1
|
Thangasamy P, Vo TG, Venkatramanan R, Ng YT, Gao J, Liu Y. Bimetallic Ni-Co-MOF Nanostructures for Seawater Electrolysis: Unveiling the Mechanism of the Oxygen Evolution Reaction Using Impedance Spectroscopy. Inorg Chem 2025; 64:5586-5597. [PMID: 40068164 DOI: 10.1021/acs.inorgchem.5c00027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Designing anode electrodes with long-term stability and efficiency for seawater electrolysis is crucial for addressing key challenges in sustainable hydrogen production and clean energy systems. Here, we developed self-supporting bimetallic Ni-Co-MOF electrodes, demonstrating exceptional performance and durability in alkaline seawater electrolysis due to their high voltammetric charge density and increased electrochemically accessible active sites. The reaction kinetics of the water oxidation reaction in the presence of Cl- ions (at concentrations ranging from 0.5 M to 3.5 M) were investigated through electrochemical impedance spectroscopy (EIS) analysis, focusing on the kinetic parameters, suggesting that the rate-determining step (RDS) is the chemical process following the initial electron transfer. Notably, Cl- ions in the electrolyte medium do not alter the OER rate-limiting step, as indicated by negligible variations in the anodic transfer coefficient values. However, blocking active sites is evident from the decrease in interfacial chemical capacitance (Cchem) values with increasing Cl- concentration. These findings offer a deeper understanding of OER reaction kinetics in chloride-containing environments by correlating electrochemical kinetic parameters with active site availability. This work highlights critical considerations for designing efficient and durable anodes for seawater electrolysis.
Collapse
Affiliation(s)
- Pitchai Thangasamy
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Singapore, Jurong Island 627833, Republic of Singapore
| | - Truong-Giang Vo
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Singapore, Jurong Island 627833, Republic of Singapore
| | - Raghunath Venkatramanan
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Singapore, Jurong Island 627833, Republic of Singapore
| | - Yan-Ting Ng
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Singapore, Jurong Island 627833, Republic of Singapore
| | - Jiajian Gao
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Singapore, Jurong Island 627833, Republic of Singapore
| | - Yan Liu
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Singapore, Jurong Island 627833, Republic of Singapore
| |
Collapse
|
2
|
Xu H, Zhang D, Liu M, Ye D, Huo S, Chen W, Zhang J. Self-supporting hierarchical Co 3O 4-nanowires@NiO-nanosheets core-shell nanostructure on carbon foam to form efficient bifunctional electrocatalyst for overall water splitting. J Colloid Interface Sci 2024; 654:1293-1302. [PMID: 37913718 DOI: 10.1016/j.jcis.2023.10.116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/17/2023] [Accepted: 10/22/2023] [Indexed: 11/03/2023]
Abstract
Designing cost-effective and robust bifunctional electrocatalysts for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) is highly desired in hydrogen production from overall water splitting, but still suffers great challenges due to the sluggish catalytic OER/HER kinetics. In this paper, a surface/defect engineering strategy is developed to synthesize three-dimensional (3D) carbon foam (CF)-supported unique hierarchical Co3O4 nanowires@NiO nanosheets core-shell nanostructured catalyst (NiO@Co3O4/CF) with rich oxygen-vacancies as a novel bifunctional catalyst for alkaline water splitting electrolysis. Benefited from the synergy of the 3D hierarchical core-shell structure and rich oxygen vacancies, the as-obtained NiO@Co3O4/CF shows both excellent OER (η200 = 325 mV, η500 = 374 mV) and HER (η10 = 104 mV) activities with low Tafel slopes (64.26 mV dec-1 for OER and 109.14 mV dec-1 for HER, respectively) and outstanding stability. A simple overall water splitting electrolysis cell assembled by this bifunctional NiO@Co3O4/CF as both OER and HER catalysts requires only a cell voltage of 1.53 V to obtain the current density of 10 mA cm-2 and displays a long-term stability. This work has successfully developed an approach for rational design and novel synthesis of metal oxide hybrids as bifunctional electrocatalysts with high activity and stability for overall water splitting.
Collapse
Affiliation(s)
- Huan Xu
- Institute for Sustainable Energy, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Dan Zhang
- Institute for Sustainable Energy, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Minmin Liu
- Institute for Sustainable Energy, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, PR China.
| | - Daixin Ye
- Institute for Sustainable Energy, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Shengjuan Huo
- Institute for Sustainable Energy, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Wei Chen
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, PR China; University of Science and Technology of China, No. 96 Jinzhai Road, Hefei, Anhui 230026, PR China; School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, PR China
| | - Jiujun Zhang
- Institute for Sustainable Energy, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, PR China
| |
Collapse
|
3
|
Sobhani Bazghale F, Gilak MR, Zamani Pedram M, Torabi F, Naikoo GA. 2D nanocomposite materials for HER electrocatalysts - a review. Heliyon 2024; 10:e23450. [PMID: 38192770 PMCID: PMC10772112 DOI: 10.1016/j.heliyon.2023.e23450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/30/2023] [Accepted: 12/04/2023] [Indexed: 01/10/2024] Open
Abstract
Hydrogen energy has the potential to be a cost-effective and strong technology for brighter development. Hydrogen fuel production by water electrolyzers has attracted attention. 2D nanocomposites with distinctive properties have been extensively explored for various applications from hydrogen evolution reactions to improving the efficiency of water electrolyzer, which is the most eco-friendly, and high-performance for hydrogen production. Recently, typical 2D nanocomposites such as Metal-Free 2D, TMDs, Mxene, LDH, organic composites, and Heterostructure have recently been thoroughly researched for use in the HER. We discuss effective ways for increasing the HER efficiency of 2D catalysts in this paper, And the unique advantages and mechanisms for specific applications are highlighted. Several essential regulating strategies for developing 2D nanocomposite-based HER electrocatalysts are included such as interface engineering, defect engineering, heteroatom doping, strain & phase engineering, and hybridizing which improve HER kinetics, the electrical conductivity, accessibility to catalytic active sites, and reaction energy barrier can be optimized. Finally, the future prospects for 2D nanocomposites in HER are discussed, as well as a thorough overview of a variety of methodologies for designing 2D nanocomposites as HER electrocatalysts with excellent catalytic performance. We expect that this review will provide a thorough overview of 2D nanocatalysts for hydrogen production.
Collapse
Affiliation(s)
| | - Mohammad Reza Gilak
- Mechanical Engineering Faculty, K. N. Toosi University of Technology, Tehran, Iran
| | - Mona Zamani Pedram
- Mechanical Engineering Faculty, K. N. Toosi University of Technology, Tehran, Iran
| | - Farschad Torabi
- Mechanical Engineering Faculty, K. N. Toosi University of Technology, Tehran, Iran
| | - Gowhar A. Naikoo
- Department of Mathematics & Sciences, College of Arts & Applied Sciences, Dhofar University, Salalah, PC 211, Oman
| |
Collapse
|
4
|
Thangasamy P, He R, Chen X, Yu K, Randriamahazaka H, Chen Z, Luo H, Zhou XD, Zhou M. Organic-Inorganic Hybrid Crystal-Assisted Etching of Nickel Foam for the Collectively Exhaustive Electrochemical Performance of Oxygen Evolution Reaction. Chemistry 2023; 29:e202301469. [PMID: 37385953 DOI: 10.1002/chem.202301469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/01/2023]
Abstract
In this work, an organic-inorganic hybrid crystal, violet-crystal (VC), was used to etch the nickel foam (NF) to fabricate a self-standing electrode for the water oxidation reaction. The efficacy of VC-assisted etching manifests the promising electrochemical performance towards the oxygen evolution reaction (OER), requiring only ~356 and ~376 mV overpotentials to reach 50 and 100 mA cm-2 , respectively. The OER activity improvement is attributed to the collectively exhaustive effects arising from the incorporation of various elements in the NF, and the enhancement of active site density. Furthermore, the self-standing electrode is robust, exhibiting a stable OER activity after 4,000 cyclic voltammetry cycles, and ~50 h. The anodic transfer coefficients (αa ) show that the first electron transfer step is the rate-determining step on the surface of NF-VCs-1.0 (NF etched by 1 g of VCs) electrode, while the chemical step involving dissociation following the first electron transfer step is identified as the rate-limiting step in other electrodes. The lowest Tafel slope value observed in the NF-VCs-1.0 electrode indicates the high surface coverage of oxygen intermediates and more favorable OER reaction kinetics, as confirmed by high interfacial chemical capacitance and low charge transport/interfacial resistance. This work demonstrates the importance of VCs-assisted etching of NF to activate the OER, and the ability to predict reaction kinetics and rate-limiting step based on αa values, which will open new avenues to identify advanced electrocatalysts for the water oxidation reaction.
Collapse
Affiliation(s)
- Pitchai Thangasamy
- Department of Chemical & Materials Engineering, New Mexico State University, Las Cruces, NM-88003, USA
| | - Rong He
- Department of Chemical & Materials Engineering, New Mexico State University, Las Cruces, NM-88003, USA
| | - Xinqi Chen
- Northwestern University Atomic and, Nanoscale Characterization Experimental Center and, Department of Materials Science and Engineering, Northwestern University, Evanston, IL-60208, USA
| | - Kunpeng Yu
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA-92093, USA
| | | | - Zheng Chen
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA-92093, USA
| | - Hongmei Luo
- Department of Chemical & Materials Engineering, New Mexico State University, Las Cruces, NM-88003, USA
| | - Xiao-Dong Zhou
- Department of Chemical Engineering, Institute for Materials Research and Innovations, University of Louisiana at Lafayette, Lafayette, LA-70504, USA
| | - Meng Zhou
- Department of Chemical & Materials Engineering, New Mexico State University, Las Cruces, NM-88003, USA
| |
Collapse
|
5
|
Liu Z, Kong Z, Cui S, Liu L, Wang F, Wang Y, Wang S, Zang SQ. Electrocatalytic Mechanism of Defect in Spinels for Water and Organics Oxidation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302216. [PMID: 37259266 DOI: 10.1002/smll.202302216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/07/2023] [Indexed: 06/02/2023]
Abstract
Spinels display promising electrocatalytic ability for oxygen evolution reaction (OER) and organics oxidation reaction because of flexible structure, tunable component, and multifold valence. Unfortunately, limited exposure of active sites, poor electronic conductivity, and low intrinsic ability make the electrocatalytic performance of spinels unsatisfactory. Defect engineering is an effective method to enhance the intrinsic ability of electrocatalysts. Herein, the recent advances in defect spinels for OER and organics electrooxidation are reviewed. The defect types that exist in spinels are first introduced. Then the catalytic mechanism and dynamic evolution of defect spinels during the electrochemical process are summarized in detail. Finally, the challenges of defect spinel electrocatalysts are brought up. This review aims to deepen the understanding about the role and evolution of defects in spinel for electrochemical water/organics oxidation and provide a significant reference for the design of efficient defect spinel electrocatalysts.
Collapse
Affiliation(s)
- Zhijuan Liu
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Zhijie Kong
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Shasha Cui
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Luyu Liu
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Fen Wang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Yanyong Wang
- State Key Laboratory of Chem/Bio-sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Shuangyin Wang
- State Key Laboratory of Chem/Bio-sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Shuang-Quan Zang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
6
|
Guo X, Liu X, Wang M, Yan J, Chen Y, Liu S. Unveiling the Origin of Co 3 O 4 Quantum Dots for Photocatalytic Overall Water Splitting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206695. [PMID: 36775877 DOI: 10.1002/smll.202206695] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/31/2022] [Indexed: 05/11/2023]
Abstract
Spinel cobalt oxide displays excellent photocatalytic performance, especially in solar driven water oxidation. However, the process of water reduction to hydrogen is considered as the Achilles' heel of solar water splitting over Co3 O4 owing to its low conduction band. Enhancement of the water splitting efficiency using Co3 O4 requires deeper insights of the carrier dynamics during water splitting process. Herein, the carrier dynamic kinetics of colloidal Co3 O4 quantum dots-Pt hetero-junctions is studied, which mimics the hydrogen reduction process during water splitting. It is showed that the quantum confinement effect induced by the small QD size raised the conduction band edge position of Co3 O4 QDs, so that the ligand-to-metal charge transfer from 2p state of oxygen to 3d state of Co2+ occurs, which is necessary for overall water splitting and cannot be achieved in Co3 O4 bulk crystals. The findings in this work provide insights of the photocatalytic mechanism of Co3 O4 catalysts and benefit rational design of Co3 O4 -based photocatalytic systems.
Collapse
Affiliation(s)
- Xu Guo
- Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Xing Liu
- Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Menglong Wang
- International Research Center for Renewable Energy, State Key Laboratory for Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Junqing Yan
- Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Yubin Chen
- International Research Center for Renewable Energy, State Key Laboratory for Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Shengzhong Liu
- Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
- iChem, Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| |
Collapse
|
7
|
Confined cobalt oxide embedded into hierarchical bismuth tungstate in S-scheme micro-heterojunction for enhanced air purification. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
8
|
Construction of abundant Co3O4/Co(OH)2 heterointerfaces as air electrocatalyst for flexible all-solid-state zinc-air batteries. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140158] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
9
|
Jiang W, Wang J, Wang X, Liao J, Wei J, Xu R, Yang L. Two-step facile synthesis of Co 3O 4@C reinforced PbO 2 coated electrode to promote efficient oxygen evolution reaction for zinc electrowinning. RSC Adv 2022; 12:10634-10645. [PMID: 35425018 PMCID: PMC8984834 DOI: 10.1039/d1ra09100j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/17/2022] [Indexed: 11/21/2022] Open
Abstract
The conventional Pb-Ag alloy possesses a high oxygen evolution reaction overpotential, poor stability, and short service life in acidic solutions, making it an unsuitable sort of anode material for the zinc electrowinning process. Therefore, a layered carbon-covered cobalt tetroxide (Co3O4@C)-reinforced PbO2-coated electrode is fabricated via a facile two-step pyrolysis-oxidation and subsequent electrodeposition process. As a result, the reinforced PbO2-coated electrode exhibits a low OER overpotential of 517 mV at 500 A m-2 and a Tafel slope of 0.152 V per decade in a zinc electrowinning simulation solution (0.3 M ZnSO4 and 1.53 M H2SO4). The reduced overpotential of 431 mV at 500 A m-2 compared to traditional Pb-0.76%Ag alloy leads to improved energy savings, which is attributable to the presence of Co3O4@C to refine the grain size and thus increase the effective contact area. Moreover, the reinforced PbO2-coated electrode has a prolonged service life of 93 h at 20 000 A m-2 in 1.53 M H2SO4. Therefore, an accessible and efficient strategy for preparing a coated electrode to improve OER performance for zinc electrowinning is presented in this research.
Collapse
Affiliation(s)
- Wenhao Jiang
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology Kunming 650093 China
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology Kunming 650093 China
| | - Junli Wang
- Researcher Center for Analysis and Measurement, Kunming University of Science and Technology Kunming 650093 China
| | - Xuanbing Wang
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology Kunming 650093 China
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology Kunming 650093 China
| | - Jiang Liao
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology Kunming 650093 China
| | - Jinlong Wei
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology Kunming 650093 China
| | - Ruidong Xu
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology Kunming 650093 China
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology Kunming 650093 China
| | - Linjing Yang
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology Kunming 650093 China
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology Kunming 650093 China
| |
Collapse
|
10
|
Cong L, Zhu H, Zhang S, Xing Y, Xia J, Meng X, Yang P. Co3O4 Anchored on Ionic Liquid Modified PAN as Anode Materials for Flexible Lithium-ion Batteries. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116105] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Samo IA, Mughal W, Shakeel M, Samo KA, Chen C. Triple Product Overall Water Splitting – An Environment Friendly and New Direction Water Splitting in Sea‐Water Mimicking Electrolyte. ChemistrySelect 2021. [DOI: 10.1002/slct.202102647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Imran Ahmed Samo
- State Key Laboratory of Chemical Resource Engineering College of Chemistry Beijing Advanced Innovation Centre for Soft Matter Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
| | - Waqas Mughal
- Department of Mechanical Engineering Quaid-e-Awam University of Engineering, Science and Technology Nawabshah Pakistan
| | - Muhammad Shakeel
- State Key Laboratory of Chemical Resource Engineering Beijing University of Chemical Technology Beijing 100029 China
| | - Kamran Ahmed Samo
- Department of Electrical Engineering Quaid-e-Awam University of Engineering Science and Technology Nawabshah Pakistan
| | - Congtian Chen
- State Key Laboratory of Chemical Resource Engineering College of Chemistry Beijing Advanced Innovation Centre for Soft Matter Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
| |
Collapse
|
12
|
Thangasamy P, Nam S, Oh S, Randriamahazaka H, Oh IK. Boosting Oxygen Evolution Reaction on Metallocene-based Transition Metal Sulfides Integrated with N-doped Carbon Nanostructures. CHEMSUSCHEM 2021; 14:5004-5020. [PMID: 34463051 DOI: 10.1002/cssc.202101469] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/10/2021] [Indexed: 06/13/2023]
Abstract
In this study, utilizing metallocene and organosulfur chelating agent, an innovative synthetic route was developed towards electrochemically activated transition metal sulfides entrapped in pyridinic nitrogen-incorporated carbon nanostructures for superior oxygen evolution reaction (OER). Most importantly, the preferential electrochemical activation process, which consisted of both anodic and cathodic pre-treatment steps, strikingly enhanced OER and long-lasting cyclic stability. The substantial increase in OER electrocatalytic activity of Ni9 S8 /Ni3 S2 -NC and Co9 S8 -NC during the activation process was mainly attributed to the increase of faradaic active site density on the catalytic layer resulting from the reconstruction of catalytic interfaces. It was also found that Fe-based metallocene [ferrocene (Fc)]-incorporation in the Co9 S8 -NC and Ni9 S8 /Ni3 S2 -NC nanostructures significantly boosted the OER activity. Thus, the combined effects of Fc-incorporation and the electrochemical activation process reduced the overpotential to about 115 and 95 mV on the Ni9 S8 /Ni3 S2 -NC and Co9 S8 -NC nanostructures to derive a current density of 10 mA cm-2 , respectively. Notably, Fc-Ni9 S8 /Ni3 S2 -NC electrocatalysts required very small overpotentials of around 222, 244, and 280 mV to acquire the current densities of 10, 20, and 50 mA cm-2 , respectively. This work opens up a new avenue for superior OER electrocatalysts by the utilization of metallocene and the preferential electrochemical activation process.
Collapse
Affiliation(s)
- Pitchai Thangasamy
- National Creative Research Initiative for Functionally Antagonistic Nano-Engineering, Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Sanghee Nam
- National Creative Research Initiative for Functionally Antagonistic Nano-Engineering, Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Saewoong Oh
- National Creative Research Initiative for Functionally Antagonistic Nano-Engineering, Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | | | - Il-Kwon Oh
- National Creative Research Initiative for Functionally Antagonistic Nano-Engineering, Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| |
Collapse
|
13
|
Rong J, Wang Z, Lv J, Fan M, Chong R, Chang Z. Ni(OH)2 quantum dots as a stable cocatalyst modified α-Fe2O3 for enhanced photoelectrochemical water-splitting. CHINESE JOURNAL OF CATALYSIS 2021. [DOI: 10.1016/s1872-2067(21)63829-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
14
|
Yao D, Gu L, Zuo B, Weng S, Deng S, Hao W. A strategy for preparing high-efficiency and economical catalytic electrodes toward overall water splitting. NANOSCALE 2021; 13:10624-10648. [PMID: 34132310 DOI: 10.1039/d1nr02307a] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Electrolyzing water technology to prepare high-purity hydrogen is currently an important field in energy development. However, the preparation of efficient, stable, and inexpensive hydrogen production technology from electrolyzed water is a major problem in hydrogen energy production. The key technology for hydrogen production from water electrolysis is to prepare highly efficient catalytic, stable and durable electrodes, which are used to reduce the overpotential of the hydrogen evolution reaction and the oxygen evolution reaction of electrolyzed water. The main strategies for preparing catalytic electrodes include: (i) choosing cheap, large specific surface area and stable base materials, (ii) modulating the intrinsic activity of the catalytic material through elemental doping and lattice changes, and (iii) adjusting the morphology and structure to increase the catalytic activity. Based on these findings, herein, we review the recent work in the field of hydrogen production by water electrolysis, introduce the preparation of catalytic electrodes based on nickel foam, carbon cloth and new flexible materials, and summarize the catalytic performance of metal oxides, phosphides, sulfides and nitrides in the hydrogen evolution and oxygen evolution reactions. Secondly, parameters such as the overpotential, Tafel slope, active site, turnover frequency, and stability are used as indicators to measure the performance of catalytic electrode materials. Finally, taking the material cost of the catalytic electrode as a reference, the successful preparations are comprehensively compared. The overall aim is to shed some light on the exploration of high-efficiency and economical electrodes in energy chemistry and also demonstrate that there is still room for discovering new combinations of electrodes including base materials, composition lattice changes and morphologies.
Collapse
Affiliation(s)
- Dongxue Yao
- University of Shanghai for Science and Technology, Shanghai 200093, P. R. China.
| | | | | | | | | | | |
Collapse
|
15
|
Lu S, Wang Y, Han Y, Zhong M, Yang H, Su B, Lei Z. LaNi
x
Fe
1‐x
O
3‐δ
‐Quantum Dot/CNT Composite for High Performance Oxygen Evolution Reaction. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Shiqing Lu
- Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education of China Key Laboratory of Polymer Materials of Gansu Province College of Chemistry and Chemical Engineering Northwest Normal University No. 967 Anning East Road Lanzhou 730070 P.R. China
| | - Yangchen Wang
- Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education of China Key Laboratory of Polymer Materials of Gansu Province College of Chemistry and Chemical Engineering Northwest Normal University No. 967 Anning East Road Lanzhou 730070 P.R. China
| | - Yuqi Han
- College of Chemistry and Chemical Engineering He Xi University No.846 North Circle Road Zhangye, Gansu 734000 P.R. China
| | - Ming Zhong
- State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals Lanzhou University of Technology No. 287 Langongping Road Lanzhou 730050 P.R. China
| | - Haidong Yang
- Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education of China Key Laboratory of Polymer Materials of Gansu Province College of Chemistry and Chemical Engineering Northwest Normal University No. 967 Anning East Road Lanzhou 730070 P.R. China
| | - Bitao Su
- Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education of China Key Laboratory of Polymer Materials of Gansu Province College of Chemistry and Chemical Engineering Northwest Normal University No. 967 Anning East Road Lanzhou 730070 P.R. China
| | - Ziqiang Lei
- Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education of China Key Laboratory of Polymer Materials of Gansu Province College of Chemistry and Chemical Engineering Northwest Normal University No. 967 Anning East Road Lanzhou 730070 P.R. China
| |
Collapse
|
16
|
Xiao H, Du X, Zhao M, Li Y, Hu T, Wu H, Jia J, Yang N. Structural dependence of electrosynthesized cobalt phosphide/black phosphorus pre-catalyst for oxygen evolution in alkaline media. NANOSCALE 2021; 13:7381-7388. [PMID: 33889884 DOI: 10.1039/d1nr00062d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The integration of black phosphorus (BP) with metal phosphides is known to produce high-performance electrocatalysts for oxygen evolution reduction (OER), although increased stability and prevention of the degradation of their lone pairs would be desirable improvements. In this work, cobalt phosphide (CoP)/BP heterostructures were electrochemically synthesized with a two-electrode system, where cobalt ions were generated in situ at a Co anode, and non-aggregated BP nanosheets (NSs) were exfoliated from the bulky BP cathode. With an electrolysis voltage of 30 V, the CoP/BP heterostructure exhibited a superior and stable OER performance (e.g., an overpotential of 300 mV at 10 mA cm-2, which is 41 mV lower than that obtained with a RuO2 catalyst). The CoOx formed in situ during the OER catalysis and remaining CoP synergistically contributed to the enhanced OER performance. The present strategy provides a new electrosynthetic method to prepare stable BP electrocatalysts and also further expands their electrochemical applications.
Collapse
Affiliation(s)
- He Xiao
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials, Ministry of Education, The School of Chemical and Material Science, Shanxi Normal University, Linfen 041004, China.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Liquid-Phase Deposition Synthesis of ZIF-67-Derived Synthesis of Co3O4@TiO2 Composite for Efficient Electrochemical Water Splitting. METALS 2021. [DOI: 10.3390/met11030420] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In this article, a novel Co3O4@TiO2 composite is synthesized by applying two-step methods. ZIF-67 is synthesized and used as a template for the synthesis of the composite. The composite is designed by using the effective photocatalytic properties of Co3O4 and TiO2. The resulting synthesized composite is supposed to offer superior properties compared to their counterparts. The synthesized Co3O4@TiO2 composite is characterized by powder X-ray diffraction (PXRD), Brunauer–Emmet–Teller (BET), atomic force microscopy (AFM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Electrochemical water splitting, including hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) studies on the Co3O4@TiO2 composite, is evaluated by cyclic voltammetry (CV) and linear sweep voltammetry (LSV) analysis in a 2M aqueous KOH electrolyte. The current generation stability of these samples is deliberated by chronoamperometric measurements. It is observed, from LSV results at a 1 mV/s scan rate, that metal oxides incorporated on other metal oxides have a higher current density and lower onset potential as compared to pure metal oxides. From the obtained results, it has become evident that synthesized studies on the Co3O4@TiO2 composite possess significant potential for electrochemical water splitting with the lowest onset potential, highest current density, better OER, and HER activity.
Collapse
|
18
|
Qi L, Wang M, Li X. Graphene-induced growth of Co3O4 nanoplates with modulable oxygen vacancies for improved OER properties. CrystEngComm 2021. [DOI: 10.1039/d1ce00255d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Graphene-induced growth of Co(OH)2 nanoplates from Co3O4 nanospheres was reported, showing an ultralow overpotential of 240 mV at 10 mA cm−2 and a Tafel slope of 107.8 mV dec−1.
Collapse
Affiliation(s)
- Lei Qi
- The State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou, 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mei Wang
- The State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou, 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinheng Li
- The State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou, 730000, China
| |
Collapse
|
19
|
Duan JJ, Zhang RL, Feng JJ, Zhang L, Zhang QL, Wang AJ. Facile synthesis of nanoflower-like phosphorus-doped Ni3S2/CoFe2O4 arrays on nickel foam as a superior electrocatalyst for efficient oxygen evolution reaction. J Colloid Interface Sci 2021; 581:774-782. [DOI: 10.1016/j.jcis.2020.08.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 08/02/2020] [Accepted: 08/03/2020] [Indexed: 12/14/2022]
|
20
|
Ghosh S, Tudu G, Mondal A, Ganguli S, Inta HR, Mahalingam V. Inception of Co3O4 as Microstructural Support to Promote Alkaline Oxygen Evolution Reaction for Co0.85Se/Co9Se8 Network. Inorg Chem 2020; 59:17326-17339. [PMID: 33213153 DOI: 10.1021/acs.inorgchem.0c02618] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Sourav Ghosh
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal 741246, India
| | - Gouri Tudu
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal 741246, India
| | - Ayan Mondal
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal 741246, India
| | - Sagar Ganguli
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal 741246, India
| | - Harish Reddy Inta
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal 741246, India
| | - Venkataramanan Mahalingam
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal 741246, India
| |
Collapse
|
21
|
Gao X, Tang Z, Meng M, Yu Q, Li J, Shen S, Yang J. Graphene oxide induced assembly and crumpling of Co 3O 4 nanoplates. NANOTECHNOLOGY 2020; 31:305601. [PMID: 32217821 DOI: 10.1088/1361-6528/ab841f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Cobalt (II, III) oxide (Co3O4) has been widely studied and applied in various fields, however, it suffers from slow mass and electron transfer during applications. Herein, crumpled Co3O4 and Co3O4/reduced graphene oxide (rGO) with tunable 2D-in-3D structures were prepared by combining spray pyrolysis with a graphene oxide (GO) template. The 2D Co3O4 nanoplates were interconnected with each other to form a 3D ball with many wrinkles, resulting in defect enrichment on the abundant boundaries of the nanosheets, which provided more active sites for catalytic reactions. In addition, the unique 2D-in-3D structure allowed fast mass transfer and structural stability. Furthermore, the assembled structure could be understood as being composed of uniformly distributed oxygen-containing functional groups pinning metal cations on the GO surface through electrostatic interaction, and the 2D structure of the GO enabled the in situ converted Co3O4 to grow along the GO surface with excellent dispersion. Taking advantage of the above, the Co3O4/rGO balls demonstrated an excellent oxygen evolution reaction performance, an overpotential of 298 mV at a current density of 10.0 mA cm-2 and a current density of 115.9 mA cm-2 at the overpotential of η = 500 mV.
Collapse
Affiliation(s)
- Xiaolin Gao
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
22
|
Lienau K, Triana CA, Reith L, Siol S, Patzke GR. Microwave-Hydrothermal Tuning of Spinel-Type Co 3 O 4 Water Oxidation Catalysts. Front Chem 2020; 8:473. [PMID: 32582640 PMCID: PMC7296166 DOI: 10.3389/fchem.2020.00473] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 05/06/2020] [Indexed: 11/13/2022] Open
Abstract
Water oxidation is the bottleneck reaction for overall water splitting as a direct and promising strategy toward clean fuels. However, the development of robust and affordable heterogeneous water oxidation catalysts remains challenging, especially with respect to the wide parameter space of synthesis and resulting material properties. Oxide catalysts performance in particular has been shown to depend on both synthetic routes and applied catalytic test methods. We here focus on spinel-type Co3O4 as a representative case for an in-depth study of the influence of rather subtle synthetic parameter variations on the catalytic performance. To this end, a series of Co3O4 samples was prepared via time-saving and tunable microwave-hydrothermal synthesis, while systematically varying a single parameter at a time. The resulting spinel-type catalysts were characterized with respect to key materials properties, including crystallinity, oxidation state and surface area using a wide range of analytical methods, such as PXRD, Raman/IR, XAS and XPS spectroscopy. Their water oxidation activity in electrocatalytic and chemical oxidation setups was then compared and correlated with the obtained catalyst properties. Both water oxidation methods displayed related trends concerning favorable synthetic parameters, namely higher activity for lower synthesis temperatures, lower precursor concentrations, addition of hydrogen peroxide and shorter ramping and reaction times, respectively. In addition to the surface area, structural features such as disorder were found to be influential for the water oxidation activity. The results prove that synthetic parameter screening is essential for optimal catalytic performance, given the complexity of the underlying performance-properties relationships.
Collapse
Affiliation(s)
- Karla Lienau
- Department of Chemistry, University of Zurich, Zurich, Switzerland
| | - C. A. Triana
- Department of Chemistry, University of Zurich, Zurich, Switzerland
| | - Lukas Reith
- Department of Chemistry, University of Zurich, Zurich, Switzerland
| | - Sebastian Siol
- Empa—Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland
| | - Greta R. Patzke
- Department of Chemistry, University of Zurich, Zurich, Switzerland
| |
Collapse
|
23
|
Golmohammadi F, Amiri M. Fabrication of MEA from Biomass-Based Carbon Nanofibers Composited with Nickel-Cobalt Oxides as a New Electrocatalyst for Oxygen Reduction Reaction in Passive Direct Methanol Fuel Cells. Electrocatalysis (N Y) 2020. [DOI: 10.1007/s12678-020-00607-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
24
|
Qi J, Yan Y, Liu T, Zhou X, Cao J, Feng J. Plasma-induced surface reorganization of porous Co3O4-CoO heterostructured nanosheets for electrocatalytic water oxidation. J Colloid Interface Sci 2020; 565:400-404. [DOI: 10.1016/j.jcis.2020.01.045] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 10/25/2022]
|
25
|
Zhang W, Zhao X, Zhao Y, Zhang J, Li X, Fang L, Li L. Mo-Doped Zn, Co Zeolitic Imidazolate Framework-Derived Co 9S 8 Quantum Dots and MoS 2 Embedded in Three-Dimensional Nitrogen-Doped Carbon Nanoflake Arrays as an Efficient Trifunctional Electrocatalysts for the Oxygen Reduction Reaction, Oxygen Evolution Reaction, and Hydrogen Evolution Reaction. ACS APPLIED MATERIALS & INTERFACES 2020; 12:10280-10290. [PMID: 32049479 DOI: 10.1021/acsami.9b19193] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Herein, we first propose a facile strategy to synthesize Co9S8 and MoS2 nanocrystals embedded in porous carbon nanoflake arrays supported on carbon nanofibers (Co9S8-MoS2/N-CNAs@CNFs) by the pyrolysis of Mo-doped Zn, Co zeolitic imidazolate framework grown on carbon nanofibers and subsequent sulfuration. The electrocatalyst shows high and stable electrocatalytic performance, with a half-wave potential of 0.82 V for oxygen reduction reaction and an overpotential at 10 mA cm-2 for oxygen evolution reaction (0.34 V) and hydrogen evolution reaction (0.163 V), which outperform the metal-organic framework-derived transition metal sulfide catalysts reported so far. Furthermore, the Co9S8-MoS2@N-CNAs@CNFs are employed as an air cathode in a liquid-state and all-solid-state zinc-air battery, presenting high power densities of 222 and 96 mW cm-2, respectively. Such excellent catalytic activities are mainly owing to the unique three-dimensional structure and chemical compositions, optimal electronic conductivity, adequate surface area, and the abundance of active sites. Thus, this work provides an important method for designing other metal-organic framework-derived three-dimensional structural sulfide quantum dot multifunctional electrocatalysts for wider application in highly efficient catalysis and energy storage.
Collapse
Affiliation(s)
- Wenming Zhang
- National-Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding 071002, China
| | - Xinyan Zhao
- National-Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding 071002, China
| | - Youwei Zhao
- National & Local Joint Engineering Research Center of Metrology Instrument and System, College of Quality and Technical Supervision, Hebei University, Baoding 071002, China
| | - Jiaqing Zhang
- National-Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding 071002, China
| | - Xiaoting Li
- National & Local Joint Engineering Research Center of Metrology Instrument and System, College of Quality and Technical Supervision, Hebei University, Baoding 071002, China
| | - Lide Fang
- National & Local Joint Engineering Research Center of Metrology Instrument and System, College of Quality and Technical Supervision, Hebei University, Baoding 071002, China
| | - Ling Li
- National-Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding 071002, China
| |
Collapse
|
26
|
Ha Y, Shi L, Yan X, Chen Z, Li Y, Xu W, Wu R. Multifunctional Electrocatalysis on a Porous N-Doped NiCo 2O 4@C Nanonetwork. ACS APPLIED MATERIALS & INTERFACES 2019; 11:45546-45553. [PMID: 31724846 DOI: 10.1021/acsami.9b13580] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Developing a multifunctional electrocatalyst with eminent activity, strong durability, and cheapness for the hydrogen/oxygen evolution reaction (HER/OER) and oxygen reduction reaction (ORR) is critical to overall water splitting and regenerative fuel cells. Herein, a nitrogen-doped nanonetwork assembled by porous and defective NiCo2O4@C nanowires grown on nickel foam (N-NiCo2O4@C@NF) is crafted via biomimetic mineralization and following carbonization of phase-transited lysozyme (PTL)-coupled NiCo2O4. The as-obtained N-NiCo2O4@C@NF electrocatalysts exhibit an exceptional catalytic activity with ultralow overpotentials for the HER (42 mV) and OER (242 mV) to afford 10 mA cm-2 while maintaining good stability in alkaline media. Meanwhile, the N-NiCo2O4@C electrocatalysts presents a superior catalytic activity for ORR and a favorable four-electron pathway. The unprecedented catalytic performance arises from a highly porous structure and abundant defects and synergistic effects of components. This work may offer a new possibility in the exploration of multifunctional electrocatalysts for various energy-related electrocatalytic reactions.
Collapse
Affiliation(s)
- Yuan Ha
- Department of Materials Science , Fudan University , Shanghai 200433 , China
| | - Lingxia Shi
- Department of Materials Science , Fudan University , Shanghai 200433 , China
| | - Xiaoxiao Yan
- Department of Materials Science , Fudan University , Shanghai 200433 , China
| | - Ziliang Chen
- Department of Materials Science , Fudan University , Shanghai 200433 , China
| | - Yunpeng Li
- Department of Materials Science , Fudan University , Shanghai 200433 , China
| | - Wei Xu
- Department of Materials Science , Fudan University , Shanghai 200433 , China
| | - Renbing Wu
- Department of Materials Science , Fudan University , Shanghai 200433 , China
| |
Collapse
|
27
|
Zhang Y, Chen H, Gao Y, Yao Z, Wang J, Zhang B, Luo K, Du S, Su DS, Zhang J. MoO x Nanoparticle Catalysts for d-Glucose Epimerization and Their Electrical Immobilization in a Continuous Flow Reactor. ACS APPLIED MATERIALS & INTERFACES 2019; 11:44118-44123. [PMID: 31682102 DOI: 10.1021/acsami.9b13848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Activity and immobilization of catalysts in liquid-phase reactions seem not to coexist. We report here the excellent activity of an MoOx nanoparticle (NP) catalyst for d-glucose epimerization to d-mannose and the electrical immobilization of NPs in a flow reaction. Prior to that, a green and one-pot method to synthesize the MoOx NPs (3.05 nm) via oxidizing metal Mo by hydrogen peroxide was presented. The NPs overwhelmed the reported catalysts including epimerase for d-glucose epimerization, originating from a strong interaction between the NPs and the reactant that was demonstrated by ex situ and in situ characterizations and theoretical calculations. The electrically charged feature of NPs inspired us to find a convenient way to "immobilize" them inside an activated carbon bed, and thereby, a flow reactor was assembled. The continuous epimerization was run under 24 V for 16 days with an almost unchanged activity, and only 3.2% of total Mo was lost.
Collapse
Affiliation(s)
- Yexin Zhang
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology & Engineering , Chinese Academy of Sciences , 1219 Zhongguan West Road , Ningbo 315201 , Zhejiang , People's Republic of China
- University of the Chinese Academy of Sciences , 19A Yuquan Road , Beijing 100049 , Beijing , People's Republic of China
| | - Hui Chen
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology & Engineering , Chinese Academy of Sciences , 1219 Zhongguan West Road , Ningbo 315201 , Zhejiang , People's Republic of China
- University of the Chinese Academy of Sciences , 19A Yuquan Road , Beijing 100049 , Beijing , People's Republic of China
| | - Yijing Gao
- Institute of Industrial Catalysis, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering , Zhejiang University of Technology , 18 Chaowang Road , Hangzhou 310032 , Zhejiang , People's Republic of China
| | - Zihao Yao
- Institute of Industrial Catalysis, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering , Zhejiang University of Technology , 18 Chaowang Road , Hangzhou 310032 , Zhejiang , People's Republic of China
| | - Jianguo Wang
- Institute of Industrial Catalysis, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering , Zhejiang University of Technology , 18 Chaowang Road , Hangzhou 310032 , Zhejiang , People's Republic of China
| | - Bingsen Zhang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research , Chinese Academy of Sciences , 72 Wenhua Road , Shenyang 110016 , Liaoning , People's Republic of China
- University of the Chinese Academy of Sciences , 19A Yuquan Road , Beijing 100049 , Beijing , People's Republic of China
| | - Kan Luo
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology & Engineering , Chinese Academy of Sciences , 1219 Zhongguan West Road , Ningbo 315201 , Zhejiang , People's Republic of China
| | - Shiyu Du
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology & Engineering , Chinese Academy of Sciences , 1219 Zhongguan West Road , Ningbo 315201 , Zhejiang , People's Republic of China
- University of the Chinese Academy of Sciences , 19A Yuquan Road , Beijing 100049 , Beijing , People's Republic of China
| | - Dang Sheng Su
- Dalian Institute of Chemical Physics , Chinese Academy of Sciences , 457 Zhongshan Road , Dalian 116023 , Liaoning , People's Republic of China
- University of the Chinese Academy of Sciences , 19A Yuquan Road , Beijing 100049 , Beijing , People's Republic of China
| | - Jian Zhang
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology & Engineering , Chinese Academy of Sciences , 1219 Zhongguan West Road , Ningbo 315201 , Zhejiang , People's Republic of China
- University of the Chinese Academy of Sciences , 19A Yuquan Road , Beijing 100049 , Beijing , People's Republic of China
| |
Collapse
|
28
|
Jin B, Li Y, Wang J, Meng F, Cao S, He B, Jia S, Wang Y, Li Z, Liu X. Promoting Oxygen Evolution Reaction of Co-Based Catalysts (Co 3 O 4 , CoS, CoP, and CoN) through Photothermal Effect. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1903847. [PMID: 31512397 DOI: 10.1002/smll.201903847] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/21/2019] [Indexed: 06/10/2023]
Abstract
The increase of reaction temperature of electrocatalysts is regarded as an efficient method to improve the oxygen evolution reaction (OER) activity. Herein, it is reported that the electrocatalytic performance of dual functional (i.e., electrocatalytic and photothermal functions) Co3 O4 can be dramatically improved via its photothermal effect. The operating temperature of the Co3 O4 electrode is elevated in situ under near infrared (NIR) light irradiation, resulting in enhanced oxygen evolution activity due to its accelerated electrical conductivity, reaction kinetics, and desorption rate of O2 bubbles from the electrode. In addition, photothermal effect can also enhance the electrocatalytic reaction rates of metal-doped Co3 O4 electrodes, indicating that it is able to significantly improve the OER activities of electrodes together with other modification strategies. With the assistance of the photothermal effect, the obtained Ni-doped Co3 O4 catalyst requires an extremely low overpotential of 208 mV to achieve a benchmark of 10 mA cm-2 with a small Tafel slope, superior to most reported Co-based catalysts. Significantly, the electrocatalytic performance of other electrodes with photothermal effect, such as CoN, CoP, and CoS, are also boosted under NIR light irradiation, indicating opportunities for implementing photothermal enhancement in electrocatalytic water splitting.
Collapse
Affiliation(s)
- Baojie Jin
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, Hubei, 430074, China
| | - Yinchang Li
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, Hubei, 430074, China
| | - Jingnan Wang
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, Hubei, 430074, China
| | - Fanyu Meng
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, Hubei, 430074, China
| | - Shuaisheng Cao
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, Hubei, 430074, China
| | - Bing He
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, Hubei, 430074, China
| | - Songru Jia
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, Hubei, 430074, China
| | - Yang Wang
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, Hubei, 430074, China
| | - Zhen Li
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, Hubei, 430074, China
| | - Xueqin Liu
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, Hubei, 430074, China
| |
Collapse
|
29
|
Reith L, Lienau K, Triana CA, Siol S, Patzke GR. Preparative History vs Driving Force in Water Oxidation Catalysis: Parameter Space Studies of Cobalt Spinels. ACS OMEGA 2019; 4:15444-15456. [PMID: 31572845 PMCID: PMC6761687 DOI: 10.1021/acsomega.9b01677] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 08/28/2019] [Indexed: 06/10/2023]
Abstract
The development of efficient, stable, and economic water oxidation catalysts (WOCs) is a forefront topic of sustainable energy research. We newly present a comprehensive three-step approach to systematically investigate challenging relationships among preparative history, properties, and performance in heterogeneous WOCs. To this end, we studied (1) the influence of the preparative method on the material properties and (2) their correlation with the performance as (3) a function of the catalytic test method. Spinel-type Co3O4 was selected as a clear-cut model WOC and synthesized via nine different preparative routes. In search of the key material properties for high catalytic performance, these cobalt oxide samples were characterized with a wide range of analytical methods, including X-ray absorption spectroscopy, X-ray photoelectron spectroscopy, powder X-ray diffraction, Raman spectroscopy, BET surface area analysis, and transmission electron microscopy. Next, the corresponding catalytic water oxidation activities were assessed with the three most widely applied protocols to date, namely, photocatalytic, electrocatalytic, and chemical oxidation. The activity of the Co3O4 samples was found to clearly depend on the applied test method. Increasing surface area and disorder as well as a decrease in oxidation states arising from low synthesis temperatures were identified as key parameters for high chemical oxidation activity. Surprisingly, no obvious property-performance correlations were found for photocatalytic water oxidation. In sharp contrast, all samples showed similar activity in electrochemical water oxidation. The substantial performance differences between the applied protocols demonstrate that control and comprehensive understanding of the preparative history are crucial for establishing reliable structure-performance relationships in WOC design.
Collapse
Affiliation(s)
- Lukas Reith
- Department
of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Karla Lienau
- Department
of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - C. A. Triana
- Department
of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Sebastian Siol
- Empa—Swiss
Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
| | - Greta R. Patzke
- Department
of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| |
Collapse
|
30
|
Cheng F, Fan X, Chen X, Huang C, Yang Z, Chen F, Huang M, Cao S, Zhang W. Surface-Restructured Core/Shell NiO@Co3O4 Nanocomposites as Efficient Catalysts for the Oxygen Evolution Reaction. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b02626] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Fengru Cheng
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, China
| | - Xiaoming Fan
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, China
| | - Xikui Chen
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, China
| | - Cheng Huang
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, China
| | - Zeheng Yang
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, China
| | - Fei Chen
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, China
| | - Mengqiu Huang
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, China
| | - Shuai Cao
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, China
| | - Weixin Zhang
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
31
|
Gupta PK, Saha S, Gyanprakash M, Kishor K, S. Pala RG. Electrochemical Cycling‐Induced Amorphization of Cobalt(II,III) Oxide for Stable High Surface Area Oxygen Evolution Electrocatalysts. ChemElectroChem 2019. [DOI: 10.1002/celc.201900880] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Prashant Kumar Gupta
- Department of Chemical EngineeringIndian Institute of Technology Kanpur Kanpur 208016 India
| | - Sulay Saha
- Department of Chemical EngineeringIndian Institute of Technology Kanpur Kanpur 208016 India
- Department of Energy, Environmental and Chemical EngineeringWashington University St. Louis, St. Louis USA
| | - Maurya Gyanprakash
- Department of Chemical EngineeringIndian Institute of Technology Kanpur Kanpur 208016 India
| | - Koshal Kishor
- Department of Chemical EngineeringIndian Institute of Technology Kanpur Kanpur 208016 India
- School of energy and Chemical EngineeringUlsan National Institute of Science and Technology Ulsan Republic of Korea
| | - Raj Ganesh S. Pala
- Department of Chemical EngineeringIndian Institute of Technology Kanpur Kanpur 208016 India
- Materials Science ProgrammeIndian Institute of Technology Kanpur Kanpur 208016 India
| |
Collapse
|
32
|
Ha Y, Shi L, Chen Z, Wu R. Phase-Transited Lysozyme-Driven Formation of Self-Supported Co 3O 4@C Nanomeshes for Overall Water Splitting. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1900272. [PMID: 31179228 PMCID: PMC6548951 DOI: 10.1002/advs.201900272] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 03/07/2019] [Indexed: 05/24/2023]
Abstract
The development of highly efficient catalysts for both the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is of paramount importance in water splitting. Herein, a phase-transited lysozyme (PTL) is employed as the platform to synthesize nitrogen-doped Co3O4@C nanomesh with rich oxygen vacancies supported on the nickel foam (N-Co3O4@C@NF). This PTL-driven N-Co3O4@C@NF integrates the advantages of porous structure, high exposure of surface atoms, strong synergetic effect between the components and unique 3D electrode configuration, imparting exceptional activity in catalyzing both HER and OER. Remarkably, an alkaline electrolyzer assembled by N-Co3O4@C@NF as both cathode and anode delivers a current density of 10 mA cm-2 at an ultralow cell voltage of 1.40 V, which is not only much lower than that of the commercially noble Pt/C and IrO2/C catalyst couple (≈1.61 V) but also a new record for the overall water splitting. The finding may open new possibilities for the design of bifunctional electrocatalysts for application in practical water electrolysis.
Collapse
Affiliation(s)
- Yuan Ha
- Department of Materials ScienceFudan UniversityShanghai200433P. R. China
| | - Lingxia Shi
- Department of Materials ScienceFudan UniversityShanghai200433P. R. China
| | - Ziliang Chen
- Department of Materials ScienceFudan UniversityShanghai200433P. R. China
| | - Renbing Wu
- Department of Materials ScienceFudan UniversityShanghai200433P. R. China
| |
Collapse
|
33
|
Pan Y, Fang Y, Jin H, Zhang M, Wang L, Ma S, Zhu H, Du M. A Highly Active and Robust CoP/CoS2-Based Electrocatalyst Toward Overall Water Splitting. Electrocatalysis (N Y) 2019. [DOI: 10.1007/s12678-019-00521-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
34
|
Liu Z, Zhao X, Chen X, Du X, Yang J. Laser Synthesized Bi-functional Hybrid Catalyst Oxygen-defective Co 3O 4−x/N-Graphene for Oxygen Electrode Reactions. CHEM LETT 2019. [DOI: 10.1246/cl.180858] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Ziwei Liu
- Institute of New-Energy Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, P. R. China
| | - Xueru Zhao
- Institute of New-Energy Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, P. R. China
| | - Xinlin Chen
- Institute of New-Energy Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, P. R. China
| | - Xiwen Du
- Institute of New-Energy Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, P. R. China
| | - Jing Yang
- Institute of New-Energy Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, P. R. China
| |
Collapse
|
35
|
Jash P, V. A, Paul A. Tuning water oxidation reactivity by employing surfactant directed synthesis of porous Co3O4 nanomaterials. NEW J CHEM 2019. [DOI: 10.1039/c9nj00488b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
We have explored Co3O4 based nanomaterials for the oxygen evolution reaction prepared via a surfactant directed soft-templating strategy.
Collapse
Affiliation(s)
- Priyajit Jash
- Department of Chemistry
- Indian Institute of Science Education and Research (IISER) Bhopal
- Bhauri
- India
| | - Aravind V.
- Department of Chemistry
- Indian Institute of Science Education and Research (IISER) Bhopal
- Bhauri
- India
| | - Amit Paul
- Department of Chemistry
- Indian Institute of Science Education and Research (IISER) Bhopal
- Bhauri
- India
| |
Collapse
|
36
|
Tong Y, Mao H, Xu Y, Liu J. Oxygen vacancies confined in Co3O4 quantum dots for promoting oxygen evolution electrocatalysis. Inorg Chem Front 2019. [DOI: 10.1039/c9qi00325h] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Abundant oxygen vacancies confined in Co3O4 quantum dots provide more efficient Co(ii), more active sites and improved conductivity for superior OER performance.
Collapse
Affiliation(s)
- Yun Tong
- Department of Chemistry
- School of Sciences
- Zhejiang Sci-Tech University
- Hangzhou
- China
| | - Hainiao Mao
- Department of Chemistry
- School of Sciences
- Zhejiang Sci-Tech University
- Hangzhou
- China
| | - Yanglei Xu
- Department of Chemistry
- School of Sciences
- Zhejiang Sci-Tech University
- Hangzhou
- China
| | - Jiyang Liu
- Department of Chemistry
- School of Sciences
- Zhejiang Sci-Tech University
- Hangzhou
- China
| |
Collapse
|
37
|
Mers SVS, Maruthapandian V, Ganesh V. Highly Efficient Bifunctional Electrocatalyst Using Structurally Architectured N‐doped Cobalt Oxide. ChemistrySelect 2018. [DOI: 10.1002/slct.201802126] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Sathianesan Vimala Sheen Mers
- Electrodics and Electrocatalysis (EEC) Division, CSIR –Central Electrochemical Research Institute (CSIR – CECRI) Karaikudi – 630003, Tamilnadu India
- Academy of Scientific and Innovative Research (AcSIR) New Delhi – 110025 India
| | | | - Venkatachalam Ganesh
- Electrodics and Electrocatalysis (EEC) Division, CSIR –Central Electrochemical Research Institute (CSIR – CECRI) Karaikudi – 630003, Tamilnadu India
- Academy of Scientific and Innovative Research (AcSIR) New Delhi – 110025 India
| |
Collapse
|
38
|
Enhanced oxygen evolution activity of Co3−xNixO4 compared to Co3O4 by low Ni doping. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.06.051] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
39
|
Controllable synthesis of ultrathin Co9S8 nanosheets as a highly efficient electrocatalyst for overall water splitting. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.05.182] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
40
|
Maruthapandian V, Kumaraguru S, Mohan S, Saraswathy V, Muralidharan S. An Insight on the Electrocatalytic Mechanistic Study of Pristine Ni MOF (BTC) in Alkaline Medium for Enhanced OER and UOR. ChemElectroChem 2018. [DOI: 10.1002/celc.201800802] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Viruthasalam Maruthapandian
- Corrosion and Materials Protection Division; CSIR-Central Electrochemical Research Institute; Karaikudi- 630 003 Tamilnadu India
- Academy of Scientific & Innovative Research (AcSIR); Karaikudi- 630 003 Tamilnadu India
| | - Shanmugasundaram Kumaraguru
- Electroplating and Metal Finishing Technology Division; CSIR-Central Electrochemical Research Institute; Karaikudi- 630 003 Tamilnadu India
| | - Subramanian Mohan
- Academy of Scientific & Innovative Research (AcSIR); Karaikudi- 630 003 Tamilnadu India
- Electroplating and Metal Finishing Technology Division; CSIR-Central Electrochemical Research Institute; Karaikudi- 630 003 Tamilnadu India
| | - Velu Saraswathy
- Corrosion and Materials Protection Division; CSIR-Central Electrochemical Research Institute; Karaikudi- 630 003 Tamilnadu India
- Academy of Scientific & Innovative Research (AcSIR); Karaikudi- 630 003 Tamilnadu India
| | - Srinivasan Muralidharan
- Corrosion and Materials Protection Division; CSIR-Central Electrochemical Research Institute; Karaikudi- 630 003 Tamilnadu India
| |
Collapse
|
41
|
Wu H, Sun W, Shen J, Rooney DW, Wang Z, Sun K. Role of flower-like ultrathin Co 3O 4 nanosheets in water splitting and non-aqueous Li-O 2 batteries. NANOSCALE 2018; 10:10221-10231. [PMID: 29790548 DOI: 10.1039/c8nr02376j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are both fundamental and essential processes for various energy conversion and storage systems. The kinetics of ORR and OER play a critical role in their energy efficiency and practicality. Here, flower-like ultrathin Co3O4 nanosheets synthesized through a facile solvothermal technique were studied as a bifunctional catalyst for both water splitting and non-aqueous Li-O2 batteries. Due to the novel structure and highly active {110} and {100} exposed facets, which can effectively facilitate mass transfer and enhance catalytic capability, Co3O4 nanosheets exhibit better stability and higher ORR/OER activity than Co3O4 nanoparticles, Co3O4 bulks, Pt/C, and RuO2 in alkaline solution. More importantly, Li-O2 batteries with ultrathin Co3O4 nanosheets catalyst can enhance the initial discharge capacity from 6400 to 8600 mA h g-1 and improve the cyclability up to 160 cycles at 500 mA g-1. Unexpectedly, XRD and UV/Vis techniques suggest that the main product in Co3O4 nanosheets based cathodes is LiOH, with resulting LiOH also demonstrating reversible formation/decomposition behavior, rather than Li2O2 in pure Super P based cathodes. Further investigation confirms that Co3O4 can also catalyze the electrolyte decomposition responsible for the formation of LiOH, and a reaction mechanism was illustrated. This work highlights that the traditional high-efficiency bifunctional catalyst in aqueous media may not be suitable for non-aqueous Li-O2 batteries, and the effect of catalyst on electrolyte besides the discharge product should also be carefully considered for the design of more stable and practical Li-O2 systems.
Collapse
Affiliation(s)
- Haitao Wu
- Beijing Key Laboratory for Chemical Power Source and Green Catalysis, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
42
|
Zhao Q, Yang J, Liu M, Wang R, Zhang G, Wang H, Tang H, Liu C, Mei Z, Chen H, Pan F. Tuning Electronic Push/Pull of Ni-Based Hydroxides To Enhance Hydrogen and Oxygen Evolution Reactions for Water Splitting. ACS Catal 2018. [DOI: 10.1021/acscatal.8b01567] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Qinghe Zhao
- School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen 518055, People’s Republic of China
| | - Jinlong Yang
- School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen 518055, People’s Republic of China
| | - Mingqiang Liu
- School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen 518055, People’s Republic of China
| | - Rui Wang
- School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen 518055, People’s Republic of China
| | - Guangxing Zhang
- School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen 518055, People’s Republic of China
| | - Han Wang
- School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen 518055, People’s Republic of China
| | - Hanting Tang
- School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen 518055, People’s Republic of China
| | - Chaokun Liu
- School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen 518055, People’s Republic of China
| | - Zongwei Mei
- School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen 518055, People’s Republic of China
| | - Haibiao Chen
- School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen 518055, People’s Republic of China
| | - Feng Pan
- School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen 518055, People’s Republic of China
| |
Collapse
|
43
|
Yang MQ, Wang J, Wu H, Ho GW. Noble Metal-Free Nanocatalysts with Vacancies for Electrochemical Water Splitting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1703323. [PMID: 29356413 DOI: 10.1002/smll.201703323] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 10/31/2017] [Indexed: 05/20/2023]
Abstract
The fast development of nanoscience and nanotechnology has significantly advanced the fabrication of nanocatalysts and the in-depth study of the structural-activity characteristics of materials at the atomic level. Vacancies, as typical atomic defects or imperfections that widely exist in solid materials, are demonstrated to effectively modulate the physicochemical, electronic, and catalytic properties of nanomaterials, which is a key concept and hot research topic in nanochemistry and nanocatalysis. The recent experimental and theoretical progresses achieved in the preparation and application of vacancy-rich nanocatalysts for electrochemical water splitting are explored. Engineering of vacancies has shown to open up a new avenue beyond the traditional morphology, size, and composition modifications for the development of nonprecious electrocatalysts toward efficient energy conversion. First, an introduction followed by discussions of different types of vacancies, the approaches to create vacancies, and the advanced techniques widely used to characterize these vacancies are presented. Importantly, the correlations between the vacancies and activities of the vacancy-rich electrocatalysts via tuning the electronic states, active sites, and kinetic energy barriers are reviewed. Finally, perspectives on the existing challenges along with some opportunities for the further development of vacancy-rich noble metal-free electrocatalysts with high performance are discussed.
Collapse
Affiliation(s)
- Min-Quan Yang
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore
| | - Jing Wang
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore
| | - Hao Wu
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore
| | - Ghim Wei Ho
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore
- Engineering Science Programme, National University of Singapore, 9 Engineering Drive 1, Singapore, 117575, Singapore
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 3 Research Link, Singapore, 117602, Singapore
| |
Collapse
|
44
|
Zhang G, Wang H, Yang J, Zhao Q, Yang L, Tang H, Liu C, Chen H, Lin Y, Pan F. Temperature Effect on Co-Based Catalysts in Oxygen Evolution Reaction. Inorg Chem 2018; 57:2766-2772. [DOI: 10.1021/acs.inorgchem.7b03168] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Guangxing Zhang
- School of Advanced Materials, Shenzhen Graduate School, Peking University, Shenzhen, 518055, P. R. China
| | - Han Wang
- School of Advanced Materials, Shenzhen Graduate School, Peking University, Shenzhen, 518055, P. R. China
| | - Jinlong Yang
- School of Advanced Materials, Shenzhen Graduate School, Peking University, Shenzhen, 518055, P. R. China
| | - Qinghe Zhao
- School of Advanced Materials, Shenzhen Graduate School, Peking University, Shenzhen, 518055, P. R. China
| | - Luyi Yang
- School of Advanced Materials, Shenzhen Graduate School, Peking University, Shenzhen, 518055, P. R. China
| | - Hanting Tang
- School of Advanced Materials, Shenzhen Graduate School, Peking University, Shenzhen, 518055, P. R. China
| | - Chaokun Liu
- School of Advanced Materials, Shenzhen Graduate School, Peking University, Shenzhen, 518055, P. R. China
| | - Haibiao Chen
- School of Advanced Materials, Shenzhen Graduate School, Peking University, Shenzhen, 518055, P. R. China
| | - Yuan Lin
- School of Advanced Materials, Shenzhen Graduate School, Peking University, Shenzhen, 518055, P. R. China
| | - Feng Pan
- School of Advanced Materials, Shenzhen Graduate School, Peking University, Shenzhen, 518055, P. R. China
| |
Collapse
|
45
|
Crystal-Plane-Dependent Activity of Spinel Co3
O4
Towards Water Splitting and the Oxygen Reduction Reaction. ChemElectroChem 2018. [DOI: 10.1002/celc.201701302] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
46
|
Xiao X, Huang D, Fu Y, Wen M, Jiang X, Lv X, Li M, Gao L, Liu S, Wang M, Zhao C, Shen Y. Engineering NiS/Ni 2P Heterostructures for Efficient Electrocatalytic Water Splitting. ACS APPLIED MATERIALS & INTERFACES 2018; 10:4689-4696. [PMID: 29333850 DOI: 10.1021/acsami.7b16430] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Developing high-active and low-cost bifunctional materials for catalyzing the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) holds a pivotal role in water splitting. Therefore, we present a new strategy to form NiS/Ni2P heterostructures. The as-obtained NiS/Ni2P/carbon cloth (CC) requires overpotentials of 111 mV for the HER and 265 mV for the OER to reach a current density of 20 mA cm-2, outperforming their counterparts such as NiS and Ni2P under the same conditions. Additionally, the NiS/Ni2P/CC electrode requires a 1.67 V cell voltage to deliver 10 mA cm-2 in a two-electrode electrolysis system, which is comparable to the cell using the benchmark Pt/C||RuO2 electrode. Detailed characterizations reveal that strong electronic interactions between NiS and Ni2P, abundant active sites, and smaller charge-transfer resistance contribute to the improved HER and OER activity.
Collapse
Affiliation(s)
- Xin Xiao
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology , Wuhan 430074, P. R. China
| | - Dekang Huang
- College of Science, Huazhong Agricultural University , Wuhan 430070, P. R. China
| | - Yongqing Fu
- Faculty of Engineering and Environment, Northumbria University , Newcastle Upon Tyne NE1 8ST, U.K
| | - Ming Wen
- School of Chemistry Science and Engineering, Tongji University , Shanghai 200092, P. R. China
| | - Xingxing Jiang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology , Wuhan 430074, P. R. China
| | - Xiaowei Lv
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology , Wuhan 430074, P. R. China
| | - Man Li
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology , Wuhan 430074, P. R. China
| | - Lin Gao
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology , Wuhan 430074, P. R. China
| | - Shuangshuang Liu
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology , Wuhan 430074, P. R. China
| | - Mingkui Wang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology , Wuhan 430074, P. R. China
| | - Chuan Zhao
- School of Chemistry, The University of New South Wales , Sydney, NSW 2052, Australia
| | - Yan Shen
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology , Wuhan 430074, P. R. China
| |
Collapse
|
47
|
Phosphorus-driven mesoporous Co3O4 nanosheets with tunable oxygen vacancies for the enhanced oxygen evolution reaction. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2017.11.028] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
48
|
Wu Q, Zhang F, Li H, Li Z, Kang Q, Shen D. A ratiometric photoelectrochemical immunosensor based on g-C3N4@TiO2 NTs amplified by signal antibodies–Co3O4 nanoparticle conjugates. Analyst 2018; 143:5030-5037. [DOI: 10.1039/c8an01345d] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Herein, we report a ratiometric photoelectrochemical (PEC) immunosensor coupled with secondary antibodies–Co3O4 nanoparticle conjugates (Ab2–Co3O4 NPs) for signal amplification.
Collapse
Affiliation(s)
- Qiong Wu
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of MoleCular and Nano Probes
- Ministry of Education
| | - Fengxia Zhang
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of MoleCular and Nano Probes
- Ministry of Education
| | - Huijuan Li
- College of Chemical and Environmental Engineering
- Shandong University of Science and Technology
- Qingdao
- P. R. China
| | - Zhihua Li
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of MoleCular and Nano Probes
- Ministry of Education
| | - Qi Kang
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of MoleCular and Nano Probes
- Ministry of Education
| | - Dazhong Shen
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of MoleCular and Nano Probes
- Ministry of Education
| |
Collapse
|
49
|
Bimetallic iron cobalt oxide self-supported on Ni-Foam: An efficient bifunctional electrocatalyst for oxygen and hydrogen evolution reaction. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.07.178] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
50
|
Thangasamy P, Maruthapandian V, Saraswathy V, Sathish M. Supercritical fluid processing for the synthesis of NiS2 nanostructures as efficient electrocatalysts for electrochemical oxygen evolution reactions. Catal Sci Technol 2017. [DOI: 10.1039/c7cy01103b] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A facile supercritical fluid process was demonstrated for the synthesis of cubic NiS2 nanostructures for efficient electrochemical oxygen evolution reactions.
Collapse
Affiliation(s)
- Pitchai Thangasamy
- Academy of Scientific and Innovative Research
- Karaikudi-630 003
- India
- Functional Materials Division
- CSIR-Central Electrochemical Research Institute
| | - Viruthasalam Maruthapandian
- Academy of Scientific and Innovative Research
- Karaikudi-630 003
- India
- Corrosion and Materials Protection Division
- CSIR-Central Electrochemical Research Institute
| | - Velu Saraswathy
- Academy of Scientific and Innovative Research
- Karaikudi-630 003
- India
- Corrosion and Materials Protection Division
- CSIR-Central Electrochemical Research Institute
| | - Marappan Sathish
- Academy of Scientific and Innovative Research
- Karaikudi-630 003
- India
- Functional Materials Division
- CSIR-Central Electrochemical Research Institute
| |
Collapse
|