1
|
Hoffmann S, Henfling M, Trupp S. Investigation of Polymers as Matrix Materials for Application in Colorimetric Gas Sensors for the Detection of Ammonia. SENSORS (BASEL, SWITZERLAND) 2025; 25:2829. [PMID: 40363265 PMCID: PMC12074213 DOI: 10.3390/s25092829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Revised: 04/22/2025] [Accepted: 04/24/2025] [Indexed: 05/15/2025]
Abstract
Colorimetric gas sensors are based on a color changing reaction of a sensor dye upon exposure to an analyte. For most sensor applications, the sensor dye must be immobilized in a sensor matrix. The choice of matrix significantly influences the dye's response due to different physical and chemical effects. Ideal matrix materials should be transparent, stable, compatible with the sensor dye, and processable. Polymers are often applied as matrix materials, as they can be easily applied to sensor structures. In this study, we present a method to examine the impact of polymers of different structures and functionalities on sensor dyes. Therefore, 18 polymers are studied in combination with the pH indicator bromocresol green regarding their sensitivity to ammonia. The measurement setup is based on a camera as a detector of the color changing reaction of the sensor materials and allows for the simultaneous measurement of the sensor materials. Furthermore, the response and regeneration time, the stability, and the influence of the environmental parameters humidity and temperature on the colorimetric reaction are investigated. The study demonstrates that polymers as sensor matrices have an influence on the response of sensor dyes, due to their different properties, such as polarity. This has to be considered when choosing a suitable sensor matrix.
Collapse
Affiliation(s)
- Sonja Hoffmann
- Fraunhofer Institute for Electronic Microsystems and Solid State Technologies EMFT, 80686 Munich, Germany
- Institute of Physics, Bundeswehr University Munich, 85577 Neubiberg, Germany
| | - Michael Henfling
- Fraunhofer Institute for Electronic Microsystems and Solid State Technologies EMFT, 80686 Munich, Germany
| | - Sabine Trupp
- Fraunhofer Institute for Electronic Microsystems and Solid State Technologies EMFT, 80686 Munich, Germany
| |
Collapse
|
2
|
El-Maghrabey M, Seino S, Kishikawa N, Kuroda N. The Development of a Selective Colorimetric Sensor for Cu 2+ and Zn 2+ in Mineral Supplement with Application of a Smartphone Paper-Based Assay of Cu 2+ in Water Samples. SENSORS (BASEL, SWITZERLAND) 2024; 24:7844. [PMID: 39686381 DOI: 10.3390/s24237844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/05/2024] [Accepted: 12/06/2024] [Indexed: 12/18/2024]
Abstract
Herein, we developed a colorimetric method for the determination of Cu2+ and Zn2+ using NBD-G as a novel selective metal sensor. NBD-G was easily synthesized by a nucleophilic substitution reaction between 4-chloro-7-nitro-2,1,3-benzoxadiazole (NBD-Cl) and Girard's Reagent P. The NBD-G solution is yellow, but when it reacts with Cu2+ and Zn2+, its color changes selectively to red (510 nm) and orange (480 nm), respectively. NBD-G was used as a sensor for Cu2+ and Zn2+, showing a high sensitivity down to 0.77 µM for Cu2+ and 1.66 µM for Zn2+. NBD-G could determine both metals simultaneously; thus, it was applied to determine them in multimineral supplements, which showed excellent recoveries. Next, a filter paper impregnated with NBD-G was prepared as a test paper, and a simple, selective, and rapid onsite method for quantifying Cu2+ was developed as, interestingly, the paper showed no change upon the addition of Zn2+. Next, Cu2+ could be quantified with high selectivity and accuracy by photographing the color change with a smartphone camera and processing the image with Image J. The detection limit for Cu2+ using this method was 3.9 µM. Finally, the NBD-G test paper method was able to satisfactorily quantify Cu2+ spiked into the rainwater.
Collapse
Affiliation(s)
- Mahmoud El-Maghrabey
- Graduate School of Biomedical Sciences, Course of Pharmaceutical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Shōta Seino
- Graduate School of Biomedical Sciences, Course of Pharmaceutical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Naoya Kishikawa
- Graduate School of Biomedical Sciences, Course of Pharmaceutical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Naotaka Kuroda
- Graduate School of Biomedical Sciences, Course of Pharmaceutical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| |
Collapse
|
3
|
Palanisamy P, Anandan M, Raman G, Nutalapati V. Antenna effect on Zn(II) porphyrin-based molecular ensembles for the detection of 2,4-dinitrophenol through energy and electron transfer process. Mikrochim Acta 2024; 192:1. [PMID: 39621083 DOI: 10.1007/s00604-024-06795-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/20/2024] [Indexed: 01/18/2025]
Abstract
Two modular systems were synthesized composed of triphenylamine (ZnTPAP) and pyrene (ZnPyP) covalently linked at meso position of the Zn(II) porphyrins. Both compounds behaved as energy transfer antenna and orthogonal units to enhance the electron donating ability of Zn(II) porphyrins. Detailed photophysical and aggregation studies reveal that an appreciable electronic interaction exists between peripheral units to the porphyrin π-system so that they behave like strong donor materials. The electrochemical and computational studies demonstrate delocalization of the frontier highest occupied molecular orbital (-5.08 eV) over the triphenylamine entities (ZnTPAP) in addition to the porphyrin macrocycle. Fluorescence experiments with ZnTPAP and ZnPyP in the presence of different nitro analytes at various concentrations show turn-off fluorescence behaviour and exhibit superior selectivity towards 2,4-dinitrophenol (DNP) with limit of detection (LOD) of ~ 2.3 and 9.2 ppm for ZnTPAP and ZnPyP. Photoinduced electron transfer process is involved in the static and dynamic fluorescence quenching process. A Stern-Volmer quenching association constant (Ksv) determination revealed that ZnTPAP is more sensitive than the ZnPyP. This is attributed to the strong donating behaviour of TPA units caused by intermolecular interaction through metal center and strong π-π interactions with nitro analytes. The present study provides new insights into the ability to tune the affinity and selectivity of porphyrin-based sensors utilising electronic factors associated with the central Zn(II) ion. Furthermore, a smartphone-interfaced portable fluorimetric method by recognising colour variations in RGB and the luminance (L) values facilitate sensitive and real-time sensing at low concentration levels will have a significant impact on development of a new class of chemosensors.
Collapse
Affiliation(s)
- Prasanth Palanisamy
- Functional Materials Laboratory, Department of Chemistry, College of Engineering and Technology, SRM Institute of Science and Technology (SRMIST), Kattankulathur, Tamil, Nadu- 603203, India
| | - Mageshwari Anandan
- Functional Materials Laboratory, Department of Chemistry, College of Engineering and Technology, SRM Institute of Science and Technology (SRMIST), Kattankulathur, Tamil, Nadu- 603203, India
| | - Gurusamy Raman
- Department of Life Sciences, Yeungnam University, Gyeongsanbuk-Do, Gyeongsan, 38541, Republic of Korea
| | - Venkatramaiah Nutalapati
- Functional Materials Laboratory, Department of Chemistry, College of Engineering and Technology, SRM Institute of Science and Technology (SRMIST), Kattankulathur, Tamil, Nadu- 603203, India.
| |
Collapse
|
4
|
Min Y, Kong H, Ni T, Wu S, Wu J, Wang Y, Fu W, Zhang P. Two-dimensional β-MnOOH nanosheets with high oxidase-mimetic activity for smartphone-based colorimetric sensing. Colloids Surf B Biointerfaces 2024; 242:114075. [PMID: 38972256 DOI: 10.1016/j.colsurfb.2024.114075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/20/2024] [Accepted: 07/03/2024] [Indexed: 07/09/2024]
Abstract
Manganese (Mn) is a versatile transition element with diverse oxidation states and significant biological importance. Mn-based nanozymes have emerged as promising catalysts in various applications. However, the direct use of manganese oxides as oxidase mimics remains limited and requires further improvement. In this study, we focus on hydroxylated manganese (MnOOH), specifically the layered form β-MnOOH which exhibits unique electronic and structural characteristics. The two-dimensional β-MnOOH nanosheets were synthesized through a hydrothermal approach and showed remarkable oxidase-like activity. These nanosheets effectively converted the oxidase substrate, 3,3',5,5'-tetramethylbenzidine (TMB), into its oxidized form by initiating the conversion of dissolved oxygen into ·O2-, 1O2 and ·OH. However, in the presence of L-cysteine (L-Cys), the catalytic activity of β-MnOOH was significantly inhibited, enabling highly sensitive detection of L-Cys. This sensing strategy was successfully applied for smartphone-based L-Cys assay, offering potential utility in the diagnosis of Cys-related diseases. The exploration of layered β-MnOOH nanosheets as highly active oxidase mimics opens up new possibilities for catalytic and biomedical applications.
Collapse
Affiliation(s)
- Yuanhong Min
- Chongqing Key Laboratory of Green Catalysis Materials and Technology, College of Chemistry, Chongqing Normal University, Chongqing 401331, China
| | - Haixia Kong
- Chongqing Key Laboratory of Green Catalysis Materials and Technology, College of Chemistry, Chongqing Normal University, Chongqing 401331, China
| | - Tingting Ni
- Chongqing Key Laboratory of Green Catalysis Materials and Technology, College of Chemistry, Chongqing Normal University, Chongqing 401331, China
| | - Shiyue Wu
- Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education), College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Jiangling Wu
- Department of Clinical Laboratory, University Town Hospital of Chongqing Medical University, Chongqing 401331, China
| | - Yi Wang
- Chongqing Key Laboratory of Green Catalysis Materials and Technology, College of Chemistry, Chongqing Normal University, Chongqing 401331, China.
| | - Wensheng Fu
- Chongqing Key Laboratory of Green Catalysis Materials and Technology, College of Chemistry, Chongqing Normal University, Chongqing 401331, China.
| | - Pu Zhang
- Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education), College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
5
|
Upadhyay S, Kumar A, Srivastava M, Srivastava A, Dwivedi A, Singh RK, Srivastava SK. Recent advancements of smartphone-based sensing technology for diagnosis, food safety analysis, and environmental monitoring. Talanta 2024; 275:126080. [PMID: 38615454 DOI: 10.1016/j.talanta.2024.126080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/04/2024] [Accepted: 04/07/2024] [Indexed: 04/16/2024]
Abstract
The emergence of computationally powerful smartphones, relatively affordable high-resolution camera, drones, and robotic sensors have ushered in a new age of advanced sensible monitoring tools. The present review article investigates the burgeoning smartphone-based sensing paradigms, including surface plasmon resonance (SPR) biosensors, electrochemical biosensors, colorimetric biosensors, and other innovations for modern healthcare. Despite the significant advancements, there are still scarcity of commercially available smart biosensors and hence need to accelerate the rates of technology transfer, application, and user acceptability. The application/necessity of smartphone-based biosensors for Point of Care (POC) testing, such as prognosis, self-diagnosis, monitoring, and treatment selection, have brought remarkable innovations which eventually eliminate sample transportation, sample processing time, and result in rapid findings. Additionally, it articulates recent advances in various smartphone-based multiplexed bio sensors as affordable and portable sensing platforms for point-of-care devices, together with statistics for point-of-care health monitoring and their prospective commercial viability.
Collapse
Affiliation(s)
- Satyam Upadhyay
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Anil Kumar
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Monika Srivastava
- School of Materials Science and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Amit Srivastava
- Department of Physics TDPG College, VBS Purvanchal University, Jaunpur, 222001, India
| | - Arpita Dwivedi
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Rajesh Kumar Singh
- School of Physical and Material Sciences, Central University of Himachal Pradesh, Dharamshala, Kangra, 176215, India
| | - S K Srivastava
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
6
|
Liu X, Zhang H, Huang Z, Cheng Z, Li T. A highly sensitive and selective detection of 2,4,6-trinitrotoluene (TNT) using a peptide-functionalized silicon nanowire array sensor. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:2082-2087. [PMID: 37070764 DOI: 10.1039/d3ay00169e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
A highly sensitive and specific detection of 2,4,6-trinitrotoluene (TNT), a typical nitrated aromatic explosive, was demonstrated by a silicon nanowire (SiNW) array sensor. The SiNW array devices were self-assembled and functionalized with the anti-TNT peptide to obtain unique sensitivity toward TNT. Also, the effect of the biointerfacing linker's chemistry and Debye screening with varied ionic strength of phosphate buffer solution (PBS) on TNT binding response signals were investigated. The optimization of the peptide-functionalized SiNW array sensor showed high sensitivity for TNT with a detection limit of 0.2 fM, the highest sensitivity reported to date. These initial promising results may help accelerate the development of portable sensors for femtomolar level TNT detection.
Collapse
Affiliation(s)
- Xingqi Liu
- Department of Chemical Defense, Institute of NBC Defense, PLA Army, Beijing 102205, China.
- Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China.
| | - Hongpeng Zhang
- Department of Chemical Defense, Institute of NBC Defense, PLA Army, Beijing 102205, China.
| | - Zhiping Huang
- Department of Chemical Defense, Institute of NBC Defense, PLA Army, Beijing 102205, China.
| | - Zhenxing Cheng
- Department of Chemical Defense, Institute of NBC Defense, PLA Army, Beijing 102205, China.
| | - Tie Li
- Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China.
| |
Collapse
|
7
|
Dikici E, Önal Acet B, Acet Ö, Odabaşı M. “Lab-on-pol” colormatic sensor platforms: Melamine detection with color change on melamine imprinted membranes. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
8
|
Li H, Chen Q, Wang Y, Zhang Z, Chen H, Wang Z, Gong Z. A dual-mode pH sensor film based on the pyrene-based Zr-MOF self-destruction with fluorescence turn-on effect. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
9
|
Santonocito R, Tuccitto N, Cantaro V, Carbonaro AB, Pappalardo A, Greco V, Buccilli V, Maida P, Zavattaro D, Sfuncia G, Nicotra G, Maccarrone G, Gulino A, Giuffrida A, Trusso Sfrazzetto G. Smartphone-Assisted Sensing of Trinitrotoluene by Optical Array. ACS OMEGA 2022; 7:37122-37132. [PMID: 36312398 PMCID: PMC9609071 DOI: 10.1021/acsomega.2c02958] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/15/2022] [Indexed: 06/16/2023]
Abstract
Here we report the design and fabrication of an array-based sensor, containing functionalized Carbon Dots, Bodipy's and Naphthalimide probes, that shows high fluorescence emissions and sensitivity in the presence of low amounts of TNT explosive. In particular, we have fabricated the first sensor device based on an optical array for the detection of TNT in real samples by using a smartphone as detector. The possibility to use a common smartphone as detector leads to a prototype that can be also used in a real-life field application. The key benefit lies in the possibility of even a nonspecialist operator in the field to simply collect and send data (photos) to the trained artificial intelligence server for rapid diagnosis but also directly to the bomb disposal unit for expert evaluation. This new array sensor contains seven different fluorescent probes that are able to interact via noncovalent interactions with TNT. The interaction of each probe with TNT has been tested in solution by fluorescence titrations. The solid device has been tested in terms of selectivity and linearity toward TNT concentration. Tests performed with other explosives and other nitrogen-based analytes demonstrate the high selectivity for TNT molecules, thus supporting the reliability of this sensor. In addition, TNT can be detected in the range of 98 ng∼985 μg, with a clear different response of each probe to the different amounts of TNT.
Collapse
Affiliation(s)
- Rossella Santonocito
- Department
of Chemical Sciences, University of Catania, viale A. Doria 6, 95100Catania, Italy
| | - Nunzio Tuccitto
- Department
of Chemical Sciences, University of Catania, viale A. Doria 6, 95100Catania, Italy
- Laboratory
for Molecular Surfaces and Nanotechnology, CSGI, 95125Catania, Italy
| | - Valentina Cantaro
- Department
of Chemical Sciences, University of Catania, viale A. Doria 6, 95100Catania, Italy
| | | | - Andrea Pappalardo
- Department
of Chemical Sciences, University of Catania, viale A. Doria 6, 95100Catania, Italy
- National
Interuniversity Consortium for Materials Science and Technology (I.N.S.T.M.)Research Unit of Catania, 95125Catania, Italy
| | - Valentina Greco
- Department
of Chemical Sciences, University of Catania, viale A. Doria 6, 95100Catania, Italy
| | - Valeria Buccilli
- Reparto
Carabinieri Investigazioni Scientifiche Messina, Via Monsignor D’Arrigo 5, 98122Messina, Italy
| | - Pietro Maida
- Reparto
Carabinieri Investigazioni Scientifiche Messina, Via Monsignor D’Arrigo 5, 98122Messina, Italy
| | - Davide Zavattaro
- Reparto
Carabinieri Investigazioni Scientifiche Messina, Via Monsignor D’Arrigo 5, 98122Messina, Italy
| | - Gianfranco Sfuncia
- Consiglio
Nazionale delle Ricerche, Istituto per la
Microelettronica e Microsistemi, I-95121Catania, Italy
| | - Giuseppe Nicotra
- Consiglio
Nazionale delle Ricerche, Istituto per la
Microelettronica e Microsistemi, I-95121Catania, Italy
| | - Giuseppe Maccarrone
- Department
of Chemical Sciences, University of Catania, viale A. Doria 6, 95100Catania, Italy
| | - Antonino Gulino
- Department
of Chemical Sciences, University of Catania, viale A. Doria 6, 95100Catania, Italy
- National
Interuniversity Consortium for Materials Science and Technology (I.N.S.T.M.)Research Unit of Catania, 95125Catania, Italy
| | - Alessandro Giuffrida
- Department
of Chemical Sciences, University of Catania, viale A. Doria 6, 95100Catania, Italy
| | - Giuseppe Trusso Sfrazzetto
- Department
of Chemical Sciences, University of Catania, viale A. Doria 6, 95100Catania, Italy
- National
Interuniversity Consortium for Materials Science and Technology (I.N.S.T.M.)Research Unit of Catania, 95125Catania, Italy
| |
Collapse
|
10
|
Pattaweepaiboon S, Pimpakoon V, Phongzitthiganna N, Sirisaksoontorn W, Jeamjumnunja K, Prasittichai C. Impedimetric detection of 2,4,6-trinitrotoluene using surface-functionalized halloysite nanotubes. RSC Adv 2022; 12:17794-17802. [PMID: 35765327 PMCID: PMC9201510 DOI: 10.1039/d2ra02482a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/10/2022] [Indexed: 11/21/2022] Open
Abstract
Herein, we report the application of amine-surface-functionalized halloysite nanotubes (HAs) as active materials for the quantitative detection of 2,4,6-trinitrotoluene (TNT). The findings indicated that HA could selectively capture TNT via a strong reaction between the amine groups on its surface and the TNT molecules. Plate electrodes were fabricated from HA to evaluate its TNT-sensing capacity by electrochemical impedance spectroscopy. Upon binding with TNT, the proton conductivity on the HA plate electrodes increased linearly with the TNT concentration from 1.0 × 10−11 M to 1.0 × 10−4 M. The HA plate electrodes exhibited good sensitivity with a detection limit of 1.05 × 10−12 M. Subsequently, the cycling measurements of the TNT binding/removal were performed on the HA plate electrode, and the material exhibited high stability, good regenerative ability, and good reversibility without a significant decrease in efficiency. The present work highlights the significant application potential of HAs for the electrochemical detection of TNT. Amine-surface-functionalized halloysite nanotubes are used for electrochemical sensing TNT.![]()
Collapse
Affiliation(s)
- Supak Pattaweepaiboon
- Department of Chemistry, Faculty of Science, Kasetsart University Bangkok 10900 Thailand
| | - Varuntorn Pimpakoon
- Department of Chemistry, Faculty of Science, Kasetsart University Bangkok 10900 Thailand
| | - Nattida Phongzitthiganna
- Department of Chemistry, Faculty of Science, Kasetsart University Bangkok 10900 Thailand .,Center of Excellence for Innovation in Chemistry, Faculty of Science, Kasetsart University Bangkok 10900 Thailand
| | - Weekit Sirisaksoontorn
- Department of Chemistry, Faculty of Science, Kasetsart University Bangkok 10900 Thailand .,Center of Excellence for Innovation in Chemistry, Faculty of Science, Kasetsart University Bangkok 10900 Thailand
| | - Kannika Jeamjumnunja
- Department of Chemistry, Faculty of Science, Kasetsart University Bangkok 10900 Thailand .,Center of Excellence for Innovation in Chemistry, Faculty of Science, Kasetsart University Bangkok 10900 Thailand
| | - Chaiya Prasittichai
- Department of Chemistry, Faculty of Science, Kasetsart University Bangkok 10900 Thailand .,Center of Excellence for Innovation in Chemistry, Faculty of Science, Kasetsart University Bangkok 10900 Thailand
| |
Collapse
|
11
|
Yang S, Fan W, Cheng H, Gong Z, Wang D, Fan M, Huang B. A dual functional cotton swab sensor for rapid on-site naked-eye sensing of nitro explosives on surfaces. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105398] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
12
|
Apak R, Çekiç SD, Üzer A, Çapanoğlu E, Çelik SE, Bener M, Can Z, Durmazel S. Colorimetric sensors and nanoprobes for characterizing antioxidant and energetic substances. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:5266-5321. [PMID: 33170182 DOI: 10.1039/d0ay01521k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The development of analytical techniques for antioxidant compounds is important, because antioxidants that can inactivate reactive species and radicals are health-beneficial compounds, also used in the preservation of food and protection of almost every kind of organic substance from oxidation. Energetic substances include explosives, pyrotechnics, propellants and fuels, and their determination at bulk/trace levels is important for the safety and well-being of modern societies exposed to various security threats. Most of the time, in field/on site detection of these important analytes necessitates the use of colorimetric sensors and probes enabling naked-eye detection, or low-cost and easy-to-use fluorometric sensors. The use of nanosensors brings important advantages to this field of analytical chemistry due to their various physico-chemical advantages of increased surface area, surface plasmon resonance absorption of noble metal nanoparticles, and superior enzyme-mimic catalytic properties. Thus, this critical review focuses on the design strategies for colorimetric sensors and nanoprobes in characterizing antioxidant and energetic substances. In this regard, the main themes and properties in optical sensor design are defined and classified. Nanomaterial-based optical sensors/probes are discussed with respect to their mechanisms of operation, namely formation and growth of noble metal nanoparticles, their aggregation and disaggregation, displacement of active constituents by complexation or electrostatic interaction, miscellaneous mechanisms, and the choice of metallic oxide nanoparticles taking part in such formulations.
Collapse
Affiliation(s)
- Reşat Apak
- Analytical Chemistry Division, Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpaşa, Avcilar 34320, Istanbul, Turkey.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Inkjet-printed low-cost colorimetric tickets for TNT detection in contaminated soil. KOREAN J CHEM ENG 2020. [DOI: 10.1007/s11814-020-0627-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
14
|
Bordbar MM, Nguyen TA, Arduini F, Bagheri H. A paper-based colorimetric sensor array for discrimination and simultaneous determination of organophosphate and carbamate pesticides in tap water, apple juice, and rice. Mikrochim Acta 2020; 187:621. [PMID: 33084996 DOI: 10.1007/s00604-020-04596-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 10/07/2020] [Indexed: 02/07/2023]
Abstract
A colorimetric paper-based sensor is proposed for the rapid monitoring of six major organophosphate and carbamate pesticides. The assay was constructed by dropping gold and silver nanoparticles on the hydrophilic zones of a paper substrate. The nanoparticles were modified by L-arginine, quercetin, and polyglutamic acid. The mechanism of sensing is based on the interaction between the pesticide and the nanoparticles. The color of nanoparticles changed during the interactions. A digital camera recorded these changes. The assay provided a unique response for each studied pesticide. This method can determine six individual pesticides including carbaryl, paraoxon, parathion, malathion, diazinon, and chlorpyrifos. The limit of detection for these pesticides were 29.0, 22.0, 32.0, 17.0, 45.0, and 36.0 ng mL-1, respectively. The assay was applied to simultaneously determine the six studied pesticides in a mixture using the partial least square method (PLS). The root mean square errors of prediction were 11, 8.7, 9.2, 10, 12, and 11 for carbaryl, paraoxon, parathion, malathion, diazinon, and chlorpyrifos, respectively. The paper-based device can differentiate two types of studied pesticide (organophosphate and carbamate) as well as two types of organophosphate structures (oxon and thion). Furthermore, this sensor showed high selectivity to the pesticides in the presence of other potential species (e.g., metal ions, anions, amino acids, sugar, and vitamins). This assay is capable of determining the pesticide compounds in tap water, apple juice, and rice samples.Graphical abstract.
Collapse
Affiliation(s)
- Mohammad Mahdi Bordbar
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Tien Anh Nguyen
- Department of Physics, Le Quy Don Technical University, Hanoi, Vietnam
| | - Fabiana Arduini
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
| | - Hasan Bagheri
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
15
|
Yang S, Fan W, Cheng H, Gong Z, Wang D, Fan M, Huang B. From children's toy to versatile sensor: One-step doping of Play-Doh with primary amino group for explosive detection both on surfaces and in solution. Anal Chim Acta 2020; 1128:193-202. [PMID: 32825903 DOI: 10.1016/j.aca.2020.07.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 06/10/2020] [Accepted: 07/01/2020] [Indexed: 02/08/2023]
Abstract
2,4,6-trinitrotoluene (TNT) sensing on surfaces and in solution is an important issue in sensor fabrication for homeland security and environmental protection. Herein, Play-Doh, a modeling material popular for kids, was proposed as a versatile sensor for on-site fluorescent (FL), visual FL (VFL), and colorimetric detection of TNT both on surfaces and in solution after being doped with -NH2 through a one-step approach. Play-Doh exhibits FL emission due to the main ingredient of flour. After -NH2 doping, amino-Play-Doh (APD) was utilized to construct a FL sensor based on FL resonance energy transfer and inner filter effect for TNT detection. The advantage of APD was that no additional fluorophore was needed compared with the traditional sensors for FL and VFL analysis. The orange complex visible to the naked eye was also recorded for smartphone-based colorimetric detection of TNT. In both cases, the APD demonstrated good analytical performance for TNT. Finally, APD was successfully utilized for TNT sensing on fingerprints, luggage, and in environmental water samples, respectively. Play-Doh might be a potential sensor for future on-site detection of TNT owing to the merits of being cost-effective and versatile.
Collapse
Affiliation(s)
- Shiwei Yang
- School of Civil Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Wanli Fan
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Huan Cheng
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Zhengjun Gong
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Dongmei Wang
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Meikun Fan
- School of Civil Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China; Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China.
| | - Bing Huang
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang, Sichuan, 621999, China.
| |
Collapse
|
16
|
Liu T, Yang L, Feng W, Liu K, Ran Q, Wang W, Liu Q, Peng H, Ding L, Fang Y. Dual-Mode Photonic Sensor Array for Detecting and Discriminating Hydrazine and Aliphatic Amines. ACS APPLIED MATERIALS & INTERFACES 2020; 12:11084-11093. [PMID: 32031775 DOI: 10.1021/acsami.0c00568] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Colorimetric chemosensors have attracted tremendous interest for sensing hazardous substances in an uncomplicated and economical manner. Herein, a series of push-pull dicyanovinyl-substituted oligothiophene derivatives were designed, and the impacts of different end-cappers on their photophysical properties were comprehensively investigated. Interestingly, combined with a zinc porphyrin derivative (Zn-TPP), one dicyanovinyl-substituted oligothiophene derivative (NA-3T-CN) can be further developed into colorimetric and fluorescent sensor array for dual-mode detection of aliphatic amines and hydrazine. The obtained sensors showed satisfactory results between optical response and analyte's concentration both in selective single-sensor type and in enhanced multisensory mode. Based on the fluorescence change of the NA-3T-CN system, the detection limit for N2H4 was calculated to be around 1.22 × 10-5 mol/L in THF. The stained TLC-supported sensor array offers obvious optical changes for down to 0.5 wt % hydrazine solution for naked-eye sensing. An aromatic amine like aniline has no obvious effect on the dicyanovinyl-substituted oligothiophene derivatives. We also found that a zinc porphyrin derivative has an obvious colorimetric response to the presence of hydrazine, ethanolamine, and aniline. Furthermore, smartphone-enabled readout system and data treatment based on RGB changes of the sensor array were performed, and the discrimination capability among hydrazine, aliphatic amines, and aromatic amine was satisfactory. In this regard, related push-pull oligothiophene derivatives not only can be regarded as models for a fundamental understanding of the relationship between molecular structure and photophysical properties but also present potential applications in the field of real-time and visual detection of hazardous chemicals.
Collapse
Affiliation(s)
- Taihong Liu
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Lüjie Yang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Wan Feng
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Ke Liu
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Qian Ran
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Weina Wang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Quan Liu
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Haonan Peng
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Liping Ding
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Yu Fang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| |
Collapse
|
17
|
Lai W, Guo J, Wu Q, Chen Y, Cai Q, Wu L, Wang S, Song J, Tang D. A novel colorimetric immunoassay based on enzyme-regulated instant generation of Turnbull's blue for the sensitive determination of ochratoxin A. Analyst 2020; 145:2420-2424. [DOI: 10.1039/c9an02447f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The aim of this study was to develop a novel colorimetric sensing method based on enzyme-regulated instant generation of Turnbull's blue, serving as a chromogenic agent, for a sensitive immunoassay for the determination of ochratoxin A (OTA).
Collapse
Affiliation(s)
- Wenqiang Lai
- Key Laboratory of Modern Analytical Science and Separation Technology
- College of Chemistry
- Chemical Engineering and Environment
- Minnan Normal University
- Zhangzhou 363000
| | - Jiaqing Guo
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province
- College of Physics and Optoelectronic Engineering
- Shenzhen University
- Shenzhen 518060
- P R China
| | - Qingqing Wu
- Key Laboratory of Modern Analytical Science and Separation Technology
- College of Chemistry
- Chemical Engineering and Environment
- Minnan Normal University
- Zhangzhou 363000
| | - Yaomin Chen
- Key Laboratory of Modern Analytical Science and Separation Technology
- College of Chemistry
- Chemical Engineering and Environment
- Minnan Normal University
- Zhangzhou 363000
| | - Quanying Cai
- Key Laboratory of Modern Analytical Science and Separation Technology
- College of Chemistry
- Chemical Engineering and Environment
- Minnan Normal University
- Zhangzhou 363000
| | - Luxi Wu
- Key Laboratory of Modern Analytical Science and Separation Technology
- College of Chemistry
- Chemical Engineering and Environment
- Minnan Normal University
- Zhangzhou 363000
| | - Shuhan Wang
- Key Laboratory of Modern Analytical Science and Separation Technology
- College of Chemistry
- Chemical Engineering and Environment
- Minnan Normal University
- Zhangzhou 363000
| | - Jun Song
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province
- College of Physics and Optoelectronic Engineering
- Shenzhen University
- Shenzhen 518060
- P R China
| | - Dianping Tang
- Key Laboratory of Analysis and Detection for Food Safety (Ministry of Education & Fujian Province)
- Institute of Nanomedicine and Nanobiosensing
- Department of Chemistry
- Fuzhou University
- Fuzhou 350108
| |
Collapse
|
18
|
A nanoneedle-based reactional wettability variation sensor array for on-site detection of metal ions with a smartphone. J Colloid Interface Sci 2019; 547:330-338. [PMID: 30974249 DOI: 10.1016/j.jcis.2019.04.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/01/2019] [Accepted: 04/04/2019] [Indexed: 12/22/2022]
Abstract
An enhancement of the reactional wettability variation (RWV) sensing strategy is achieved based on the wettability switch of a nanoneedle surface. The sensor unit is formed by coating hydrophobic azoimidazole compounds, as the responder compounds onto the originally hydrophilic surface of cobalt hydroxide nanoneedles. The complexation reaction between metal ions and azoimidazole ligands etches the hydrophobic coating and switches the surface wettability, making the surface hydrophilic again. This switch is revealed by a decrease in the static contact angle (CA) and an increase in the sliding angle of the surface. The reactivity is tuned by the derivatization and conformational manipulation of the azoimidazole compounds. A sensor array composed of six as-tuned sensor units is constructed to distinguish among the species and concentrations of Fe3+, Ni2+ and La3+ at a low limit of 10-6 M using the chemometric method of principal component analysis (PCA). In addition, a new on-site detection strategy is developed based on PCA of the sliding angle, which can be measured conveniently and swiftly with a smartphone app and a commercially available setup. The application of the general RWV strategy is envisioned to open new possibilities for on-site detection.
Collapse
|
19
|
Liu C, Zhang W, Zhao Y, Lin C, Zhou K, Li Y, Li G. Urea-Functionalized Poly(ionic liquid) Photonic Spheres for Visual Identification of Explosives with a Smartphone. ACS APPLIED MATERIALS & INTERFACES 2019; 11:21078-21085. [PMID: 31071256 DOI: 10.1021/acsami.9b04568] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Current effort merging rational design of colorimetric sensor array with portable and easy-to-use hand-held readers delivers an effective and convenient method for on-site detection and discrimination of explosives. However, on the one hand, there are rare relevant reports; on the other hand, some limitations regarding direct sensing, color retention, and array extendibility still remain. Herein, urea-functionalized poly(ionic liquid) photonic spheres were employed to construct a brand-new colorimetric sensor array for directly identifying five nitroaromatic explosives with a smartphone. It is found that the strong hydrogen bonding between the urea motifs and the nitro groups offers the spheres high affinity for binding the targets, whereas the existence of other abundant intermolecular interactions in poly(ionic liquid) units renders one single sphere eligible for prominent cross-responses to a broad range of analytes. Besides, in our case, opal-like photonic crystal structures other than chemical dyes are used to fabricate a new style of colorimetric array. Such structural colors can be vivid and unchanged over a long period even in hazard environments. Importantly, through simply altering the preparation conditions of our PIL spheres, a pool of sensing elements could be added to the developed array for discrimination of extended target systems such as more explosives and even their mixtures in real-world context.
Collapse
Affiliation(s)
- Chengcheng Liu
- Department of Chemistry , Tsinghua University , Beijing 100084 , P. R. China
| | - Wanlin Zhang
- Department of Chemistry , Tsinghua University , Beijing 100084 , P. R. China
| | - Yang Zhao
- Institute of Forensic Science , Ministry of Public Security , Beijing 100038 , P. R. China
| | - Changxu Lin
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, College of Physical Science and Technology , Xiamen University , Xiamen 361005 , P. R. China
| | - Kang Zhou
- Department of Chemistry , Tsinghua University , Beijing 100084 , P. R. China
| | - Yanmei Li
- Department of Chemistry , Tsinghua University , Beijing 100084 , P. R. China
| | - Guangtao Li
- Department of Chemistry , Tsinghua University , Beijing 100084 , P. R. China
| |
Collapse
|
20
|
Tang N, Zhou C, Xu L, Jiang Y, Qu H, Duan X. A Fully Integrated Wireless Flexible Ammonia Sensor Fabricated by Soft Nano-Lithography. ACS Sens 2019; 4:726-732. [PMID: 30793588 DOI: 10.1021/acssensors.8b01690] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Flexible ammonia (NH3) sensors based on one-dimensional nanostructures have attracted great attention due to their high flexibility and low power consumption. However, it is still challenging to reliably and cost-effectively fabricate ordered nanostructure-based flexible sensors. Herein, a smartphone-enabled fully integrated system based on a flexible nanowire sensor was developed for real-time NH3 monitoring. Highly aligned, sub-100 nm nanowires on a flexible substrate fabricated by facile and low-cost soft lithography were used as sensitive elements to produce impedance response. The detection signals were sent to a smartphone and displayed on the screen in real time. This nanowire-based sensor exhibited robust flexibility and mechanical durability. Moreover, the integrated NH3 sensing system presented enhanced performance with a detection limit of 100 ppb, as well as high selectivity and reproducibility. The power consumption of the flexible nanowire sensor was as low as 3 μW. By using this system, measurements were carried out to obtain reliable information about the spoilage of foods. This smartphone-enabled integrated system based on a flexible nanowire sensor provided a portable and efficient way to detect NH3 in daily life.
Collapse
Affiliation(s)
- Ning Tang
- State Key Laboratory of Precision Measuring Technology & Instruments, Tianjin University, Tianjin 300072, China
| | - Cheng Zhou
- State Key Laboratory of Precision Measuring Technology & Instruments, Tianjin University, Tianjin 300072, China
| | - Lihuai Xu
- State Key Laboratory of Precision Measuring Technology & Instruments, Tianjin University, Tianjin 300072, China
| | - Yang Jiang
- State Key Laboratory of Precision Measuring Technology & Instruments, Tianjin University, Tianjin 300072, China
| | - Hemi Qu
- State Key Laboratory of Precision Measuring Technology & Instruments, Tianjin University, Tianjin 300072, China
- Nanchang Institute for Microtechnology of Tianjin University, Tianjin 300072, China
| | - Xuexin Duan
- State Key Laboratory of Precision Measuring Technology & Instruments, Tianjin University, Tianjin 300072, China
- Nanchang Institute for Microtechnology of Tianjin University, Tianjin 300072, China
| |
Collapse
|
21
|
Zeng W, Manoj D, Sun H, Yi R, Huang X, Sun Y. One-pot synthesis of high-density Pd nanoflowers decorated 3D carbon nanotube-graphene network modified on printed electrode as portable electrochemical sensing platform for sensitive detection of nitroaromatic explosives. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2018.12.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
22
|
Alizadeh N, Ghoorchian A. Hybrid Optoelectrochemical Sensor for Superselective Detection of 2,4,6-Trinitrotoluene Based on Electrochemical Reduced Meisenheimer Complex. Anal Chem 2018; 90:10360-10368. [DOI: 10.1021/acs.analchem.8b02183] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Naader Alizadeh
- Department of Chemistry, Faculty of Basic Sciences, Tarbiat Modares University, Tehran, Iran 14115-175
| | - Arash Ghoorchian
- Department of Chemistry, Faculty of Basic Sciences, Tarbiat Modares University, Tehran, Iran 14115-175
| |
Collapse
|
23
|
Jiao L, Xu Z, Du W, Li H, Yin M. Fast Preparation of Polydopamine Nanoparticles Catalyzed by Fe 2+/H 2O 2 for Visible Sensitive Smartphone-Enabled Cytosensing. ACS APPLIED MATERIALS & INTERFACES 2017; 9:28339-28345. [PMID: 28783432 DOI: 10.1021/acsami.7b10564] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
It is highly desired to develop facile methods for fast preparation of polydopamine nanoparticles (PDANS) for intensive promising applications. Considering the system of Fe2+/H2O2 can generate reactive oxygen species efficiently, which can accelerate the self-oxidative polymerization of dopamine, a new time-saving method has been proposed to prepare PDANS catalyzed by Fe2+/H2O2. Thereafter, a novel kind of colorimetric nanoprobe for sensitive detection of human breast cancer cells (MDA-MB-231 cell) based on the obtained PDANS-loaded pH indicator molecules (thymolphthalein) has been developed successfully. The loading capacity of PDANS toward thymolphthalein molecules can reach as high as 165.40 mg/g, which will be a great help to enhancing the sensitivity. Following the color change principle of pH indicators, once simply triggered by basic water, the developed cytosensor offers a visible sensitive smartphone-enabled cytosensing of human breast cancer cells. It has been proved that the rational designed cytosensor is favorable to sensitive detection of cancer cells. By the virtue of its easy use, the proposed smartphone-enabled strategy can provide a novel testing approach for point-of-care bioassay beyond cytosensing in remote areas.
Collapse
Affiliation(s)
- Lei Jiao
- College of Optoelectronics Technology, Chengdu University of Information Technology , Chengdu 610225, China
| | - Zijian Xu
- College of Life Science, Shandong Normal University , Jinan 250014, China
| | - Wenwen Du
- College of Optoelectronics Technology, Chengdu University of Information Technology , Chengdu 610225, China
| | - He Li
- College of Optoelectronics Technology, Chengdu University of Information Technology , Chengdu 610225, China
- School of Chemistry and Chemical Engineering, University of Jinan , Jinan 250022, China
| | - Miao Yin
- College of Life Science, Shandong Normal University , Jinan 250014, China
| |
Collapse
|