair initiated rolling circle amplification-based fluorescent assay for screening uracil-DNA glycosylase activity using Endo IV-assisted cleavage of AP probes. Analyst 2019; 143:3951-3958. [PMID: 29999513 DOI: 10.1039/c8an00716k] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Uracil-DNA glycosylase (UDG) is a crucial damage repair enzyme that initiates the cellular base excision repair pathway that maintains the integrity of the genome. Abnormal UDG activity may induce the malfunction of uracil excision repair that is directly related to a range of diseases including cancers, genotypic diseases, and human immunodeficiencies. In this work, a simple, robust and cost effective biosensing platform for the ultrasensitive detection of UDG activity is established based on the combination of base excision repair-initiated primer generation for rolling circular amplification (RCA) with Endo IV-assisted signal amplification. In the presence of target UDG, UDG can catalyze the removal of uracil on a hairpin probe (HP) leaving an apurinic/apyrimidinic (AP site) which can be cleaved by Endo IV to generate a primer for triggering the RCA reaction. Subsequently, numerous AP site-embedded signal probes, acting as fluorescence-quenched probes, combine with the RCA products to perform signal transduction and quadradic signal amplification through an Endo IV-catalyzed cleavage reaction, thus significantly enhancing the fluorescence signal, which can be used for UDG activity screening. Under optimum conditions, this biosensor exhibits improved sensitivity toward target UDG with a detection limit of as low as 9.3 × 10-5 U mL-1 and a wide detection range across 5 orders of magnitude. Additionally, our biosensor demonstrates high selectivity toward UDG for simple, rapid, and low-cost detection. Furthermore, by redesigning the modification of HP and using of suitable endonuclease enzymes, this RCA coupled with Endo IV-assisted signal amplification strategy might be applied for the detection of various other targets, such as thymine DNA glycosylase, 8-oxoguanine DNA glycosylase, DNA methyltransferase, and so on. Hence, the proposed strategy provides a useful and versatile biosensing platform for the ultrasensitive detection of UDG activity and related fundamental biomedicine research and clinical diagnosis.
Collapse
Affiliation(s)
- Jingfeng Wang
- College of Biological Sciences and Technology, University of Jinan, Jinan 250022, P.R. China.
| | | | | | | | | | | | | |
Collapse
|