1
|
Porello I, Bono N, Candiani G, Cellesi F. Advancing nucleic acid delivery through cationic polymer design: non-cationic building blocks from the toolbox. Polym Chem 2024; 15:2800-2826. [DOI: 10.1039/d4py00234b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
The rational integration of non-cationic building blocks into cationic polymers can be devised to enhance the performance of the resulting gene delivery vectors, improving cell targeting behavior, uptake, endosomal escape, toxicity, and transfection efficiency.
Collapse
Affiliation(s)
- Ilaria Porello
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, Via Luigi Mancinelli 7, 20131, Milan, Italy
| | - Nina Bono
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, Via Luigi Mancinelli 7, 20131, Milan, Italy
| | - Gabriele Candiani
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, Via Luigi Mancinelli 7, 20131, Milan, Italy
| | - Francesco Cellesi
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, Via Luigi Mancinelli 7, 20131, Milan, Italy
| |
Collapse
|
2
|
Wei P, Bhat GA, Darensbourg DJ. Enabling New Approaches: Recent Advances in Processing Aliphatic Polycarbonate-Based Materials. Angew Chem Int Ed Engl 2023; 62:e202307507. [PMID: 37534963 DOI: 10.1002/anie.202307507] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/04/2023]
Abstract
Aliphatic polycarbonates (aPCs) have become increasingly popular as functional materials due to their biocompatibility and capacity for on-demand degradation. Advances in polymerization techniques and the introduction of new functional monomers have expanded the library of aPCs available, offering a diverse range of chemical compositions and structures. To accommodate the emerging requirements of new applications in biomedical and energy-related fields, various manufacturing techniques have been adopted for processing aPC-based materials. However, a summary of these techniques has yet to be conducted. The aim of this paper is to enrich the toolbox available to researchers, enabling them to select the most suitable technique for their materials. In this paper, a concise review of the recent progress in processing techniques, including controlled self-assembly, electrospinning, additive manufacturing, and other techniques, is presented. We also highlight the specific challenges and opportunities for the sustainable growth of this research area and the successful integration of aPCs in industrial applications.
Collapse
Affiliation(s)
- Peiran Wei
- Soft Matter Facility, Texas A&M University, 1313 Research Parkway, College Station, TX, 77845, USA
| | - Gulzar A Bhat
- Centre for Interdisciplinary Research and Innovations, University of Kashmir, Srinagar, Jammu and Kashmir, 190006, India
| | - Donald J Darensbourg
- Department of Chemistry, Texas A&M University, 3255 TAMU, College Station, TX, 77843, USA
| |
Collapse
|
3
|
Uchida S, Lau CYJ, Oba M, Miyata K. Polyplex designs for improving the stability and safety of RNA therapeutics. Adv Drug Deliv Rev 2023; 199:114972. [PMID: 37364611 DOI: 10.1016/j.addr.2023.114972] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/15/2023] [Accepted: 06/21/2023] [Indexed: 06/28/2023]
Abstract
Nanoparticle-based delivery systems have contributed to the recent clinical success of RNA therapeutics, including siRNA and mRNA. RNA delivery using polymers has several distinct properties, such as enabling RNA delivery into extra-hepatic organs, modulation of immune responses to RNA, and regulation of intracellular RNA release. However, delivery systems should overcome safety and stability issues to achieve widespread therapeutic applications. Safety concerns include direct damage to cellular components, innate and adaptive immune responses, complement activation, and interaction with surrounding molecules and cells in the blood circulation. The stability of the delivery systems should balance extracellular RNA protection and controlled intracellular RNA release, which requires optimization for each RNA species. Further, polymer designs for improving safety and stability often conflict with each other. This review covers advances in polymer-based approaches to address these issues over several years, focusing on biological understanding and design concepts for delivery systems rather than material chemistry.
Collapse
Affiliation(s)
- Satoshi Uchida
- Department of Advanced Nanomedical Engineering, Medical Research Institute, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan; Medical Chemistry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamohangi-cho, Sakyo-ku, Kyoto, 606-0823, Japan; Innovation Center of NanoMedicine (iCONM), Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki, 210-0821, Japan.
| | - Chun Yin Jerry Lau
- Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Makoto Oba
- Medical Chemistry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamohangi-cho, Sakyo-ku, Kyoto, 606-0823, Japan
| | - Kanjiro Miyata
- Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan; Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| |
Collapse
|
4
|
Correia JS, Mirón-Barroso S, Hutchings C, Ottaviani S, Somuncuoğlu B, Castellano L, Porter AE, Krell J, Georgiou TK. How does the polymer architecture and position of cationic charges affect cell viability? Polym Chem 2023; 14:303-317. [PMID: 36760606 PMCID: PMC9846193 DOI: 10.1039/d2py01012g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 12/06/2022] [Indexed: 12/12/2022]
Abstract
Polymer chemistry, composition and molar mass are factors that are known to affect cytotoxicity, however the influence of polymer architecture has not been investigated systematically. In this study the influence of the position of the cationic charges along the polymer chain on cytotoxicity was investigated while keeping constant the other polymer characteristics. Specifically, copolymers of various architectures, based on a cationic pH responsive monomer, 2-(dimethylamino)ethyl methacrylate (DMAEMA) and a non-ionic hydrophilic monomer, oligo(ethylene glycol)methyl ether methacrylate (OEGMA) were engineered and their toxicity towards a panel of cell lines investigated. Of the seven different polymer architectures examined, the block-like structures were less cytotoxic than statistical or gradient/tapered architectures. These findings will assist in developing future vectors for nucleic acid delivery.
Collapse
Affiliation(s)
| | | | | | - Silvia Ottaviani
- The John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent UniversityNottingham NG11 8NSUK,Department of Surgery and Cancer, Division of Cancer, Imperial College London, Imperial Centre for Translational and Experimental Medicine (ICTEM)London W12 0NNUK
| | | | - Leandro Castellano
- Department of Surgery and Cancer, Division of Cancer, Imperial College London, Imperial Centre for Translational and Experimental Medicine (ICTEM)London W12 0NNUK,School of Life Sciences, John Maynard Smith Building, University of SussexBrightonUK
| | | | - Jonathan Krell
- Department of Surgery & Cancer, Imperial College LondonUK
| | | |
Collapse
|
5
|
Yan Y, Zhu F, Su H, Liu X, Ren Q, Huang F, Ye W, Zhao M, Zhao Y, Zhao J, Shuai Q. Construction of Degradable and Amphiphilic Triblock Polymer Carriers for Effective Delivery of siRNA. Macromol Biosci 2022; 22:e2200232. [PMID: 36086889 DOI: 10.1002/mabi.202200232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/17/2022] [Indexed: 01/15/2023]
Abstract
The development of effective and safe delivery carriers is one of the prerequisites for the clinical translation of siRNA-based therapeutics. In this study, a library of 144 functional triblock polymers using ring-opening polymerization (ROP) and thiol-ene click reaction is constructed. These triblock polymers are composed of hydrophilic poly (ethylene oxide) (PEO), hydrophobic poly (ε-caprolactone) (PCL), and cationic amine blocks. Three effective carriers are discovered by high-throughput screening of these polymers for siRNA delivery to HeLa-Luc cells. In vitro evaluation shows that siLuc-loaded nanoparticles (NPs) fabricated with leading polymer carriers exhibit sufficient knockdown of luciferase genes and relatively low cytotoxicity. The chemical structure of polymers significantly affects the physicochemical properties of the resulting siRNA-loaded NPs, which leads to different cellular uptake of NPs and endosomal escape of loaded siRNA and thus the overall in vitro siRNA delivery efficacy. After systemic administration to mice with xenograft tumors, siRNA NPs based on P2-4.5A8 are substantially accumulated at tumor sites, suggesting that PEO and PCL blocks are beneficial for improving blood circulation and biodistribution of siRNA NPs. This functional triblock polymer platform may have great potential in the development of siRNA-based therapies for the treatment of cancers.
Collapse
Affiliation(s)
- Yunfeng Yan
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, P. R. China
| | - Fangtao Zhu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, P. R. China
| | - Huahui Su
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, P. R. China
| | - Xiaomin Liu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, P. R. China
| | - Qidi Ren
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, P. R. China
| | - Fangqian Huang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, P. R. China
| | - Wenbo Ye
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, P. R. China
| | - Mengdan Zhao
- Women's Hospital, School of Medicine, Zhejiang University and Key Laboratory of Women's Reproductive Health Research of Zhejiang Province, Hangzhou, Zhejiang, 310006, P. R. China
| | - Yunchun Zhao
- Women's Hospital, School of Medicine, Zhejiang University and Key Laboratory of Women's Reproductive Health Research of Zhejiang Province, Hangzhou, Zhejiang, 310006, P. R. China
| | - Junpeng Zhao
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, Guangdong, 510641, P. R. China
| | - Qi Shuai
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, P. R. China
| |
Collapse
|
6
|
Cokca C, Hack FJ, Costabel D, Herwig K, Hülsmann J, Then P, Heintzmann R, Fischer D, Peneva K. PEGylation of Guanidinium and Indole Bearing Poly(methacrylamide)s - Biocompatible Terpolymers for pDNA Delivery. Macromol Biosci 2021; 21:e2100146. [PMID: 34310046 DOI: 10.1002/mabi.202100146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/28/2021] [Indexed: 01/07/2023]
Abstract
This study describes the first example for shielding of a high performing terpolymer that consists of N-(2-hydroxypropyl)methacrylamide (HPMA), N-(3-guanidinopropyl)methacrylamide (GPMA), and N-(2-indolethyl)methacrylamide monomers (IEMA) by block copolymerization of a polyethylene glycol derivative - poly(nona(ethylene glycol)methyl ether methacrylate) (P(MEO9 MA)) via reversible addition-fragmentation chain transfer (RAFT) polymerization. The molecular weight of P(MEO9 MA) is varied from 3 to 40 kg mol-1 while the comonomer content of HPMA, GPMA, and IEMA is kept comparable. The influence of P(MEO9 MA) block with various molecular weights is investigated over cytotoxicity, plasmid DNA (pDNA) binding, and transfection efficiency of the resulting polyplexes. Overall, the increase in molecular weight of P(MEO9 MA) block demonstrates excellent biocompatibility with higher cell viability in L-929 cells and an efficient binding to pDNA at N/P ratio of 2. The significant transfection efficiency in CHO-K1 cells at N/P ratio 20 is obtained for block copolymers with molecular weight of P(MEO9 MA) up to 10 kg mol-1 . Moreover, a fluorescently labeled analogue of P(MEO9 MA), bearing perylene monoimide methacrylamide (PMIM), is introduced as a comonomer in RAFT polymerization. Polyplexes consisting of labeled block copolymer with 20 kg mol-1 of P(MEO9 MA) and pDNA are incubated in Hela cells and investigated through structured illumination microscopy (SIM).
Collapse
Affiliation(s)
- Ceren Cokca
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Lessingstrasse 8, Jena, 07743, Germany
| | - Franz J Hack
- Pharmaceutical Technology and Biopharmacy, Institute of Pharmacy, Friedrich Schiller University Jena, Lessingstrasse 8, Jena, 07743, Germany
| | - Daniel Costabel
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Lessingstrasse 8, Jena, 07743, Germany
| | - Kira Herwig
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Lessingstrasse 8, Jena, 07743, Germany
| | - Juliana Hülsmann
- Pharmaceutical Technology and Biopharmacy, Institute of Pharmacy, Friedrich Schiller University Jena, Lessingstrasse 8, Jena, 07743, Germany
| | - Patrick Then
- Leibniz Institute of Photonic Technology, Albert Einstein Str. 9, Jena, 07745, Germany
| | - Rainer Heintzmann
- Leibniz Institute of Photonic Technology, Albert Einstein Str. 9, Jena, 07745, Germany.,Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, Jena, 07743, Germany
| | - Dagmar Fischer
- Department of Chemistry and Pharmacy, Pharmaceutical Technology, Friedrich-Alexander-University Erlangen-Nürnberg, Cauerstrasse 4, Erlangen, 91058, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, Jena, 07743, Germany
| | - Kalina Peneva
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Lessingstrasse 8, Jena, 07743, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, Jena, 07743, Germany
| |
Collapse
|
7
|
Ansari I, Singh P, Mittal A, Mahato RI, Chitkara D. 2,2-Bis(hydroxymethyl) propionic acid based cyclic carbonate monomers and their (co)polymers as advanced materials for biomedical applications. Biomaterials 2021; 275:120953. [PMID: 34218051 DOI: 10.1016/j.biomaterials.2021.120953] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 05/26/2021] [Accepted: 05/29/2021] [Indexed: 12/15/2022]
Abstract
Designing grafted biodegradable polymers with tailored multi-functional properties is one of the most researched fields with extensive biomedical applications. Among many biodegradable polymers, polycarbonates have gained much attention due to their ease of synthesis, high drug loading, and excellent biocompatibility profiles. Among various monomers, 2,2-bis(hydroxymethyl) propionic acid (bis-MPA) derived cyclic carbonate monomers have been extensively explored in terms of their synthesis as well as their polymerization. Since the late 90s, significant advancements have been made in the design of bis-MPA derived cyclic carbonate monomers as well as in their reaction schemes. Currently, bis-MPA derived polycarbonates have taken a form of an entire platform with a multitude of applications, the latest being in the field of nanotechnology, targeted drug, and nucleic acid delivery. The present review outlines an up to date developments that have taken place in the last two decades in the design, synthesis, and biomedical applications of bis-MPA derived cyclic carbonates and their (co)polymers.
Collapse
Affiliation(s)
- Imran Ansari
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS Pilani), Vidya Vihar Campus, Pilani, 333 031, Rajasthan, India
| | - Prabhjeet Singh
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS Pilani), Vidya Vihar Campus, Pilani, 333 031, Rajasthan, India
| | - Anupama Mittal
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS Pilani), Vidya Vihar Campus, Pilani, 333 031, Rajasthan, India
| | - Ram I Mahato
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Deepak Chitkara
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS Pilani), Vidya Vihar Campus, Pilani, 333 031, Rajasthan, India.
| |
Collapse
|
8
|
Singh N, Marets C, Boudon J, Millot N, Saviot L, Maurizi L. In vivo protein corona on nanoparticles: does the control of all material parameters orient the biological behavior? NANOSCALE ADVANCES 2021; 3:1209-1229. [PMID: 36132858 PMCID: PMC9416870 DOI: 10.1039/d0na00863j] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/13/2021] [Indexed: 05/18/2023]
Abstract
Nanomaterials have a huge potential in research fields from nanomedicine to medical devices. However, surface modifications of nanoparticles (NPs) and thus of their physicochemical properties failed to predict their biological behavior. This requires investigating the "missing link" at the nano-bio interface. The protein corona (PC), the set of proteins binding to the NPs surface, plays a critical role in particle recognition by the innate immune system. Still, in vitro incubation offers a limited understanding of biological interactions and fails to explain the in vivo fate. To date, several reports explained the impact of PC in vitro but its applications in the clinical field have been very limited. Furthermore, PC is often considered as a biological barrier reducing the targeting efficiency of nano vehicles. But the protein binding can actually be controlled by altering PC both in vitro and in vivo. Analyzing PC in vivo could accordingly provide a deep understanding of its biological effect and speed up the transfer to clinical applications. This review demonstrates the need for clarifications on the effect of PC in vivo and the control of its behavior by changing its physicochemical properties. It unfolds the recent in vivo developments to understand mechanisms and challenges at the nano-bio interface. Finally, it reports recent advances in the in vivo PC to overcome and control the limitations of the in vitro PC by employing PC as a boosting resource to prolong the NPs half-life, to improve their formulations and thereby to increase its use for biomedical applications.
Collapse
Affiliation(s)
- Nimisha Singh
- Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB), UMR 6303 CNRS - Université Bourgogne Franche-Comté BP 47870 Dijon Cedex F-21078 France
| | - Célia Marets
- Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB), UMR 6303 CNRS - Université Bourgogne Franche-Comté BP 47870 Dijon Cedex F-21078 France
| | - Julien Boudon
- Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB), UMR 6303 CNRS - Université Bourgogne Franche-Comté BP 47870 Dijon Cedex F-21078 France
| | - Nadine Millot
- Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB), UMR 6303 CNRS - Université Bourgogne Franche-Comté BP 47870 Dijon Cedex F-21078 France
| | - Lucien Saviot
- Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB), UMR 6303 CNRS - Université Bourgogne Franche-Comté BP 47870 Dijon Cedex F-21078 France
| | - Lionel Maurizi
- Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB), UMR 6303 CNRS - Université Bourgogne Franche-Comté BP 47870 Dijon Cedex F-21078 France
| |
Collapse
|
9
|
Yu W, Maynard E, Chiaradia V, Arno MC, Dove AP. Aliphatic Polycarbonates from Cyclic Carbonate Monomers and Their Application as Biomaterials. Chem Rev 2021; 121:10865-10907. [DOI: 10.1021/acs.chemrev.0c00883] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Wei Yu
- School of Chemistry, University of Birmingham, Edgbaston, B15 2TT U.K
| | - Edward Maynard
- School of Chemistry, University of Birmingham, Edgbaston, B15 2TT U.K
| | - Viviane Chiaradia
- School of Chemistry, University of Birmingham, Edgbaston, B15 2TT U.K
| | - Maria C. Arno
- School of Chemistry, University of Birmingham, Edgbaston, B15 2TT U.K
- Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, B15 2TT U.K
| | - Andrew P. Dove
- School of Chemistry, University of Birmingham, Edgbaston, B15 2TT U.K
| |
Collapse
|
10
|
Sarvari R, Nouri M, Agbolaghi S, Roshangar L, Sadrhaghighi A, Seifalian AM, Keyhanvar P. A summary on non-viral systems for gene delivery based on natural and synthetic polymers. INT J POLYM MATER PO 2020. [DOI: 10.1080/00914037.2020.1825081] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Raana Sarvari
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Stem Cell And Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Nouri
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samira Agbolaghi
- Chemical Engineering Department, Faculty of Engineering, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Laila Roshangar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amirhouman Sadrhaghighi
- Department of Orthodontics, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alexander M. Seifalian
- Nanotechnology and Regenerative Medicine Commercialization Centre (Ltd), The London Innovation Bio Science Centre, London, UK
| | - Peyman Keyhanvar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Nanotechnology, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Convergence of Knowledge, Technology and Society Network (CKTSN), Universal Scientific Education and Research Network (USERN), Tabriz, Iran
- ARTAN110 Startup Accelerator, Tabriz, Iran
| |
Collapse
|
11
|
Gajendiran M, Kim S, Jo H, Kim K. Fabrication of pH responsive coacervates using a polycation-b-polypropylene glycol diblock copolymer for versatile delivery platforms. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.06.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Dong Y, Zhou J, Wang C, Wang Y, Deng L, Zhang J, Dong A. Comb‐Like Amphiphilic Polycarbonates with Different Lengths of Cationic Branches for Enhanced siRNA Delivery. Macromol Biosci 2020; 20:e2000143. [DOI: 10.1002/mabi.202000143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 04/27/2020] [Indexed: 12/23/2022]
Affiliation(s)
- Yanliang Dong
- Department of Polymer Science and TechnologyKey Laboratory of Systems Bioengineering of the Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin University Tianjin 300072 China
| | - Junhui Zhou
- Liming Research & Design Institute of Chemical Industry Co., Ltd. No 69, Wangcheng Road Luoyang Henan Province China
| | - Changrong Wang
- Department of Polymer Science and TechnologyKey Laboratory of Systems Bioengineering of the Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin University Tianjin 300072 China
| | - Yaping Wang
- Department of Polymer Science and TechnologyKey Laboratory of Systems Bioengineering of the Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin University Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 China
| | - Liandong Deng
- Department of Polymer Science and TechnologyKey Laboratory of Systems Bioengineering of the Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin University Tianjin 300072 China
| | - Jianhua Zhang
- Department of Polymer Science and TechnologyKey Laboratory of Systems Bioengineering of the Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin University Tianjin 300072 China
| | - Anjie Dong
- Department of Polymer Science and TechnologyKey Laboratory of Systems Bioengineering of the Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin University Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 China
| |
Collapse
|
13
|
Chen CK, Huang PK, Law WC, Chu CH, Chen NT, Lo LW. Biodegradable Polymers for Gene-Delivery Applications. Int J Nanomedicine 2020; 15:2131-2150. [PMID: 32280211 PMCID: PMC7125329 DOI: 10.2147/ijn.s222419] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 02/04/2020] [Indexed: 12/24/2022] Open
Abstract
Gene-based therapies have emerged as a new modality for combating a myriad of currently incurable diseases. However, the fragile nature of gene therapeutics has significantly hampered their biomedical applications. Correspondingly, the development of gene-delivery vectors is of critical importance for gene-based therapies. To date, a variety of gene-delivery vectors have been created and utilized for gene delivery. In general, they can be categorized into viral- and non-viral vectors. Due to safety issues associated with viral vectors, non-viral vectors have recently attracted much more research focus. Of these non-viral vectors, polymeric vectors, which have been preferred due to their low immunogenicity, ease of production, controlled chemical composition and high chemical versatility, have constituted an ideal alternative to viral vectors. In particular, biodegradable polymers, which possess advantageous biocompatibility and biosafety, have been considered to have great potential in clinical applications. In this context, the aim of this review is to introduce the recent development and progress of biodegradable polymers for gene delivery applications, especially for their chemical structure design, gene delivery capacity and additional biological functions. Accordingly, we first define and categorize biodegradable polymers, followed by describing their corresponding degradation mechanisms. Various types of biodegradable polymers resulting from natural and synthetic polymers will be introduced and their applications in gene delivery will be examined. Finally, a future perspective regarding the development of biodegradable polymer vectors will be given.
Collapse
Affiliation(s)
- Chih-Kuang Chen
- Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung80424, Taiwan
| | - Ping-Kuan Huang
- Department of Fiber and Composite Materials, Feng Chia University, Taichung40724, Taiwan
| | - Wing-Cheung Law
- Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, People’s Republic of China
| | - Chia-Hui Chu
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan35053, Taiwan
| | - Nai-Tzu Chen
- Institute of New Drug Development, China Medical University, Taichung40402, Taiwan
| | - Leu-Wei Lo
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan35053, Taiwan
| |
Collapse
|
14
|
Shen C, Bian L, Zhang P, An B, Cui Z, Wang H, Li J. Microstructure evolution of bonded water layer and morphology of grafting membrane with different polyethylene glycol length and their influence on permeability and anti-fouling capacity. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.117949] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
15
|
Baroni A, Neaga I, Delbosc N, Wells M, Verdy L, Ansseau E, Vanden Eynde JJ, Belayew A, Bodoki E, Oprean R, Hambye S, Blankert B. Bioactive Aliphatic Polycarbonates Carrying Guanidinium Functions: An Innovative Approach for Myotonic Dystrophy Type 1 Therapy. ACS OMEGA 2019; 4:18126-18135. [PMID: 31720515 PMCID: PMC6843715 DOI: 10.1021/acsomega.9b02034] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 09/25/2019] [Indexed: 06/10/2023]
Abstract
Dystrophia myotonica type 1 (DM1) results from nuclear sequestration of splicing factors by a messenger RNA (mRNA) harboring a large (CUG) n repeat array transcribed from the causal (CTG) n DNA amplification. Several compounds were previously shown to bind the (CUG) n RNA and release the splicing factors. We now investigated for the first time the interaction of an aliphatic polycarbonate carrying guanidinium functions to DM1 DNA/RNA model probes by affinity capillary electrophoresis. The apparent association constants (K a) were in the range described for reference compounds such as pentamidine. Further macromolecular engineering could improve association specificity. The polymer presented no toxicity in cell culture at concentrations of 1.6-100.0 μg/mL as evaluated both by MTT and real-time monitoring xCELLigence method. These promising results may lay the foundation for a new branch of potential therapeutic agents for DM1.
Collapse
Affiliation(s)
- Alexandra Baroni
- Laboratory
of Pharmaceutical Analysis, Faculty of Medicine and Pharmacy,
Research Institute for Health Sciences and Technology, Laboratory of Molecular
Biology, Faculty of Medicine and Pharmacy, Research Institute for
Health Sciences and Technology, and Laboratory of Organic Chemistry, Faculty of
Sciences, University of Mons, Place du Parc 20, 7000 Mons, Belgium
- Laboratory
of Polymeric and Composite Materials, Center of Innovation and Research
in Materials and Polymers (CIRMAP), University
of Mons. 20 Place du Parc, 7000 Mons, Belgium
| | - Ioan Neaga
- Laboratory
of Pharmaceutical Analysis, Faculty of Medicine and Pharmacy,
Research Institute for Health Sciences and Technology, Laboratory of Molecular
Biology, Faculty of Medicine and Pharmacy, Research Institute for
Health Sciences and Technology, and Laboratory of Organic Chemistry, Faculty of
Sciences, University of Mons, Place du Parc 20, 7000 Mons, Belgium
- Analytical
Chemistry Department, “Iuliu Haţieganu”
University of Medicine and Pharmacy, 4, Louis Pasteur Street, 400349 Cluj-Napoca, Romania
| | - Nicolas Delbosc
- Laboratory
of Polymeric and Composite Materials, Center of Innovation and Research
in Materials and Polymers (CIRMAP), University
of Mons. 20 Place du Parc, 7000 Mons, Belgium
| | - Mathilde Wells
- Laboratory
of Pharmaceutical Analysis, Faculty of Medicine and Pharmacy,
Research Institute for Health Sciences and Technology, Laboratory of Molecular
Biology, Faculty of Medicine and Pharmacy, Research Institute for
Health Sciences and Technology, and Laboratory of Organic Chemistry, Faculty of
Sciences, University of Mons, Place du Parc 20, 7000 Mons, Belgium
| | - Laetitia Verdy
- Laboratory
of Pharmaceutical Analysis, Faculty of Medicine and Pharmacy,
Research Institute for Health Sciences and Technology, Laboratory of Molecular
Biology, Faculty of Medicine and Pharmacy, Research Institute for
Health Sciences and Technology, and Laboratory of Organic Chemistry, Faculty of
Sciences, University of Mons, Place du Parc 20, 7000 Mons, Belgium
| | - Eugénie Ansseau
- Laboratory
of Pharmaceutical Analysis, Faculty of Medicine and Pharmacy,
Research Institute for Health Sciences and Technology, Laboratory of Molecular
Biology, Faculty of Medicine and Pharmacy, Research Institute for
Health Sciences and Technology, and Laboratory of Organic Chemistry, Faculty of
Sciences, University of Mons, Place du Parc 20, 7000 Mons, Belgium
| | - Jean Jacques Vanden Eynde
- Laboratory
of Pharmaceutical Analysis, Faculty of Medicine and Pharmacy,
Research Institute for Health Sciences and Technology, Laboratory of Molecular
Biology, Faculty of Medicine and Pharmacy, Research Institute for
Health Sciences and Technology, and Laboratory of Organic Chemistry, Faculty of
Sciences, University of Mons, Place du Parc 20, 7000 Mons, Belgium
| | - Alexandra Belayew
- Laboratory
of Pharmaceutical Analysis, Faculty of Medicine and Pharmacy,
Research Institute for Health Sciences and Technology, Laboratory of Molecular
Biology, Faculty of Medicine and Pharmacy, Research Institute for
Health Sciences and Technology, and Laboratory of Organic Chemistry, Faculty of
Sciences, University of Mons, Place du Parc 20, 7000 Mons, Belgium
| | - Ede Bodoki
- Analytical
Chemistry Department, “Iuliu Haţieganu”
University of Medicine and Pharmacy, 4, Louis Pasteur Street, 400349 Cluj-Napoca, Romania
| | - Radu Oprean
- Analytical
Chemistry Department, “Iuliu Haţieganu”
University of Medicine and Pharmacy, 4, Louis Pasteur Street, 400349 Cluj-Napoca, Romania
| | - Stéphanie Hambye
- Laboratory
of Pharmaceutical Analysis, Faculty of Medicine and Pharmacy,
Research Institute for Health Sciences and Technology, Laboratory of Molecular
Biology, Faculty of Medicine and Pharmacy, Research Institute for
Health Sciences and Technology, and Laboratory of Organic Chemistry, Faculty of
Sciences, University of Mons, Place du Parc 20, 7000 Mons, Belgium
| | - Bertrand Blankert
- Laboratory
of Pharmaceutical Analysis, Faculty of Medicine and Pharmacy,
Research Institute for Health Sciences and Technology, Laboratory of Molecular
Biology, Faculty of Medicine and Pharmacy, Research Institute for
Health Sciences and Technology, and Laboratory of Organic Chemistry, Faculty of
Sciences, University of Mons, Place du Parc 20, 7000 Mons, Belgium
| |
Collapse
|
16
|
Santo D, Mendonça PV, Lima MS, Cordeiro RA, Cabanas L, Serra A, Coelho JFJ, Faneca H. Poly(ethylene glycol)- block-poly(2-aminoethyl methacrylate hydrochloride)-Based Polyplexes as Serum-Tolerant Nanosystems for Enhanced Gene Delivery. Mol Pharm 2019; 16:2129-2141. [PMID: 30986077 DOI: 10.1021/acs.molpharmaceut.9b00101] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Incorporation of poly(ethylene glycol) (PEG) into polyplexes has been used as a promising approach to enhance their stability and reduce unwanted interactions with biomolecules. However, this strategy generally has a negative influence on cellular uptake and, consequently, on transfection of target cells. In this work, we explore the effect of PEGylation on biological and physicochemical properties of poly(2-aminoethyl methacrylate) (PAMA)-based polyplexes. For this purpose, different tailor-made PEG- b-PAMA block copolymers, and the respective homopolymers, were synthesized using the controlled/"living" radical polymerization method based on activators regenerated by electron transfer atom transfer radical polymerization. The obtained data show that PEG- b-PAMA-based polyplexes exhibited a much better transfection activity/cytotoxicity relationship than the corresponding non-PEGylated nanocarriers. The best formulation, prepared with the largest block copolymer (PEG45- b-PAMA168) at a 25:1 N/P ratio, presented a 350-fold higher transfection activity in the presence of serum than that obtained with polyplexes generated with the gold standard bPEI. This higher transfection activity was associated to an improved capability to overcome the intracellular barriers, namely the release from the endolysosomal pathway and the vector unpacking and consequent DNA release from the nanosystem inside cells. Moreover, these nanocarriers exhibit suitable physicochemical properties for gene delivery, namely reduced sizes, high DNA protection, and colloidal stability. Overall, these findings demonstrate the high potential of the PEG45- b-PAMA168 block copolymer as a gene delivery system.
Collapse
Affiliation(s)
- Daniela Santo
- Center for Neuroscience and Cell Biology , University of Coimbra , 3004-504 Coimbra , Portugal
| | - Patrícia V Mendonça
- CEMMPRE, Department of Chemical Engineering , University of Coimbra , 3030-790 Coimbra , Portugal
| | - Mafalda S Lima
- CEMMPRE, Department of Chemical Engineering , University of Coimbra , 3030-790 Coimbra , Portugal
| | - Rosemeyre A Cordeiro
- Center for Neuroscience and Cell Biology , University of Coimbra , 3004-504 Coimbra , Portugal
| | - Luis Cabanas
- Center for Neuroscience and Cell Biology , University of Coimbra , 3004-504 Coimbra , Portugal
| | - Arménio Serra
- CEMMPRE, Department of Chemical Engineering , University of Coimbra , 3030-790 Coimbra , Portugal
| | - Jorge F J Coelho
- CEMMPRE, Department of Chemical Engineering , University of Coimbra , 3030-790 Coimbra , Portugal
| | - Henrique Faneca
- Center for Neuroscience and Cell Biology , University of Coimbra , 3004-504 Coimbra , Portugal
| |
Collapse
|
17
|
Lipid gene nanocarriers for the treatment of skin diseases: Current state-of-the-art. Eur J Pharm Biopharm 2019; 137:95-111. [DOI: 10.1016/j.ejpb.2019.02.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 01/21/2019] [Accepted: 02/15/2019] [Indexed: 12/19/2022]
|
18
|
Palazzo C, Laloy J, Delvigne AS, Nys G, Fillet M, Dogne JM, Pequeux C, Foidart JM, Evrard B, Piel G. Development of injectable liposomes and drug-in-cyclodextrin-in-liposome formulations encapsulating estetrol to prevent cerebral ischemia of premature babies. Eur J Pharm Sci 2018; 127:52-59. [PMID: 30308312 DOI: 10.1016/j.ejps.2018.10.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 09/25/2018] [Accepted: 10/07/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Claudio Palazzo
- Laboratory of Pharmaceutical Technology and Biopharmacy, CIRM, University of Liege, Liege, Belgium
| | - Julie Laloy
- Département de Pharmacie, Namur Nanosafety Centre, NARILIS, University of Namur, Namur, Belgium
| | - Anne-Sophie Delvigne
- Département de Pharmacie, Namur Nanosafety Centre, NARILIS, University of Namur, Namur, Belgium
| | - Gwenael Nys
- Analysis of Medicines Laboratory, CIRM, University of Liege, Liege, Belgium
| | - Marianne Fillet
- Analysis of Medicines Laboratory, CIRM, University of Liege, Liege, Belgium
| | - Jean-Michel Dogne
- Département de Pharmacie, Namur Nanosafety Centre, NARILIS, University of Namur, Namur, Belgium
| | - Christel Pequeux
- Tumor and Development Biology Laboratory, University of Liege, Liege, Belgium
| | - Jean-Michel Foidart
- Tumor and Development Biology Laboratory, University of Liege, Liege, Belgium
| | - Brigitte Evrard
- Laboratory of Pharmaceutical Technology and Biopharmacy, CIRM, University of Liege, Liege, Belgium
| | - Geraldine Piel
- Laboratory of Pharmaceutical Technology and Biopharmacy, CIRM, University of Liege, Liege, Belgium.
| |
Collapse
|
19
|
Li S, Omi M, Cartieri F, Konkolewicz D, Mao G, Gao H, Averick SE, Mishina Y, Matyjaszewski K. Cationic Hyperbranched Polymers with Biocompatible Shells for siRNA Delivery. Biomacromolecules 2018; 19:3754-3765. [PMID: 30148627 DOI: 10.1021/acs.biomac.8b00902] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Cationic hyperbranched polymers (HBP) were prepared by self-condensing vinyl polymerization of an atom transfer radical polymerization (ATRP) inimer containing a quaternary ammonium group. Two types of biocompatible shells, poly(oligoethylene glycol) methacrylate (polyOEGMA) and poly(2-(methylsulfinyl) ethyl methacrylate) (polyDMSO), were grafted respectively from HBP core to form core-shell structures with low molecular weight dispersity and high biocompatibility, polyOEGMA-HBP and polyDMSO-HBP. Both of the structures showed low cytotoxicity and good siRNA complexing ability. The efficacy of gene silencing against Runt-related transcription factor 2 ( Runx2) expression and the long-term assessment of mineralized nodule formation in osteoblast cultures were evaluated. The biocompatible core-shell structures were crucial to minimizing undesired cytotoxicity and nonspecific gene suppression. polyDMSO-HBP showed higher efficacy of forming polyplexes than polyOEGMA-HBP due to shell with lower steric hindrance. Overall, the gene silencing efficiency of both core-shell structures was comparable to commercial agent Lipofectamine, indicating long-term potential for gene silencing to treat heterotopic ossification (HO).
Collapse
Affiliation(s)
- Sipei Li
- Department of Chemistry , Carnegie Mellon University , 4400 Fifth Avenue , Pittsburgh , Pennsylvania 15213 , United States
| | - Maiko Omi
- Department of Biological and Materials Sciences , University of Michigan , 1011 N. University , Ann Arbor , Michigan 48109 , United States
| | - Francis Cartieri
- Allegheny Health Network - Neuroscience Disruptive Research Lab , 320 E. North Avenue , Pittsburgh , Pennsylvania 15212 , United States
| | - Dominik Konkolewicz
- Department of Chemistry and Biochemistry , Miami University , 651 E. High Street , Oxford , Ohio 45056 , United States
| | - Gordon Mao
- Allegheny Health Network - Neuroscience Disruptive Research Lab , 320 E. North Avenue , Pittsburgh , Pennsylvania 15212 , United States
| | - Haifeng Gao
- Department of Chemistry and Biochemistry , University of Notre Dame , 305C McCourtney Hall , Notre Dame , Indiana 46556 , United States
| | - Saadyah E Averick
- Allegheny Health Network - Neuroscience Disruptive Research Lab , 320 E. North Avenue , Pittsburgh , Pennsylvania 15212 , United States
| | - Yuji Mishina
- Department of Biological and Materials Sciences , University of Michigan , 1011 N. University , Ann Arbor , Michigan 48109 , United States
| | - Krzysztof Matyjaszewski
- Department of Chemistry , Carnegie Mellon University , 4400 Fifth Avenue , Pittsburgh , Pennsylvania 15213 , United States
| |
Collapse
|
20
|
Sharma S, Mazumdar S, Italiya KS, Date T, Mahato RI, Mittal A, Chitkara D. Cholesterol and Morpholine Grafted Cationic Amphiphilic Copolymers for miRNA-34a Delivery. Mol Pharm 2018; 15:2391-2402. [PMID: 29747513 DOI: 10.1021/acs.molpharmaceut.8b00228] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
miR-34a is a master tumor suppressor playing a key role in the several signaling mechanisms involved in cancer. However, its delivery to the cancer cells is the bottleneck in its clinical translation. Herein we report cationic amphiphilic copolymers grafted with cholesterol (chol), N, N-dimethyldipropylenetriamine (cation chain) and 4-(2-aminoethyl)morpholine (morph) for miR-34a delivery. The copolymer interacts with miR-34a at low N/P ratios (∼2/1) to form nanoplexes of size ∼108 nm and a zeta potential ∼ +39 mV. In vitro studies in 4T1 and MCF-7 cells indicated efficient transfection efficiency. The intracellular colocalization suggested that the copolymer effectively transported the FAM labeled siRNA into the cytoplasm within 2 h and escaped from the endo-/lysosomal environment. The developed miR-34a nanoplexes inhibited the breast cancer cell growth as confirmed by MTT assay wherein 28% and 34% cancer cell viability was observed in 4T1 and MCF-7 cells, respectively. Further, miR-34a nanoplexes possess immense potential to induce apoptosis in both cell lines.
Collapse
Affiliation(s)
- Saurabh Sharma
- Department of Pharmacy , Birla Institute of Technology and Science-Pilani (BITS) , Pilani Campus, Vidya Vihar , Pilani - 333031 , Rajasthan , India
| | - Samrat Mazumdar
- Department of Pharmacy , Birla Institute of Technology and Science-Pilani (BITS) , Pilani Campus, Vidya Vihar , Pilani - 333031 , Rajasthan , India
| | - Kishan S Italiya
- Department of Pharmacy , Birla Institute of Technology and Science-Pilani (BITS) , Pilani Campus, Vidya Vihar , Pilani - 333031 , Rajasthan , India
| | - Tushar Date
- Department of Pharmacy , Birla Institute of Technology and Science-Pilani (BITS) , Pilani Campus, Vidya Vihar , Pilani - 333031 , Rajasthan , India
| | - Ram I Mahato
- Department of Pharmaceutical Sciences , College of Pharmacy, University of Nebraska Medical Center , 986125 Nebraska Medical Center , Omaha , Nebraska 68198-6125 , United States
| | - Anupama Mittal
- Department of Pharmacy , Birla Institute of Technology and Science-Pilani (BITS) , Pilani Campus, Vidya Vihar , Pilani - 333031 , Rajasthan , India
| | - Deepak Chitkara
- Department of Pharmacy , Birla Institute of Technology and Science-Pilani (BITS) , Pilani Campus, Vidya Vihar , Pilani - 333031 , Rajasthan , India
| |
Collapse
|
21
|
Yang C, Gao S, Dagnæs-Hansen F, Jakobsen M, Kjems J. Impact of PEG Chain Length on the Physical Properties and Bioactivity of PEGylated Chitosan/siRNA Nanoparticles in Vitro and in Vivo. ACS APPLIED MATERIALS & INTERFACES 2017; 9:12203-12216. [PMID: 28332829 DOI: 10.1021/acsami.6b16556] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
PEGylation of cationic polyplexes is a promising approach to enhance the stability and reduce unspecific interaction with biological components. Herein, we systematically investigate the impact of PEGylation on physical and biological properties of chitosan/siRNA polyplexes. A series of chitosan-PEG copolymers (CS-PEG2k, CS-PEG5k and CS-PEG10k) were synthesized with similar PEG mass content but with different molecular weight. PEGylation with higher molecular weight and less grafting degree resulted in smaller and more compacted nanoparticles with relatively higher surface charge. PEGylated polyplexes showed distinct mechanism of endocytosis, which was macropinocytosis and caveolae-dependent and clathrin-independent. In vitro silencing efficiency in HeLa and H1299 cells was significantly improved by PEGylation and CS-PEG5k/siRNA achieved the highest knockdown efficiency. Efficient silence of ribonucleotide reductase subunit M2 (RRM2) in HeLa cells by CS-PEG5k/siRRM2 significantly induced cell cycle arrest and inhibited cell proliferation. In addition, PEGylation significantly inhibited macrophage phagocytosis and unspecific interaction with red blood cells (RBCs). Significant extension of in vivo circulation was achieved only with high molecular weight PEG modification (CS-PEG10k), whereas all CS/siRNA and CS-PEG/siRNA nanoparticles showed similar pattern of biodistribution with major accumulation in liver and kidney. These results imply that PEGylation with higher molecular weight PEG and less grafting rate is a promising strategy to improve chitosan/siRNA nanocomplexes performance both in vitro and in vivo.
Collapse
Affiliation(s)
- Chuanxu Yang
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University , DK-8000 Aarhus C, Denmark
- Department of Molecular Biology and Genetics, Aarhus University , DK-8000 Aarhus C, Denmark
| | - Shan Gao
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University , DK-8000 Aarhus C, Denmark
- Department of Molecular Biology and Genetics, Aarhus University , DK-8000 Aarhus C, Denmark
- Suzhou Ribo Life Science Co., Ltd. , Beijing, China
| | - Frederik Dagnæs-Hansen
- Department of Biomedicine, Aarhus University , Bartholin Building Building 1240, Wilhelm Meyers Alle 4,8000 Aarhus C, Denmark
| | - Maria Jakobsen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University , DK-8000 Aarhus C, Denmark
- Department of Molecular Biology and Genetics, Aarhus University , DK-8000 Aarhus C, Denmark
| | - Jørgen Kjems
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University , DK-8000 Aarhus C, Denmark
- Department of Molecular Biology and Genetics, Aarhus University , DK-8000 Aarhus C, Denmark
| |
Collapse
|