1
|
Li Z, Guo K, Yin C, Li Y, Mertens SFL. Fabricating Graphene-Based Molecular Electronics via Surface Modification by Physisorption and Chemisorption. Molecules 2025; 30:926. [PMID: 40005236 PMCID: PMC11858784 DOI: 10.3390/molecules30040926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 02/09/2025] [Accepted: 02/12/2025] [Indexed: 02/27/2025] Open
Abstract
Graphene, a one-atom-thick sp2-hybridized carbon sheet, has enormous potential for fabricating flexible transparent electronics due to its unique electronic and mechanical properties. However, the intrinsic lack of a band gap, the low reactivity, and the poor solubility of pristine graphene have largely hindered wide-ranging applications so far. One of the most attractive ways to resolve these issues is to modify the graphene surface through molecular physisorption or chemisorption. In this review, we summarize the recent progress in fabricating graphene-based molecular electronics through manipulating small functional molecules on the graphene surface towards chemical reactivity adjustment, molecular doping, and band gap opening via non-covalent and covalent interactions, and draw attention to challenges and opportunities. We also suggest future research directions for graphene-based molecular electronics.
Collapse
Affiliation(s)
- Zhi Li
- Anhui Province Key Laboratory of Specialty Polymers, Anhui Province Engineering Technology Research Center of Coal Resources Comprehensive Utilization, School of Chemical Engineering and Blasting, Anhui University of Science and Technology, Huainan 232001, China; (K.G.); (C.Y.); (Y.L.)
| | - Keying Guo
- Anhui Province Key Laboratory of Specialty Polymers, Anhui Province Engineering Technology Research Center of Coal Resources Comprehensive Utilization, School of Chemical Engineering and Blasting, Anhui University of Science and Technology, Huainan 232001, China; (K.G.); (C.Y.); (Y.L.)
| | - Chengjie Yin
- Anhui Province Key Laboratory of Specialty Polymers, Anhui Province Engineering Technology Research Center of Coal Resources Comprehensive Utilization, School of Chemical Engineering and Blasting, Anhui University of Science and Technology, Huainan 232001, China; (K.G.); (C.Y.); (Y.L.)
| | - Yanan Li
- Anhui Province Key Laboratory of Specialty Polymers, Anhui Province Engineering Technology Research Center of Coal Resources Comprehensive Utilization, School of Chemical Engineering and Blasting, Anhui University of Science and Technology, Huainan 232001, China; (K.G.); (C.Y.); (Y.L.)
| | - Stijn F. L. Mertens
- Department of Chemistry, Energy Lancaster and Materials Science Lancaster, Lancaster University, Bailrigg, Lancaster LA1 4YB, UK
| |
Collapse
|
2
|
Shi L, Jin Y, Liu J. Electrostatic-Mediated Binding of DNA to Lysozymes: Evaluation of Aptamer-Based Assays for Highly Positively Charged Targets. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:14774-14781. [PMID: 37782842 DOI: 10.1021/acs.langmuir.3c02208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Lysozymes are a highly popular protein target for the development of aptamer-based biosensors. Because a lysozyme is a polycation and DNA is a polyanion, it is essential to separate the contribution of nonspecific electrostatic interactions from specific aptamer binding. In this study, various factors affecting the binding of DNA and lysozymes, including the DNA sequence, DNA length, pH, and salt concentration, were explored using fluorescence polarization. We concluded that direct fluorescence polarization and fluorescence intensity changes are unlikely to be directly applicable for aptamer-based biosensors to detect lysozymes because all of the tested DNA sequences showed binding. These fundamental studies confirm the dominant role of electrostatic binding. We further evaluated three other methods, including label-free fluorescent detection using a DNA staining dye, label-free colorimetric detection using gold nanoparticles, and a fluorescent sensor based on the strand displacement reaction. In each case, we focused on a random DNA sequence that is not expected to bind to the lysozyme as an aptamer. Of all the methods, only the strand displacement strategy can be potentially used to evaluate aptamer binding, as the other methods all responded to nonaptamer sequences. This study provides valuable insights for assaying aptamer binding to cationic proteins that can exhibit a nonspecific attraction to DNA.
Collapse
Affiliation(s)
- Lu Shi
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Yan Jin
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
3
|
Meng X, O'Hare D, Ladame S. Surface immobilization strategies for the development of electrochemical nucleic acid sensors. Biosens Bioelectron 2023; 237:115440. [PMID: 37406480 DOI: 10.1016/j.bios.2023.115440] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 05/20/2023] [Accepted: 05/27/2023] [Indexed: 07/07/2023]
Abstract
Following the recent pandemic and with the emergence of cell-free nucleic acids in liquid biopsies as promising biomarkers for a broad range of pathologies, there is an increasing demand for a new generation of nucleic acid tests, with a particular focus on cost-effective, highly sensitive and specific biosensors. Easily miniaturized electrochemical sensors show the greatest promise and most typically rely on the chemical functionalization of conductive materials or electrodes with sequence-specific hybridization probes made of standard oligonucleotides (DNA or RNA) or synthetic analogues (e.g. Peptide Nucleic Acids or PNAs). The robustness of such sensors is mostly influenced by the ability to control the density and orientation of the probe at the surface of the electrode, making the chemistry used for this immobilization a key parameter. This exhaustive review will cover the various strategies to immobilize nucleic acid probes onto different solid electrode materials. Both physical and chemical immobilization techniques will be presented. Their applicability to specific electrode materials and surfaces will also be discussed as well as strategies for passivation of the electrode surface as a way of preventing electrode fouling and reducing nonspecific binding.
Collapse
Affiliation(s)
- Xiaotong Meng
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK. https://in.linkedin.com/https://www.linkedin.com/profile/view?id=xiaotong-meng-888IC
| | - Danny O'Hare
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK.
| | - Sylvain Ladame
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
4
|
Onaş AM, Dascălu C, Raicopol MD, Pilan L. Critical Design Factors for Electrochemical Aptasensors Based on Target-Induced Conformational Changes: The Case of Small-Molecule Targets. BIOSENSORS 2022; 12:816. [PMID: 36290952 PMCID: PMC9599214 DOI: 10.3390/bios12100816] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/19/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Nucleic-acid aptamers consisting in single-stranded DNA oligonucleotides emerged as very promising biorecognition elements for electrochemical biosensors applied in various fields such as medicine, environmental, and food safety. Despite their outstanding features, such as high-binding affinity for a broad range of targets, high stability, low cost and ease of modification, numerous challenges had to be overcome from the aptamer selection process on the design of functioning biosensing devices. Moreover, in the case of small molecules such as metabolites, toxins, drugs, etc., obtaining efficient binding aptamer sequences proved a challenging task given their small molecular surface and limited interactions between their functional groups and aptamer sequences. Thus, establishing consistent evaluation standards for aptamer affinity is crucial for the success of these aptamers in biosensing applications. In this context, this article will give an overview on the thermodynamic and structural aspects of the aptamer-target interaction, its specificity and selectivity, and will also highlight the current methods employed for determining the aptamer-binding affinity and the structural characterization of the aptamer-target complex. The critical aspects regarding the generation of aptamer-modified electrodes suitable for electrochemical sensing, such as appropriate bioreceptor immobilization strategy and experimental conditions which facilitate a convenient anchoring and stability of the aptamer, are also discussed. The review also summarizes some effective small molecule aptasensing platforms from the recent literature.
Collapse
Affiliation(s)
- Andra Mihaela Onaş
- Advanced Polymer Materials Group, University ‘Politehnica’ of Bucharest, 1-7 Gheorghe Polizu, District 1, 011061 Bucharest, Romania
| | - Constanţa Dascălu
- Faculty of Applied Sciences, University ‘Politehnica’ of Bucharest, 313 Splaiul Independenţei, District 6, 060042 Bucharest, Romania
| | - Matei D. Raicopol
- Faculty of Chemical Engineering and Biotechnologies, University ‘Politehnica’ of Bucharest, 1-7 Gheorghe Polizu, District 1, 011061 Bucharest, Romania
| | - Luisa Pilan
- Faculty of Chemical Engineering and Biotechnologies, University ‘Politehnica’ of Bucharest, 1-7 Gheorghe Polizu, District 1, 011061 Bucharest, Romania
| |
Collapse
|
5
|
Polai B, Satpathy BK, Jena BK, Nayak SK. An Overview of Coating Processes on Metal Substrates Based on Graphene-Related Materials for Multifarious Applications. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Balaram Polai
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar−752050, India
| | - Bijoy Kumar Satpathy
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar−752050, India
| | - Bikash Kumar Jena
- CSIR−Institute of Minerals and Materials Technology Bhubaneswar−751013, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Saroj Kumar Nayak
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar−752050, India
| |
Collapse
|
6
|
Aptamers as Recognition Elements for Electrochemical Detection of Exosomes. Chem Res Chin Univ 2022; 38:879-885. [PMID: 35578711 PMCID: PMC9094132 DOI: 10.1007/s40242-022-2088-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/11/2022] [Indexed: 11/08/2022]
Abstract
Exosome analysis is emerging as an attractive noninvasive approach for disease diagnosis and treatment monitoring in the field of liquid biopsy. Aptamer is considered as a promising molecular probe for exosomes detection because of the high binding affinity, remarkable specificity, and low cost. Recently, many approaches have been developed to further improve the performance of electrochemical aptamer based(E-AB) sensors with a lower limit of detection. In this review, we focus on the development of using aptamer as a specific recognition element for exosomes detection in electrochemical sensors. We first introduce recent advances in evolving aptamers against exosomes. Then, we review methods of immobilization aptamers on electrode surfaces, followed by a summary of the main strategies of signal amplification. Finally, we present the insights of the challenges and future directions of E-AB sensors for exosomes analysis.
Collapse
|
7
|
Development of Recombinant Dihydrolipoamide Dehydrogenase Subunit Vaccine against Vibrio Infection in Large Yellow Croaker. FISHES 2022. [DOI: 10.3390/fishes7010017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Large yellow croaker (Larimichthys crocea), an economically important marine fish in China, has suffered from serious vibriosis, which has resulted in great economic losses for the large yellow croaker industry. Vaccination has been considered to be a safe and effective method to prevent and control vibriosis. However, due to the complex diversity and serotypes of the Vibrio genus, the progress of Vibrio vaccine development is still slow. In this study, we prepared recombinant Vibrio dihydrolipoamide dehydrogenase (rDLD) protein and investigated its potential as a candidate to be a subunit vaccine against Vibrio. The lysozyme activity and the rDLD-specific antibody level in sera of large yellow croakers immunized with rDLD were significantly higher than those in the control group, and the transcript levels of proinflammatory cytokines (IL-6, IL-8, IL-1β), MHC IIα/β, CD40, CD8α, IL-4/13A, and IL-4/13B were significantly up-regulated in the spleen and head kidney of large yellow croakers immunized with rDLD, suggesting that rDLD could induce both specific and nonspecific immune responses in this species. In addition, rDLD protein increased the survival rate of large yellow croakers against Vibrio alginolyticus and Vibrio parahaemolyticus, with the relative percent of survival (RPS) being 74.5% and 66.9%, respectively. These results will facilitate the development of a potential subunit vaccine against Vibrio in large yellow croaker aquaculture.
Collapse
|
8
|
Recent Achievements in Electrochemical and Surface Plasmon Resonance Aptasensors for Mycotoxins Detection. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9070180] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mycotoxins are secondary metabolites of fungi that contaminate agriculture products. Their release in the environment can cause severe damage to human health. Aptasensors are compact analytical devices that are intended for the fast and reliable detection of various species able to specifically interact with aptamers attached to the transducer surface. In this review, assembly of electrochemical and surface plasmon resonance (SPR) aptasensors are considered with emphasis on the mechanism of signal generation. Moreover, the properties of mycotoxins and the aptamers selected for their recognition are briefly considered. The analytical performance of biosensors developed within last three years makes it possible to determine mycotoxin residues in water and agriculture/food products on the levels below their maximal admissible concentrations. Requirements for the development of sample treatment and future trends in aptasensors are also discussed.
Collapse
|
9
|
Raicopol M, Pilan L. The Role of Aryldiazonium Chemistry in Designing Electrochemical Aptasensors for the Detection of Food Contaminants. MATERIALS 2021; 14:ma14143857. [PMID: 34300776 PMCID: PMC8303706 DOI: 10.3390/ma14143857] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/04/2021] [Accepted: 07/06/2021] [Indexed: 01/19/2023]
Abstract
Food safety monitoring assays based on synthetic recognition structures such as aptamers are receiving considerable attention due to their remarkable advantages in terms of their ability to bind to a wide range of target analytes, strong binding affinity, facile manufacturing, and cost-effectiveness. Although aptasensors for food monitoring are still in the development stage, the use of an electrochemical detection route, combined with the wide range of materials available as transducers and the proper immobilization strategy of the aptamer at the transducer surface, can lead to powerful analytical tools. In such a context, employing aryldiazonium salts for the surface derivatization of transducer electrodes serves as a simple, versatile and robust strategy to fine-tune the interface properties and to facilitate the convenient anchoring and stability of the aptamer. By summarizing the most important results disclosed in the last years, this article provides a comprehensive review that emphasizes the contribution of aryldiazonium chemistry in developing electrochemical aptasensors for food safety monitoring.
Collapse
Affiliation(s)
- Matei Raicopol
- Costin Nenitzescu, Department of Organic Chemistry, Faculty of Applied Chemistry and Material Science, University Politehnica of Bucharest, 1-7 Gheorghe Polizu, 011061 Bucharest, Romania;
| | - Luisa Pilan
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Applied Chemistry and Material Science, University Politehnica of Bucharest, 1-7 Gheorghe Polizu, 011061 Bucharest, Romania
- Correspondence: ; Tel.: +40-21-402-3977
| |
Collapse
|
10
|
Pilan L. Tailoring the performance of electrochemical biosensors based on carbon nanomaterials via aryldiazonium electrografting. Bioelectrochemistry 2020; 138:107697. [PMID: 33486222 DOI: 10.1016/j.bioelechem.2020.107697] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/26/2020] [Accepted: 10/30/2020] [Indexed: 02/06/2023]
Abstract
Carbon nanomaterials (CNs) offer some of the most valuable properties for electrochemical biosensing applications, such as good electrical conductivity, wide electrochemical stability, high specific surface area, and biocompatibility. Regardless the envisioned sensing application, endowing CNs with specific functions through controlled chemical functionalization is fundamental for promoting the specific binding of the analyte. As a versatile and straightforward method of surface functionalization, aryldiazonium chemistry have been successfully used to accommodate in a stable and reproducible way different functionalities, while the electrochemical route has become the favourite choice since the deposition conditions can be readily controlled and adapted to the substrate. In particular, the modification of CNs by electrochemical reduction of aryl diazonium salts is established as a powerful tool which allows tailoring the chemical and electronic properties of the sensing platform. By outlining the stimulating results disclosed in the last years, this article provides not only a comprehensively review, but also a rational assessment on contribution of aryldiazonium electrografting in developing CNs-based electrochemical biosensors. Furthermore, some of the emerging challenges to be surpassed to effectively implement this methodology for in vivo and point of care analysis are also highlighted.
Collapse
Affiliation(s)
- Luisa Pilan
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, University Politehnica of Bucharest, Gh Polizu 1-7, 011061 Bucharest, Romania.
| |
Collapse
|
11
|
Soltani R, Guo S, Bianco A, Ménard‐Moyon C. Carbon Nanomaterials Applied for the Treatment of Inflammatory Diseases: Preclinical Evidence. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Rym Soltani
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572 University of Strasbourg, ISIS Strasbourg 67000 France
| | - Shi Guo
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572 University of Strasbourg, ISIS Strasbourg 67000 France
| | - Alberto Bianco
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572 University of Strasbourg, ISIS Strasbourg 67000 France
| | - Cécilia Ménard‐Moyon
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572 University of Strasbourg, ISIS Strasbourg 67000 France
| |
Collapse
|
12
|
Immobilization Techniques for Aptamers on Gold Electrodes for the Electrochemical Detection of Proteins: A Review. BIOSENSORS-BASEL 2020; 10:bios10050045. [PMID: 32354207 PMCID: PMC7277302 DOI: 10.3390/bios10050045] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/17/2020] [Accepted: 04/22/2020] [Indexed: 02/07/2023]
Abstract
The development of reliable biosensing platforms plays a key role in the detection of proteins in clinically and environmentally derived samples for diagnostics, as well as for process monitoring in biotechnological productions. For this purpose, the biosensor has to be stable and reproducible, and highly sensitive to detect potentially extremely low concentrations and prevent the nonspecific binding of interfering compounds. In this review, we present an overview of recently published (2017–2019) immobilization techniques for aptamers on gold electrodes for the electrochemical detection of proteins. These include the direct immobilization of thiolated aptamers and the utilization of short linkers, streptavidin/biotin interaction, as well as DNA nanostructures and reduced graphene oxide as immobilization platforms. Applied strategies for signal amplification and the prevention of biofouling are additionally discussed, as they play a crucial role in the design of biosensors. While a wide variety of amplification strategies are already available, future investigations should aim to establish suitable antifouling strategies that are compatible with electrochemical measurements. The focus of our review lies on the detailed discussion of the underlying principles and the presentation of utilized chemical protocols in order to provide the reader with promising ideas and profound knowledge of the subject, as well as an update on recent discoveries and achievements.
Collapse
|
13
|
Chekin F, Mishyn V, Barras A, Lyskawa J, Ye R, Melinte S, Woisel P, Boukherroub R, Szunerits S. Dopamine-functionalized cyclodextrins: modification of reduced graphene oxide based electrodes and sensing of folic acid in human serum. Anal Bioanal Chem 2019; 411:5149-5157. [PMID: 31250067 DOI: 10.1007/s00216-019-01892-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 04/26/2019] [Accepted: 05/03/2019] [Indexed: 02/06/2023]
Abstract
A mandatory step in any sensor fabrication is the introduction of analyte-specific recognition elements to the transducer surface. In this study, the possibility to anchor β-cyclodextrin-modified dopamine to a reduced graphene oxide based electrochemical transducer for the sensitive and selective sensing of folic acid is demonstrated. The sensor displays good electrocatalytic activity toward the oxidation of folic acid. The strong affinity of the surface-confined β-cyclodextrin for folic acid, together with favorable electron transfer characteristics, resulted in a sensor with a detection limit of 1 nM for folic acid and a linear response up to 10 μM. Testing of the sensor on serum samples from healthy individuals and patients diagnosed with folic acid deficiency validated the sensing capability. Graphical abstract.
Collapse
Affiliation(s)
- Fereshteh Chekin
- Department of Chemistry, Ayatollah Amoli Branch, Islamic Azad University, Amol, 46178-678, Iran. .,Université de Lille, CNRS, Centrale Lille, ISEN, Université de Valenciennes, UMR 8520-IEMN, 59000, Lille, France.
| | - Vladyslav Mishyn
- Université de Lille, CNRS, Centrale Lille, ISEN, Université de Valenciennes, UMR 8520-IEMN, 59000, Lille, France
| | - Alexandre Barras
- Université de Lille, CNRS, Centrale Lille, ISEN, Université de Valenciennes, UMR 8520-IEMN, 59000, Lille, France
| | - Joel Lyskawa
- Unité des Matériaux et Transformations (UMR 8207), Equipe Ingénierie des Systèmes Polymères, Université de Lille, 59655, Villeneuve d'Ascq Cedex, France
| | - Ran Ye
- Institute of Information and Communication Technologies, Electronics and Applied Mathematics, Université catholique de Louvain, 1348, Louvain-la-Neuve, Belgium
| | - Sorin Melinte
- Institute of Information and Communication Technologies, Electronics and Applied Mathematics, Université catholique de Louvain, 1348, Louvain-la-Neuve, Belgium
| | - Patrice Woisel
- Unité des Matériaux et Transformations (UMR 8207), Equipe Ingénierie des Systèmes Polymères, Université de Lille, 59655, Villeneuve d'Ascq Cedex, France
| | - Rabah Boukherroub
- Université de Lille, CNRS, Centrale Lille, ISEN, Université de Valenciennes, UMR 8520-IEMN, 59000, Lille, France
| | - Sabine Szunerits
- Université de Lille, CNRS, Centrale Lille, ISEN, Université de Valenciennes, UMR 8520-IEMN, 59000, Lille, France.
| |
Collapse
|
14
|
Budimir M, Jijie R, Ye R, Barras A, Melinte S, Silhanek A, Markovic Z, Szunerits S, Boukherroub R. Efficient capture and photothermal ablation of planktonic bacteria and biofilms using reduced graphene oxide-polyethyleneimine flexible nanoheaters. J Mater Chem B 2019; 7:2771-2781. [PMID: 32255079 DOI: 10.1039/c8tb01676c] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Bacterial infections are one of the leading causes of disease worldwide. Conventional antibiotics are becoming less efficient, due to antibiotic-resistant bacterial strains. Therefore, the development of novel antibacterial materials and advanced treatment strategies are becoming increasingly important. In the present work, we developed a simple and efficient strategy for effective bacterial capture and their subsequent eradication through photothermal killing. The developed device consists of a flexible nanoheater, comprising a Kapton/Au nanoholes substrate, coated with reduced graphene oxide-polyethyleneimine (K/Au NH/rGO-PEI) thin films. The Au NH plasmonic structure was tailored to feature strong absorption in the near-infrared (NIR) region, where most biological matter has limited absorption, while PEI was investigated for its strong binding with bacteria through electrostatic interactions. The K/Au NH/rGO-PEI device was demonstrated to capture and eliminate effectively both planktonic Gram-positive Staphilococcus aureus (S. aureus) and Gram-negative Escherichia coli (E. coli) bacteria after 10 min of NIR (980 nm) irradiation and, to destroy and eradicate Staphilococcus epidermidis (S. epidermidis) biofilms after 30 min irradiation. The technique developed herein is simple and universal with potential applications for eradication of different micro-organisms.
Collapse
Affiliation(s)
- Milica Budimir
- Univ. Lille, CNRS, Centrale Lille, ISEN, Univ. Valenciennes, UMR 8520 - IEMN, F-59000 Lille, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
“Click” Chemistry on Gold Electrodes Modified with Reduced Graphene Oxide by Electrophoretic Deposition. SURFACES 2019. [DOI: 10.3390/surfaces2010015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The coating of electrical interfaces with reduced graphene oxide (rGO) films and their subsequent chemical modification are essential steps in the fabrication of graphene-based sensing platforms. In this work, electrophoretic deposition (EPD) of graphene oxide at 2.5 V for 300 s followed by vapor treatment were employed to coat gold electrodes uniformly with rGO. These interfaces showed excellent electron transfer characteristics for redox mediators such as ferrocene methanol and potassium ferrocyanide. Functional groups were integrated onto the Au/rGO electrodes by the electro-reduction of an aryldiazonium salt, 4-((triisopropylsilyl)ethylenyl)benzenediazonium tetrafluoroborate (TIPS-Eth-ArN) in our case. Chemical deprotection of the triisopropylsilyl function resulted in propargyl-terminated Au/rGO electrodes to which azidomethylferrocene was chemically linked using the Cu(I) catalyzed “click” chemistry.
Collapse
|
16
|
Zhou N, Su F, Guo C, He L, Jia Z, Wang M, Jia Q, Zhang Z, Lu S. Two-dimensional oriented growth of Zn-MOF-on-Zr-MOF architecture: A highly sensitive and selective platform for detecting cancer markers. Biosens Bioelectron 2019; 123:51-58. [DOI: 10.1016/j.bios.2018.09.079] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/03/2018] [Accepted: 09/21/2018] [Indexed: 11/26/2022]
|
17
|
Grabowska I, Sharma N, Vasilescu A, Iancu M, Badea G, Boukherroub R, Ogale S, Szunerits S. Electrochemical Aptamer-Based Biosensors for the Detection of Cardiac Biomarkers. ACS OMEGA 2018; 3:12010-12018. [PMID: 30320285 PMCID: PMC6173562 DOI: 10.1021/acsomega.8b01558] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 09/07/2018] [Indexed: 05/22/2023]
Abstract
Rapid and accurate diagnostic technologies for early-state identification of cardiovascular abnormalities have become of high importance to prevent and attenuate their progression. The capability of biosensors to determine an increase in the concentration of cardiovascular protein biomarkers in circulating blood immediately after a myocardial infarction makes them ideal point-of-care platforms and alternative approaches to electrocardiograms, chest X-rays, and different laboratory-based immunoassays. We report here a generic approach toward multianalyte sensing platforms for cardiac biomarkers by developing aptamer-based electrochemical sensors for brain natriuretic peptide (BNP-32) and cardiac troponin I (cTnI). For this, commercial gold-based screen-printed electrodes were modified electrophoretically with polyethyleneimine/reduced graphene oxide films. Covalent grafting of propargylacetic acid integrates propargyl groups onto the electrode to which azide-terminated aptamers can be immobilized using Cu(I)-based "click" chemistry. To ensure low biofouling and high specificity, cardiac sensors were modified with pyrene anchors carrying poly(ethylene glycol) units. In the case of BNP-32, the sensor developed has a linear response from 1 pg mL-1 to 1 μg mL-1 in serum; for cTnI, linearity is observed from 1 pg mL-1 to 10 ng mL-1 as demanded for early-stage diagnosis of heart failure. These electrochemical aptasensors represent a step further toward multianalyte sensing of cardiac biomarkers.
Collapse
Affiliation(s)
- Iwona Grabowska
- Institute
of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland
| | - Neha Sharma
- Indian
Institute of Science Education and Research (IISER), 411008, Pune, India
| | - Alina Vasilescu
- International
Centre of Biodynamics, 1B Intrarea Portocalelor, Sector 6, 060101, Bucharest, Romania
| | - Madalina Iancu
- Agrippa
Ionescu” Emergency Clinical Hospital, 7 Ion Mincu, 011356, Bucharest, Romania
| | - Gabriela Badea
- Agrippa
Ionescu” Emergency Clinical Hospital, 7 Ion Mincu, 011356, Bucharest, Romania
| | - Rabah Boukherroub
- Univ.
Lille, CNRS, Centrale Lille, ISEN, Univ. Valenciennes, UMR 8520-IEMN, 59000, Lille, France
| | - Satishchandra Ogale
- Indian
Institute of Science Education and Research (IISER), 411008, Pune, India
| | - Sabine Szunerits
- Univ.
Lille, CNRS, Centrale Lille, ISEN, Univ. Valenciennes, UMR 8520-IEMN, 59000, Lille, France
- E-mail:
| |
Collapse
|
18
|
Duan F, Zhang S, Yang L, Zhang Z, He L, Wang M. Bifunctional aptasensor based on novel two-dimensional nanocomposite of MoS 2 quantum dots and g-C 3N 4 nanosheets decorated with chitosan-stabilized Au nanoparticles for selectively detecting prostate specific antigen. Anal Chim Acta 2018; 1036:121-132. [PMID: 30253822 DOI: 10.1016/j.aca.2018.06.070] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/18/2018] [Accepted: 06/25/2018] [Indexed: 10/28/2022]
Abstract
A novel nanostructured biosensing platform was designed based on two-dimensional (2D) nanocomposite of graphitic carbon nitride (g-C3N4) nanosheets and MoS2 quantum dots (MoS2 QDs), followed by decoration with chitosan-stabilized Au nanoparticles (CS-AuNPs) (denoted as MoS2QDs@g-C3N4@CS-AuNPs), of which CS-AuNPs were prepared by plasma enhanced-chemical vapor deposition. Owning to the good surface plasmon performance of the CS-AuNPs and excellent electrochemical activity of MoS2QDs@g-C3N4 nanosheets, the as-obtained 2D MoS2QDs@g-C3N4@CS-AuNPs nanocomposite was simultaneously explored to construct both surface plasmon resonance spectroscopy (SPR) sensor and electrochemical aptasensor. The MoS2QDs@g-C3N4@CS-AuNPs-based aptasensor shows strong bio-binding affinity toward the prostate specific antigen (PSA) targeted aptamer strands as compared to the individual component, including MoS2 QDs, g-C3N4, and CS-AuNPs. When detecting PSA, the low limit of detection (LOD) of 0.71 pg mL-1 deduced by electrochemical aptasensor is three orders of magnitude lower than that deduced by SPR sensor (0.77 ng mL-1). As expected, both SPR sensor and electrochemical aptasensor demonstrate good selectivity, highly stability, acceptable reproducibility, and well consistent applicability in human serum. The satisfactory results suggest potential application of the MoS2QDs@g-C3N4@CS-AuNPs in bifunctional biosensing fields and clinical monitoring of cancer markers.
Collapse
Affiliation(s)
- Fenghe Duan
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou, Henan, 450001, PR China
| | - Shuai Zhang
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, PR China
| | - Longyu Yang
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou, Henan, 450001, PR China
| | - Zhihong Zhang
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou, Henan, 450001, PR China.
| | - Linghao He
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou, Henan, 450001, PR China
| | - Minghua Wang
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou, Henan, 450001, PR China; Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, PR China
| |
Collapse
|
19
|
Surface modification of glassy carbon electrode with the functionalized carbon nanotube for ultrasensitive electrochemical detection of risperidone. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2018. [DOI: 10.1007/s13738-018-1346-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
20
|
Dinca V, Zaharie-Butucel D, Stanica L, Brajnicov S, Marascu V, Bonciu A, Cristocea A, Gaman L, Gheorghiu M, Astilean S, Vasilescu A. Functional Micrococcus lysodeikticus layers deposited by laser technique for the optical sensing of lysozyme. Colloids Surf B Biointerfaces 2017; 162:98-107. [PMID: 29190474 DOI: 10.1016/j.colsurfb.2017.11.058] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 11/13/2017] [Accepted: 11/22/2017] [Indexed: 12/17/2022]
Abstract
Whole cell optical biosensors, made by immobilizing whole algal, bacterial or mammalian cells on various supports have found applications in several fields, from ecology and ecotoxicity testing to biopharmaceutical production or medical diagnostics. We hereby report the deposition of functional bacterial layers of Micrococcus lysodeikticus (ML) via Matrix-Assisted Pulsed Laser Evaporation (MAPLE) on poly(diallyldimethylamonium) (PDDA)-coated-glass slides and their application as an optical biosensor for the detection of lysozyme in serum. Lysozyme is an enzyme upregulated in inflammatory diseases and ML is an enzymatic substrate for this enzyme. The MAPLE-deposited bacterial interfaces were characterised by Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), Fourier-Transformed Infrared Spectroscopy (FTIR), Raman and optical microscopy and were compared with control interfaces deposited via layer-by-layer on the same substrate. After MAPLE deposition and coating with graphene oxide (GO), ML-modified interfaces retained their functionality and sensitivity to lysozyme's lytic action. The optical biosensor detected lysozyme in undiluted serum in the clinically relevant range up to 10μgmL-1, in a fast and simple manner.
Collapse
Affiliation(s)
- Valentina Dinca
- National Institute for Laser, Plasma and Radiation Physics (INFLPR), 409 Atomistilor, 077125, Magurele, Romania
| | - Diana Zaharie-Butucel
- Nanobiophotonics Center, Interdisciplinary Research Institute in Bio-Nano-Sciences, 42 Treboniu Laurian, Cluj-Napoca, Romania
| | - Luciana Stanica
- International Centre of Biodynamics, 1B Intrarea Portocalelor, 060101, Bucharest, Romania
| | - Simona Brajnicov
- National Institute for Laser, Plasma and Radiation Physics (INFLPR), 409 Atomistilor, 077125, Magurele, Romania; University of Craiova, Faculty of Mathematics and Natural Science, 13 Alexandru Ioan Cuza, 200585, Craiova, Romania
| | - Valentina Marascu
- National Institute for Laser, Plasma and Radiation Physics (INFLPR), 409 Atomistilor, 077125, Magurele, Romania; University of Bucharest, Faculty of Physics, 405 Atomistilor, 077125, Magurele, Romania
| | - Anca Bonciu
- National Institute for Laser, Plasma and Radiation Physics (INFLPR), 409 Atomistilor, 077125, Magurele, Romania; University of Bucharest, Faculty of Physics, 405 Atomistilor, 077125, Magurele, Romania
| | - Andra Cristocea
- Fundeni Clinical Institute, Department of Gastroenterology and Hepatology, 258 Sos. Fundeni, Bucharest, Romania
| | - Laura Gaman
- "Carol Davila" University of Medicine and Pharmacy, Faculty of Medicine, Department of Biochemistry, 8 B-dul Eroilor Sanitari, 76241, Bucharest, Romania
| | - Mihaela Gheorghiu
- International Centre of Biodynamics, 1B Intrarea Portocalelor, 060101, Bucharest, Romania
| | - Simion Astilean
- Nanobiophotonics Center, Interdisciplinary Research Institute in Bio-Nano-Sciences, 42 Treboniu Laurian, Cluj-Napoca, Romania
| | - Alina Vasilescu
- International Centre of Biodynamics, 1B Intrarea Portocalelor, 060101, Bucharest, Romania.
| |
Collapse
|
21
|
Vasilescu A, Hayat A, Gáspár S, Marty JL. Advantages of Carbon Nanomaterials in Electrochemical Aptasensors for Food Analysis. ELECTROANAL 2017. [DOI: 10.1002/elan.201700578] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Alina Vasilescu
- International Centre of Biodynamics, 1B Intrarea Portocalelor, sector 6; 060101 Bucharest Romania
| | - Akhtar Hayat
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM) COMSATS Institute of Information Technology (CIIT); 54000 Lahore Pakistan
| | - Szilveszter Gáspár
- International Centre of Biodynamics, 1B Intrarea Portocalelor, sector 6; 060101 Bucharest Romania
| | - Jean-Louis Marty
- BAE Laboratory; Université de Perpignan Via Domitia; 52 Avenue Paul Alduy 66860 Perpignan France
| |
Collapse
|
22
|
Kahlouche K, Jijie R, Hosu I, Barras A, Gharbi T, Yahiaoui R, Herlem G, Ferhat M, Szunerits S, Boukherroub R. Controlled modification of electrochemical microsystems with polyethylenimine/reduced graphene oxide using electrophoretic deposition: Sensing of dopamine levels in meat samples. Talanta 2017; 178:432-440. [PMID: 29136845 DOI: 10.1016/j.talanta.2017.09.065] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 09/19/2017] [Accepted: 09/22/2017] [Indexed: 11/29/2022]
Abstract
Microsystems play an important role in many biological and environmental applications. The integration of electrical interfaces into such miniaturized systems provides new opportunities for electrochemical sensing where high sensitivity and selectivity towards the analyte are requested. This can be only achieved upon controlled functionalization of the working electrode, a challenge for compact microsystems. In this work, we demonstrate the benefit of electrophoretic deposition (EPD) of reduced graphene oxide/polyethylenimine (rGO/PEI) for the selective modification of a gold (Au) microelectrode in a microsystem comprising a Pt counter and a Ag/AgCl reference electrode. The functionalized microsystem was successfully applied for the sensing of dopamine with a detection limit of 50nM. Additionally, the microsystem exhibited good performance for the detection of dopamine levels in meat samples.
Collapse
Affiliation(s)
- Karima Kahlouche
- Univ. Lille, CNRS, Central Lille, ISEN, Univ. Valenciennes, UMR 8520, IEMN, F-59000 Lille, France; Laboratoire de Nanomédecine, imagerie et thérapeutique, EA 4662, Université de Franche-Comté, 16 Route de Gray, 25030 Besançon, France; Centre for Development of Advanced Technologies (CDTA), Baba Hassen, Algeria; Semiconductors and Functional Materials Laboratory, University of Laghouat, Algeria
| | - Roxana Jijie
- Univ. Lille, CNRS, Central Lille, ISEN, Univ. Valenciennes, UMR 8520, IEMN, F-59000 Lille, France
| | - Ioana Hosu
- Univ. Lille, CNRS, Central Lille, ISEN, Univ. Valenciennes, UMR 8520, IEMN, F-59000 Lille, France
| | - Alexandre Barras
- Univ. Lille, CNRS, Central Lille, ISEN, Univ. Valenciennes, UMR 8520, IEMN, F-59000 Lille, France
| | - Tijani Gharbi
- Laboratoire de Nanomédecine, imagerie et thérapeutique, EA 4662, Université de Franche-Comté, 16 Route de Gray, 25030 Besançon, France
| | - Reda Yahiaoui
- Laboratoire de Nanomédecine, imagerie et thérapeutique, EA 4662, Université de Franche-Comté, 16 Route de Gray, 25030 Besançon, France
| | - Guillaume Herlem
- Laboratoire de Nanomédecine, imagerie et thérapeutique, EA 4662, Université de Franche-Comté, 16 Route de Gray, 25030 Besançon, France
| | - Marhoun Ferhat
- Semiconductors and Functional Materials Laboratory, University of Laghouat, Algeria
| | - Sabine Szunerits
- Univ. Lille, CNRS, Central Lille, ISEN, Univ. Valenciennes, UMR 8520, IEMN, F-59000 Lille, France.
| | - Rabah Boukherroub
- Univ. Lille, CNRS, Central Lille, ISEN, Univ. Valenciennes, UMR 8520, IEMN, F-59000 Lille, France.
| |
Collapse
|