1
|
Chen W, Sun J, Jia P, Wang W, Song Z, Wang Z, Zhao X, Mao Y. A Strategy for Anode Recovery and Upgrading by In Situ Growth of Iron-Based Oxides on Microwave-Puffed Graphite. Molecules 2024; 29:3219. [PMID: 38999171 PMCID: PMC11243450 DOI: 10.3390/molecules29133219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 06/30/2024] [Accepted: 07/04/2024] [Indexed: 07/14/2024] Open
Abstract
Faced with the increasing volume of retired lithium-ion batteries (LIBs), recycling and reusing the spent graphite (SG) is of great significance for resource sustainability. Here, a facile method for transforming the SG into a carbon framework as well as loading Fe2O3 to form a composite anode with a sandwich structure is proposed. Taking advantage of the fact that the layer spacing of the spent graphite naturally expands, impurities and intercalants are eliminated through microwave thermal shock to produce microwave-puffed graphite (MPG) with a distinct three-dimensional structure. Based on the mechanism of microwave-induced gasification intercalation, a Fe2O3-MPG intercalation compound (Fe2O3-MPGIC) anode material was constructed by introducing iron precursors between the framework layers and subsequently converting them into Fe2O3 through annealing. The Fe2O3-MPGIC anode exhibits a high reversible capacity of 1000.6 mAh g-1 at 200 mA g-1 after 100 cycles and a good cycling stability of 504.4 mAh g-1 at 2000 mA g-1 after 500 cycles. This work can provide a reference for the feasible recycling of SG and development of high-performance anode materials for LIBs.
Collapse
Affiliation(s)
- Wenxin Chen
- National Engineering Laboratory for Reducing Emissions from Coal Combustion, Engineering Research Center of Environmental Thermal Technology of Ministry of Education, Shandong Key Laboratory of Energy Carbon Reduction and Resource Utilization, School of Energy and Power Engineering, Shandong University, Jinan 250061, China
| | - Jing Sun
- National Engineering Laboratory for Reducing Emissions from Coal Combustion, Engineering Research Center of Environmental Thermal Technology of Ministry of Education, Shandong Key Laboratory of Energy Carbon Reduction and Resource Utilization, School of Energy and Power Engineering, Shandong University, Jinan 250061, China
| | - Pingshan Jia
- National Engineering Laboratory for Reducing Emissions from Coal Combustion, Engineering Research Center of Environmental Thermal Technology of Ministry of Education, Shandong Key Laboratory of Energy Carbon Reduction and Resource Utilization, School of Energy and Power Engineering, Shandong University, Jinan 250061, China
| | - Wenlong Wang
- National Engineering Laboratory for Reducing Emissions from Coal Combustion, Engineering Research Center of Environmental Thermal Technology of Ministry of Education, Shandong Key Laboratory of Energy Carbon Reduction and Resource Utilization, School of Energy and Power Engineering, Shandong University, Jinan 250061, China
| | - Zhanlong Song
- National Engineering Laboratory for Reducing Emissions from Coal Combustion, Engineering Research Center of Environmental Thermal Technology of Ministry of Education, Shandong Key Laboratory of Energy Carbon Reduction and Resource Utilization, School of Energy and Power Engineering, Shandong University, Jinan 250061, China
| | - Ziliang Wang
- National Engineering Laboratory for Reducing Emissions from Coal Combustion, Engineering Research Center of Environmental Thermal Technology of Ministry of Education, Shandong Key Laboratory of Energy Carbon Reduction and Resource Utilization, School of Energy and Power Engineering, Shandong University, Jinan 250061, China
| | - Xiqiang Zhao
- National Engineering Laboratory for Reducing Emissions from Coal Combustion, Engineering Research Center of Environmental Thermal Technology of Ministry of Education, Shandong Key Laboratory of Energy Carbon Reduction and Resource Utilization, School of Energy and Power Engineering, Shandong University, Jinan 250061, China
| | - Yanpeng Mao
- National Engineering Laboratory for Reducing Emissions from Coal Combustion, Engineering Research Center of Environmental Thermal Technology of Ministry of Education, Shandong Key Laboratory of Energy Carbon Reduction and Resource Utilization, School of Energy and Power Engineering, Shandong University, Jinan 250061, China
| |
Collapse
|
2
|
Tran QN, Park CH, Le TH. Nanocrystalline Cellulose-Supported Iron Oxide Composite Materials for High-Performance Lithium-Ion Batteries. Polymers (Basel) 2024; 16:691. [PMID: 38475372 DOI: 10.3390/polym16050691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
Nanocrystalline cellulose (NCC) can be converted into carbon materials for the fabrication of lithium-ion batteries (LIBs) as well as serve as a substrate for the incorporation of transition metal oxides (TMOs) to restrain the volume expansion, one of the most significant challenges of TMO-based LIBs. To improve the electrochemical performance and enhance the longer cycling stability of LIBs, a nanocrystalline cellulose-supported iron oxide (Fe2O3) composite (denoted as NCC-Fe2O3) is synthesized and utilized as electrodes in LIBs. The obtained NCC-Fe2O3 electrode exhibited stable cycling performance, better capacity, and high-rate capacity, and delivered a specific discharge capacity of 576.70 mAh g-1 at 100 mA g-1 after 1000 cycles. Moreover, the NCC-Fe2O3 electrode was restored and showed an upward trend of capacity after working at high current densities, indicating the fabricated composite is a promising approach to designing next-generation high-energy density lithium-ion batteries.
Collapse
Affiliation(s)
- Quang Nhat Tran
- Department of Chemical and Biological Engineering, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Republic of Korea
| | - Chan Ho Park
- Department of Chemical and Biological Engineering, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Republic of Korea
| | - Thi Hoa Le
- Department of Chemical and Biological Engineering, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Republic of Korea
| |
Collapse
|
3
|
Miao Z, Gao K, Li D, Gao Z, Zhao W, Li Z, Sun W, Wang X, Zhang H, Wang X, Sun C, Zhu Y, Li Z. Heterointerface Engineered Core-Shell Fe 2O 3@TiO 2 for High-Performance Lithium-Ion Storage. Molecules 2023; 28:6903. [PMID: 37836746 PMCID: PMC10574312 DOI: 10.3390/molecules28196903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/21/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
The rational design of the heterogeneous interfaces enables precise adjustment of the electronic structure and optimization of the kinetics for electron/ion migration in energy storage materials. In this work, the built-in electric field is introduced to the iron-based anode material (Fe2O3@TiO2) through the well-designed heterostructure. This model serves as an ideal platform for comprehending the atomic-level optimization of electron transfer in advanced lithium-ion batteries (LIBs). As a result, the core-shell Fe2O3@TiO2 delivers a remarkable discharge capacity of 1342 mAh g-1 and an extraordinary capacity retention of 82.7% at 0.1 A g-1 after 300 cycles. Fe2O3@TiO2 shows an excellent rate performance from 0.1 A g-1 to 4.0 A g-1. Further, the discharge capacity of Fe2O3@TiO2 reached 736 mAh g-1 at 1.0 A g-1 after 2000 cycles, and the corresponding capacity retention is 83.62%. The heterostructure forms a conventional p-n junction, successfully constructing the built-in electric field and lithium-ion reservoir. The kinetic analysis demonstrates that Fe2O3@TiO2 displays high pseudocapacitance behavior (77.8%) and fast lithium-ion reaction kinetics. The capability of heterointerface engineering to optimize electrochemical reaction kinetics offers novel insights for constructing high-performance iron-based anodes for LIBs.
Collapse
Affiliation(s)
- Zeqing Miao
- Shandong Engineering Laboratory for Preparation and Application of High-Performance Carbon-Materials, College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao 266061, China
| | - Kesheng Gao
- Shandong Engineering Laboratory for Preparation and Application of High-Performance Carbon-Materials, College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao 266061, China
| | - Dazhi Li
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Ziwei Gao
- Shandong Engineering Laboratory for Preparation and Application of High-Performance Carbon-Materials, College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao 266061, China
| | - Wenxin Zhao
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Zeyang Li
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Wei Sun
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xiaoguang Wang
- Sino-German Institute of Technology, Qingdao University of Science and Technology, Qingdao 266100, China
| | - Haihang Zhang
- Sino-German Institute of Technology, Qingdao University of Science and Technology, Qingdao 266100, China
| | - Xinyu Wang
- Sino-German Institute of Technology, Qingdao University of Science and Technology, Qingdao 266100, China
| | - Changlong Sun
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yuanyuan Zhu
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, Suzhou University, Suzhou 234000, China
| | - Zhenjiang Li
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|
4
|
Ko J, Kim M, So S, Tae Kim I, Hur J. Electron-rich hybrid matrix to enhance molybdenum oxide-based anode performance for Lithium-Ion batteries. J Colloid Interface Sci 2023; 647:93-103. [PMID: 37245273 DOI: 10.1016/j.jcis.2023.05.143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 05/12/2023] [Accepted: 05/21/2023] [Indexed: 05/30/2023]
Abstract
Although MoO2-based electrodes have been intensively studied as potential candidate anodes for lithium-ion batteries (LIBs) based on their high theoretical capacity (840 mAh g-1 and 5447 mAh cm-3), common issues such as severe volume variation, electrical conductivity loss, and low ionic conductivity, are prevalent. In this study, we demonstrate enhanced Li-ion kinetics and electrical conductivity of MoO2-based anodes with ternary MoO2-Cu-C composite materials. The MoO2-Cu-C was synthesized via two-step high energy ball milling where Mo and CuO are milled, followed by the secondary milling with C. With the introduction of the Cu-C hybrid matrix in MoO2 nanoparticles via the element transfer method using mechanochemical reactions, the sluggish Li-ion diffusion and unstable cycling behavior were significantly improved. The inactive Cu-C matrix contributes to the increase in electrical and ionic conductivity and mechanical stability of active MoO2 during cycling, as characterized by various electrochemical analyses and ex situ analysis techniques. Hence, the MoO2-Cu-C anode delivered promising cycling performance (674 mAh g-1 (at 0.1 A g-1) and 520 mAh g-1 (at 0.5 A g-1), respectively, after 100 cycles) and high-rate property (73% retention at 5 A g-1 as comparison with the specific capacity at 0.1 A g-1). The MoO2-Cu-C electrode is a propitious next-generation anode for LIBs.
Collapse
Affiliation(s)
- Jaewook Ko
- Department of Chemical and Biological Engineering, Gachon University, Seongnam, Gyeonggi 13120, Republic of Korea
| | - Minju Kim
- Department of Chemical and Biological Engineering, Gachon University, Seongnam, Gyeonggi 13120, Republic of Korea
| | - Seongjoon So
- Department of Chemical and Biological Engineering, Gachon University, Seongnam, Gyeonggi 13120, Republic of Korea
| | - Il Tae Kim
- Department of Chemical and Biological Engineering, Gachon University, Seongnam, Gyeonggi 13120, Republic of Korea.
| | - Jaehyun Hur
- Department of Chemical and Biological Engineering, Gachon University, Seongnam, Gyeonggi 13120, Republic of Korea.
| |
Collapse
|
5
|
Jiang W, Wang W, Shi H, Hu R, Hong J, Tong Y, Ma J, Jing Liang C, Peng J, Xu Z. Homogeneous regulation of arranged polymorphic manganese dioxide nanocrystals as cathode materials for high-performance zinc-ion batteries. J Colloid Interface Sci 2023; 647:124-133. [PMID: 37247476 DOI: 10.1016/j.jcis.2023.05.148] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 05/17/2023] [Accepted: 05/22/2023] [Indexed: 05/31/2023]
Abstract
Rechargeable aqueous zinc-ion batteries have emerged as attractive energy storage devices by virtue of their low cost, high safety and eco-friendliness. However, zinc-ion cathodes are bottlenecked by their vulnerable crystal structures in the process of zinc embedding and significant capacity fading during long-term cycling. Herein, we report the rational and homogeneous regulation of polycrystalline manganese dioxide (MnO2) nanocrystals as zinc cathodes via a surfactant template-assisted strategy. Benefiting from the homogeneous regulation, MnO2 nanocrystals with an ordered crystal arrangement, including nanorod-like polyvinylpyrrolidone-manganese dioxide (PVP-MnO2), nanowire-like sodium dodecyl benzene sulfonate-manganese dioxide and nanodot-like cetyltrimethylammonium bromide-manganese dioxide, are obtained. Among these, the nanorod-like PVP-MnO2 nanocrystals exhibit stable long-life cycling of 210 mAh g-1 over 180 cycles at a high rate of 0.3 A g-1 and with a high capacity retention of 84% over 850 cycles at a high rate of 1 A g-1. The good performance of this cathode significantly results from the facile charge and mass transfer at the interface between the electrode and electrolyte, featuring the crystal stability and uniform morphology of the arranged MnO2 nanocrystals. This work provides crucial insights into the development of advanced MnO2 cathodes for low-cost and high-performance rechargeable aqueous zinc-ion batteries.
Collapse
Affiliation(s)
- Wanwei Jiang
- Jiangsu Advanced Textile Engineering Technology Center, Jiangsu College of Engineering and Technology, Jiangsu 226007, China.
| | - Wei Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Haiting Shi
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Renzong Hu
- School of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, South China University of Technology, Guangzhou 510640, China.
| | - Jie Hong
- Jiangsu Advanced Textile Engineering Technology Center, Jiangsu College of Engineering and Technology, Jiangsu 226007, China
| | - Yun Tong
- Jiangsu Advanced Textile Engineering Technology Center, Jiangsu College of Engineering and Technology, Jiangsu 226007, China
| | - Jun Ma
- Jiangsu Advanced Textile Engineering Technology Center, Jiangsu College of Engineering and Technology, Jiangsu 226007, China
| | - Cheng Jing Liang
- Jiangsu Advanced Textile Engineering Technology Center, Jiangsu College of Engineering and Technology, Jiangsu 226007, China
| | - Jingfu Peng
- Jiangsu Advanced Textile Engineering Technology Center, Jiangsu College of Engineering and Technology, Jiangsu 226007, China
| | - Zhiwei Xu
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China.
| |
Collapse
|
6
|
Kaushal S, Kumar A, Bains H, Singh PP. Photocatalytic degradation of tetracycline antibiotic and organic dyes using biogenic synthesized CuO/Fe 2O 3 nanocomposite: pathways and mechanism insights. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:37092-37104. [PMID: 36564698 DOI: 10.1007/s11356-022-24848-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
Tetracycline (TC) is a frequently administered antibiotic in many countries, due to its low price and excellent potency. However, certain antibiotics can be hazardous to living creatures due to their accumulation by complexation with metal ions which can contribute to teratogenicity and carcinogenicity. In this investigation, copper oxide-ferric oxide nanocomposite (CuO/Fe2O3 nanocomposite) was synthesized employing Psidium guajava (P. guajava) leaf extract as a reductant as well as a capping agent in an environment friendly and economical green synthesis method. The as-synthesized CuO/Fe2O3 nanocomposite was comprehensively characterized using various sophisticated techniques and its efficiency as a photocatalyst for degradation of tetracycline (TC) antibiotic and toxic dyes, i.e., rhodamine B (RhB) and methylene blue (MB) were investigated. The CuO/Fe2O3 nanocomposite exhibited exceptional efficiency for degradation of TC antibiotic (88% removal in 80 min), RhB (96% removal in 40 min), and MB (93% elimination in 40 min) with apparent rate constant of 0.048, 0.068, and 0.032 min-1, respectively. In the degradation experiments, photocatalytic activity of CuO/Fe2O3 nanocomposite was studied by varying different factors such as time of contact, catalyst dose, and solution pH. The role of reactive species in antibiotics and dye degradation was validated by radical scavenging studies which indicated that.OH radical played a critical role in photocatalytic decomposition. Furthermore, liquid chromatography-mass spectrometry (LC-MS) investigations were employed to anticipate a plausible mechanism for TC degradation.
Collapse
Affiliation(s)
- Sandeep Kaushal
- Department of Chemistry, Sri Guru Granth Sahib World University, Fatehgarh Sahib, Punjab, India.
| | - Avdhesh Kumar
- JLC College Chapra, JP University, Chapra, Bihar, India
| | - Himani Bains
- Department of Chemistry, Sri Guru Granth Sahib World University, Fatehgarh Sahib, Punjab, India
| | - Prit Pal Singh
- Department of Chemistry, Sri Guru Granth Sahib World University, Fatehgarh Sahib, Punjab, India
| |
Collapse
|
7
|
Bin Yousaf A, Hagarová I, Javaid Zaidi S, Kasak P. Single-phase Mn-Fe interfacial oxides nanocomposites encored on carbon nitride sheets exhibited enhanced performance for electrocatalytic oxygen reduction reactions. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
8
|
Influence of the filler distribution on PDMS-graphene based nanocomposites selected properties. Sci Rep 2022; 12:19038. [PMID: 36352248 PMCID: PMC9646694 DOI: 10.1038/s41598-022-23735-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 11/04/2022] [Indexed: 11/10/2022] Open
Abstract
Insufficient homogeneity is one of the pressing problems in nanocomposites' production as it largely impairs the properties of materials with relatively high filler concentration. Within this work, it is demonstrated how selected mixing techniques (magnetic mixer stirring, calendaring and microfluidization) affect filler distribution in poly(dimethylsiloxane)-graphene based nanocomposites and, consequently, their properties. The differences were assessed via imaging and thermal techniques, i.a. Raman spectroscopy, differential scanning calorimetry and thermogravimetry. As microfluidization proved to provide the best homogenization, it was used to prepare nanocomposites of different filler concentration, whose structural and thermal properties were investigated. The results show that the concentration of graphene significantly affects polymer chain mobility, grain sizes, defect density and cross-linking level. Both factors considered in this work considerably influence thermal stability and other features which are crucial for application in electronics, EMI shielding, thermal interface materials etc.
Collapse
|
9
|
Efficiency Enhancement of Electro-Adsorption Desalination Using Iron Oxide Nanoparticle-Incorporated Activated Carbon Nanocomposite. MICROMACHINES 2021; 12:mi12101148. [PMID: 34683201 PMCID: PMC8539726 DOI: 10.3390/mi12101148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/17/2021] [Accepted: 09/19/2021] [Indexed: 11/17/2022]
Abstract
Capacitive deionization (CDI) technology is currently considered a potential candidate for brackish water desalination. In this study, we designed iron oxide nanoparticle-incorporated activated carbon (AC/Fe2O3) via a facile and cost-effective hydrothermal process. The as-synthesized material was characterized using several techniques and tested as electrodes in CDI applications. We found that the distinctive properties of the AC/Fe2O3 electrode, i.e., high wettability, high surface area, unique structural morphology, and high conductivity, resulted in promising CDI performance. The electrosorptive capacity of the AC/Fe2O3 nanocomposite reached 6.76 mg g-1 in the CDI process, with a high specific capacitance of 1157.5 F g-1 at 10 mV s-1 in a 1 M NaCl electrolyte. This study confirms the potential use of AC/Fe2O3 nanocomposites as viable electrode materials in CDI and other electrochemical applications.
Collapse
|
10
|
Huang W, Chen K, Komarneni S, Xue D, Katsuki H, Cho WS, Xue X, Yang H, Ma J. Colloidal to micrometer-sized iron oxides and oxyhydroxides as anode materials for batteries and pseudocapacitors: Electrochemical properties. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
11
|
Abstract
Since the discovery of graphene, there has been increasing interest in two-dimensional (2D) materials. To realize practical applications of 2D materials, it is essential to isolate mono- or few-layered 2D nanosheets from unexfoliated counterparts. Liquid phase exfoliation (LPE) is the most common technique to produce atomically thin-layered 2D nanosheets. However, low production yield and prolonged process time remain key challenges. Recently, novel exfoliation processes based on microfluidics have been developed to achieve rapid and high yield production of few-layer 2D nanosheets. We review the primary types of microfluidic-based exfoliation techniques in terms of the underlying process mechanisms and the applications of the 2D nanosheets thus produced. The key challenges and future directions are discussed in the above context to delineate future research directions in this exciting area of materials processing.
Collapse
|
12
|
Yin L, Pan Y, Li M, Zhao Y, Luo S. Facile and scalable synthesis of α-Fe 2O 3/γ-Fe 2O 3/Fe/C nanocomposite as advanced anode materials for lithium/sodium ion batteries. NANOTECHNOLOGY 2020; 31:155402. [PMID: 31860879 DOI: 10.1088/1361-6528/ab647f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
To develop low-cost advanced anode materials for lithium/sodium ion batteries, the chemical reaction equilibrium of Fe(NO3)3 and glucose in hot aqueous solution is creatively used to fabricate a new α-Fe2O3/γ-Fe2O3/Fe/C nanocomposite with the primary particle sizes concentrated at 25-80 nm. As anodes for lithium ion batteries, it exhibits a discharge capacity of ∼878 mAh g-1 after 200 cycles at a current density of 200 mA g-1. Moreover, even after 1000 cycles at a current density of 3200 mA g-1, the discharge capacity is as high as ∼532 mAh g-1, with a capacity retention of over than 100% against that of the second cycle. As anodes for sodium ion batteries, the nanocomposite displays a stable discharge capacity of ∼400 mAh g-1 at a current density of 100 mA g-1 and no obvious capacity degradation happens after 200 cycles. During cycling, the α-Fe2O3/γ-Fe2O3/Fe/C nanocomposite electrodes shows high structural stability and relatively faster reaction kinetics, which should be responsible for its excellent electrochemical performance. This work provides a facile and scalable route to synthesize high-performance and low-cost Fe2O3-based nanocomposite for the secondary batteries.
Collapse
Affiliation(s)
- Li Yin
- Institute of Synthesis and Application of Functional Materials, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637009, People's Republic of China
| | | | | | | | | |
Collapse
|
13
|
Ju W, Jin B, Dong C, Wen Z, Jiang Q. Rice-shaped Fe2O3@C@Mn3O4 with three-layer core-shell structure as a high-performance anode for lithium-ion batteries. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.113942] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
14
|
Gou L, Mou KL, Fan XY, Zhao MJ, Wang Y, Xue D, Li DL. Mn2O3/Al2O3 cathode material derived from a metal–organic framework with enhanced cycling performance for aqueous zinc-ion batteries. Dalton Trans 2020; 49:711-718. [DOI: 10.1039/c9dt03995c] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Rechargeable aqueous zinc-ion batteries (ZIBs) are considered to be potential candidates for large-scale energy storage due to their high capacity, low cost, high safety and environmental friendliness.
Collapse
Affiliation(s)
- Lei Gou
- Institute of Energy Materials and Device
- School of Materials Science and Engineering
- Chang'an University
- Xi'an 710061
- China
| | - Ke-Liang Mou
- Institute of Energy Materials and Device
- School of Materials Science and Engineering
- Chang'an University
- Xi'an 710061
- China
| | - Xiao-Yong Fan
- Institute of Energy Materials and Device
- School of Materials Science and Engineering
- Chang'an University
- Xi'an 710061
- China
| | - Ming-Juan Zhao
- Institute of Energy Materials and Device
- School of Materials Science and Engineering
- Chang'an University
- Xi'an 710061
- China
| | - Yue Wang
- Institute of Energy Materials and Device
- School of Materials Science and Engineering
- Chang'an University
- Xi'an 710061
- China
| | - Dong Xue
- Institute of Energy Materials and Device
- School of Materials Science and Engineering
- Chang'an University
- Xi'an 710061
- China
| | - Dong-Lin Li
- Institute of Energy Materials and Device
- School of Materials Science and Engineering
- Chang'an University
- Xi'an 710061
- China
| |
Collapse
|
15
|
Lu W, Guo X, Yang B, Wang S, Liu Y, Yao H, Liu C, Pang H. Synthesis and Applications of Graphene/Iron(III) Oxide Composites. ChemElectroChem 2019. [DOI: 10.1002/celc.201901006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Wenjie Lu
- Guangling College, School of Chemistry and Chemical EngineeringYangzhou University Yangzhou 225009, Jiangsu P. R. China
| | - Xiaotian Guo
- Guangling College, School of Chemistry and Chemical EngineeringYangzhou University Yangzhou 225009, Jiangsu P. R. China
| | - Biao Yang
- Guangling College, School of Chemistry and Chemical EngineeringYangzhou University Yangzhou 225009, Jiangsu P. R. China
| | - Sibo Wang
- Guangling College, School of Chemistry and Chemical EngineeringYangzhou University Yangzhou 225009, Jiangsu P. R. China
| | - Yong Liu
- Collaborative Innovation Center of Nonferrous Metals of Henan Province Henan Key Laboratory of High-Temperature Structural and Functional Materials School of Materials Science and EngineeringHenan University of Science and Technology Luoyang China
| | - Hang Yao
- Guangling College, School of Chemistry and Chemical EngineeringYangzhou University Yangzhou 225009, Jiangsu P. R. China
| | - Chun‐Sen Liu
- Henan Provincial Key Laboratory of Surface & Interface ScienceZhengzhou University of Light Industry Zhengzhou 450002 P. R. China
| | - Huan Pang
- Guangling College, School of Chemistry and Chemical EngineeringYangzhou University Yangzhou 225009, Jiangsu P. R. China
| |
Collapse
|
16
|
Wu D, Niu Y, Wang C, Wu H, Li Q, Chen Z, Xu B, Li H, Zhang LY. γ-Fe2O3 nanoparticles stabilized by holey reduced graphene oxide as a composite anode for lithium-ion batteries. J Colloid Interface Sci 2019; 552:633-638. [DOI: 10.1016/j.jcis.2019.05.091] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/24/2019] [Accepted: 05/26/2019] [Indexed: 12/13/2022]
|
17
|
Zhan J, Wu K, Yu X, Yang M, Cao X, Lei B, Pan D, Jiang H, Wu M. α-Fe 2 O 3 Nanoparticles Decorated C@MoS 2 Nanosheet Arrays with Expanded Spacing of (002) Plane for Ultrafast and High Li/Na-Ion Storage. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1901083. [PMID: 30993869 DOI: 10.1002/smll.201901083] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/23/2019] [Indexed: 06/09/2023]
Abstract
MoS2 nanosheets as a promising 2D nanomaterial have extensive applications in energy storage and conversion, but their electrochemical performance is still unsatisfactory as an anode for efficient Li+ /Na+ storage. In this work, the design and synthesis of vertically grown MoS2 nanosheet arrays, decorated with graphite carbon and Fe2 O3 nanoparticles, on flexible carbon fiber cloth (denoted as Fe2 O3 @C@MoS2 /CFC) is reported. When evaluated as an anode for lithium-ion batteries, the Fe2 O3 @C@MoS2 /CFC electrode manifests an outstanding electrochemical performance with a high discharge capacity of 1541.2 mAh g-1 at 0.1 A g-1 and a good capacity retention of 80.1% at 1.0 A g-1 after 500 cycles. As for sodium-ion batteries, it retains a high reversible capacity of 889.4 mAh g-1 at 0.5 A g-1 over 200 cycles. The superior electrochemical performance mainly results from the unique 3D ordered Fe2 O3 @C@MoS2 array-type nanostructures and the synergistic effect between the C@MoS2 nanosheet arrays and Fe2 O3 nanoparticles. The Fe2 O3 nanoparticles act as spacers to steady the structure, and the graphite carbon could be incorporated into MoS2 nanosheets to improve the conductivity of the whole electrode and strengthen the integration of MoS2 nanosheets and CFC by the adhesive role, together ensuring high conductivity and mechanical stability.
Collapse
Affiliation(s)
- Jing Zhan
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, P. R. China
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, 117583, Singapore
| | - Kuan Wu
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, P. R. China
| | - Xue Yu
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, P. R. China
| | - Mengjia Yang
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, P. R. China
| | - Xu Cao
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, P. R. China
| | - Bo Lei
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, P. R. China
| | - Dengyu Pan
- Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Hu Jiang
- School of Materials Science and Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Minghong Wu
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, P. R. China
| |
Collapse
|
18
|
Han T, Wei Y, Jin X, Yu S, Shang R, Hang D. Facile assembly of α-Fe2O3 nanorings@reduced graphene oxide composites with high lithium storage performance. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.03.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
19
|
Liu M, Liu Y, Li Y, Wang K, Guo Y, Li Y, Zhao L. Biomimetic Straw-Like Bundle Cobalt-Doped Fe 2 O 3 Electrodes towards Superior Lithium-Ion Storage. Chemistry 2019; 25:3343-3351. [PMID: 30721542 DOI: 10.1002/chem.201805546] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 11/30/2018] [Indexed: 11/05/2022]
Abstract
Biomimetic straw-like bundles of Co-doped Fe2 O3 (SCF), with Co2+ incorporated into the lattice of α-Fe2 O3 , was fabricated through a cost-effective hydrothermal process and used as the anode material for lithium-ion batteries (LIBs). The SCF exhibited ultrahigh initial discharge specific capacity (1760.7 mA h-1 g-1 at 200 mA g-1 ) and cycling stability (with the capacity retention of 1268.3 mA h-1 g-1 after 350 cycles at 200 mA g-1 ). In addition, a superior rate capacity of 376.1 mA h-1 g-1 was obtained at a high current density of 4000 mA g-1 . The remarkable electrochemical lithium storage of SCF is attributed to the Co-doping, which increases the unit cell volume and affects the whole structure. It makes the Li+ insertion-extraction process more flexible. Meanwhile, the distinctive straw-like bundle structure can accelerate Li ion diffusion and alleviate the huge volume expansion upon cycling.
Collapse
Affiliation(s)
- Miao Liu
- Institute of Opto-Electronic Materials and Technology, South China Normal University, Guangzhou, 510631, China.,Guangdong Provincial Engineering Technology Research Center for, Low Carbon and Advanced Energy Materials, Guangzhou, 510631, China
| | - Yongmei Liu
- South China Institute of Software Engineering, Guangzhou, 510631, China
| | - Youpeng Li
- Guangdong Provincial Engineering Technology Research Center for, Low Carbon and Advanced Energy Materials, Guangzhou, 510631, China
| | - Kang Wang
- Institute of Opto-Electronic Materials and Technology, South China Normal University, Guangzhou, 510631, China
| | - Yayun Guo
- Institute of Opto-Electronic Materials and Technology, South China Normal University, Guangzhou, 510631, China.,Guangdong Provincial Engineering Technology Research Center for, Low Carbon and Advanced Energy Materials, Guangzhou, 510631, China
| | - Yanxin Li
- Institute of Opto-Electronic Materials and Technology, South China Normal University, Guangzhou, 510631, China.,Guangdong Provincial Engineering Technology Research Center for, Low Carbon and Advanced Energy Materials, Guangzhou, 510631, China
| | - Lingzhi Zhao
- Institute of Opto-Electronic Materials and Technology, South China Normal University, Guangzhou, 510631, China.,Guangdong Provincial Engineering Technology Research Center for, Low Carbon and Advanced Energy Materials, Guangzhou, 510631, China
| |
Collapse
|
20
|
Jiang J, Wang X, Mi W. Spin polarization and spin channel reversal in graphitic carbon nitrides on top of an α-Fe 2O 3(0001) surface. Phys Chem Chem Phys 2018; 20:22489-22497. [PMID: 30140843 DOI: 10.1039/c8cp04223c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Inducing the spin-dependent characteristics in two-dimensional (2D) materials by magnetic proximity effects is a recent targeted route for 2D spintronic devices. Here, we report the spin-dependent electronic properties of graphitic carbon nitrides (g-C2N, g-C3N and g-C4N3) on top of α-Fe2O3(0001) by first-principles calculations. The different terminations of α-Fe2O3(0001) can switch the conductivity of g-C2N from the n- to the p-type. In particular, the O- and single Fe-terminated interfaces show a half-metallic feature in g-C2N, which originates from the charge redistribution driven by work function difference and interfacial interaction. Additionally, the O-terminated interface shows stable physical adsorption, which leads to spin polarization in g-C3N and spin channel reversal in g-C4N3. These results strongly reveal that this novel system is a candidate for future graphitic carbon nitride-based spintronic devices.
Collapse
Affiliation(s)
- Jiawei Jiang
- Tianjin Key Laboratory of Film Electronic & Communicate Devices, School of Electrical and Electronic Engineering, Tianjin University of Technology, Tianjin 300384, China.
| | | | | |
Collapse
|
21
|
Fang H, Zou W, Yan J, Xing Y, Zhang S. Facile Fabrication of Fe2
O3
Nanoparticles Anchored on Carbon Nanotubes as High-Performance Anode for Lithium-Ion Batteries. ChemElectroChem 2018. [DOI: 10.1002/celc.201800441] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Hua Fang
- School of Material and Chemical Engineering Henan Provincial Key Laboratory of Surface Interface Science; Zhengzhou University of Light Industry; Zhengzhou 450001 PR China
| | - Wei Zou
- School of Material and Chemical Engineering Henan Provincial Key Laboratory of Surface Interface Science; Zhengzhou University of Light Industry; Zhengzhou 450001 PR China
| | - Ji Yan
- School of Material and Chemical Engineering Henan Provincial Key Laboratory of Surface Interface Science; Zhengzhou University of Light Industry; Zhengzhou 450001 PR China
| | - Yalan Xing
- School of Materials Science and Engineering; Beihang University; Beijing 100191 PR China
| | - Shichao Zhang
- School of Materials Science and Engineering; Beihang University; Beijing 100191 PR China
| |
Collapse
|
22
|
Ahmed MM, Imae T, Hill JP, Yamauchi Y, Ariga K, Shrestha LK. Defect-free exfoliation of graphene at ultra-high temperature. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2017.10.074] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
23
|
Xu J, Dou Y, Wei Z, Ma J, Deng Y, Li Y, Liu H, Dou S. Recent Progress in Graphite Intercalation Compounds for Rechargeable Metal (Li, Na, K, Al)-Ion Batteries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2017; 4:1700146. [PMID: 29051856 PMCID: PMC5644242 DOI: 10.1002/advs.201700146] [Citation(s) in RCA: 156] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 05/08/2017] [Indexed: 05/17/2023]
Abstract
Lithium-ion batteries (LIBs) with higher energy density are very necessary to meet the increasing demand for devices with better performance. With the commercial success of lithiated graphite, other graphite intercalation compounds (GICs) have also been intensively reported, not only for LIBs, but also for other metal (Na, K, Al) ion batteries. In this Progress Report, we briefly review the application of GICs as anodes and cathodes in metal (Li, Na, K, Al) ion batteries. After a brief introduction on the development history of GICs, the electrochemistry of cationic GICs and anionic GICs is summarized. We further briefly summarize the use of cationic GICs and anionic GICs in alkali ion batteries and the use of anionic GICs in aluminium-ion batteries. Finally, we reach some conclusions on the drawbacks, major progress, emerging challenges, and some perspectives on the development of GICs for metal (Li, Na, K, Al) ion batteries. Further development of GICs for metal (Li, Na, K, Al) ion batteries is not only a strong supplement to the commercialized success of lithiated-graphite for LIBs, but also an effective strategy to develop diverse high-energy batteries for stationary energy storage in the future.
Collapse
Affiliation(s)
- Jiantie Xu
- Institute for Superconducting and Electronic MaterialsUniversity of WollongongWollongong2500Australia
| | - Yuhai Dou
- Institute for Superconducting and Electronic MaterialsUniversity of WollongongWollongong2500Australia
| | - Zengxi Wei
- School of Physics and ElectronicsHunan UniversityChangsha410082P. R. China
| | - Jianmin Ma
- School of Physics and ElectronicsHunan UniversityChangsha410082P. R. China
| | - Yonghong Deng
- Department of Materials Science and EngineeringSouth University of Science and Technology of China1088 Xueyuan BlvdShenzhen518055P. R. China
| | - Yutao Li
- Materials Science and Engineering Program & Texas Materials InstituteThe University of Texas at AustinAustinTX78712USA
| | - Huakun Liu
- Institute for Superconducting and Electronic MaterialsUniversity of WollongongWollongong2500Australia
| | - Shixue Dou
- Institute for Superconducting and Electronic MaterialsUniversity of WollongongWollongong2500Australia
| |
Collapse
|
24
|
Kim JH, Kang YC. Synthesis of Uniquely Structured Yolk-Shell Metal Oxide Microspheres Filled with Nitrogen-Doped Graphitic Carbon with Excellent Li-Ion Storage Performance. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1701585. [PMID: 28834282 DOI: 10.1002/smll.201701585] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 06/30/2017] [Indexed: 06/07/2023]
Abstract
Novel structured composite microspheres of metal oxide and nitrogen-doped graphitic carbon (NGC) have been developed as efficient anode materials for lithium-ion batteries. A new strategy is first applied to a one-pot preparation of composite (FeOx -NGC/Y) microspheres via spray pyrolysis. The FeOx -NGC/Y composite microspheres have a yolk-shell structure based on the iron oxide material. The void space of the yolk-shell microsphere is filled with NGC. Dicyandiamide additive plays a key role in the formation of the FeOx -NGC/Y composite microspheres by inducing Ostwald ripening to form a yolk-shell structure based on the iron oxide material. The FeOx -NGC/Y composite microspheres with the mixed crystal structure of rock salt FeO and spinel Fe3 O4 phases show highly superior lithium-ion storage performances compared to the dense-structured FeOx microspheres with and without carbon material. The discharge capacities of the FeOx -NGC/Y microspheres for the 1st and 1000th cycle at 1 A g-1 are 1423 and 1071 mAh g-1 , respectively. The microspheres have a reversible discharge capacity of 598 mAh g-1 at an extremely high current density of 10 A g-1 . Furthermore, the strategy described in this study is generally applied to multicomponent metal oxide-carbon composite microspheres with yolk-shell structures based on metal oxide materials.
Collapse
Affiliation(s)
- Jung Hyun Kim
- Department of Materials Science and Engineering, Korea University, Anam-Dong, Seongbuk-Gu, Seoul, 136-713, Republic of Korea
| | - Yun Chan Kang
- Department of Materials Science and Engineering, Korea University, Anam-Dong, Seongbuk-Gu, Seoul, 136-713, Republic of Korea
| |
Collapse
|