1
|
Wang J, Yu Y, Dong H, Ji Y, Ning W, Li Y. The interface hydrophilic-hydrophobic integration of fluorinated defective graphene towards biomedical applications. Phys Chem Chem Phys 2025; 27:7538-7555. [PMID: 40167997 DOI: 10.1039/d5cp00075k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
In biomedical fields, rational design of novel two-dimensional (2D) biomedical nanomaterials aims to precisely manipulate biomolecules, including efficient capture, structural-functional transformation, directional movement, and self-assembly. In this work, we innovatively proposed new graphene nanosheets and selected two representative proteins to explore their binding mechanisms, structural-functional transformation of proteins, and biological effects of the materials. Fluorinated defective graphene (FDG) exhibited highly efficient capture and structural-functional transformation for the receptor binding domain (RBD), and we observed its collapse phenomenon in 2D materials for the first time. For the main protease (Mpro), FDG achieved an optimal balance between efficient capture, immobilization, and structural disruption. Further studies showed that fluorination on oxygen-containing defect graphene significantly enhanced variances in water distribution, surface properties, and hydrogen bond networks on the material surface. This allowed amino acids to be confined to specific areas, achieving efficient capture and directional movement. Additionally, the adsorption behavior and interaction strength of peptides and deoxynucleotides on FDG further validated the possibility of self-assembly. In summary, we highlight FDG as an excellent biomedical material with hydrophilic-hydrophobic integration.
Collapse
Affiliation(s)
- Jiawen Wang
- Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa 999078, Macau SAR, China.
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China.
| | - Yi Yu
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China.
| | - Huilong Dong
- School of Materials Engineering, Changshu Institute of Technology, Changshu, Jiangsu 215500, China
| | - Yujin Ji
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China.
| | - Weihua Ning
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China.
| | - Youyong Li
- Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa 999078, Macau SAR, China.
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
2
|
Borhan G, Sahihi M. Unwinding DNA strands by single-walled carbon nanotubes: Molecular docking and MD simulation approach. J Mol Graph Model 2024; 133:108882. [PMID: 39405984 DOI: 10.1016/j.jmgm.2024.108882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/30/2024] [Accepted: 10/10/2024] [Indexed: 10/21/2024]
Abstract
Despite the growing research into the use of carbon nano-tubes (CNTs) in science and medicine, concerns about their potential toxicity remain insufficiently studied. This study utilizes molecular docking calculations combined by molecular dynamics simulations to investigate the dynamic intricacies of the interaction between single-walled carbon nanotubes (swCNTs) and double-stranded DNA (dsDNA). By examining the influence of swCNT characteristics such as length, radius, and chirality, our findings shed light on the complex interplay that shapes the binding affinity and stability of the dsDNA-swCNT complex. Molecular docking results identify a zigzag swCNT, with a radius of 0.16 Å and a length of 38 Å, as exhibiting the highest binding affinity with dsDNA (-23.9 kcal/mol). Comprehensive analyses, spanning docking results, binding energies, RMSD, radius of gyration, and potential of mean force (PMF) profiles, provide a detailed understanding of the denaturation dynamics. The PMF profiles reveal the thermodynamic feasibility of the DNA-CNT interaction, outlining distinct energy landscapes and barriers: when the selected swCNT binds within the dsDNA groove, the system becomes trapped at the first and second local energy minima, occurring at 1.48 nm and 1.00 nm, respectively. Intramolecular hydrogen bond calculations show a significant reduction, affirming the denaturing effect of swCNTs on DNA. Furthermore, the study reveals a significant reduction in the binding affinity of Ethidium Bromide (EB) to dsDNA following its interaction with swCNT, with a decrease in EB binding to dsDNA of approximately 13.2 %. This research offers valuable insights into the toxic effects of swCNTs on dsDNA, contributing to a rationalization of the cancerous potential of swCNTs.
Collapse
Affiliation(s)
- Ghazal Borhan
- Université Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut de Chimie de Clermont-Ferrand, F-63000, Clermont-Ferrand, France
| | - Mehdi Sahihi
- Université Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut de Chimie de Clermont-Ferrand, F-63000, Clermont-Ferrand, France.
| |
Collapse
|
3
|
Wang J, Dong H, Ji Y, Li Y, Lee ST. Patterned graphene: An effective platform for adsorption, immobilization, and destruction of SARS-CoV-2 M pro. J Colloid Interface Sci 2024; 673:202-215. [PMID: 38875787 DOI: 10.1016/j.jcis.2024.06.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 06/16/2024]
Abstract
To address the ongoing challenges posed by the SARS-CoV-2 and potentially stronger viruses in the future, the development of effective methods to fabricate patterned graphene (PG) and other precisely functional products has become a new research frontier. Herein, we modeled the "checkerboard" graphene (CG) and stripped graphene (SG) as representatives of PG, and studied their interaction mechanism with the target protein (Mpro) by molecular dynamics simulation. The calculation results on the binding strength and the root mean square deviation values of the active pocket revealed that PG is an effective platform for adsorption, immobilization, and destruction of Mpro. Specifically, CG is found to promote disruption of the active pocket for Mpro, but the presence of "checkerboard" oxidized regions inhibits the adsorption of Mpro. Meanwhile, the SG can effectively confine Mpro within the non-oxidized strips and enhances their binding strength, but doesn't play well on disrupting the active pocket. Our work not only elucidates the biological effects of PGs, but also provides guidance for their targeted and precise utilization in combating the SARS-CoV-2.
Collapse
Affiliation(s)
- Jiawen Wang
- Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa 999078, Macau; Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China
| | - Huilong Dong
- School of Materials Engineering, Changshu Institute of Technology, Changshu, Jiangsu 215500, China.
| | - Yujin Ji
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China
| | - Youyong Li
- Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa 999078, Macau; Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China.
| | - Shuit-Tong Lee
- Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa 999078, Macau; Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
4
|
Ali HNM, Gonzales AA. In Silico Investigation on the Molecular Behavior and Structural Stability of the Rosette Nanotubes as the Drug Vehicles for Paclitaxel, an Anti-Cancer Drug. Molecules 2023; 28:7853. [PMID: 38067584 PMCID: PMC10708515 DOI: 10.3390/molecules28237853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Most anticancer drugs affect healthy cells in addition to cancer cells, causing severe side effects. Targeted delivery by nano-based drug delivery systems (NDDS) can reduce these severe side effects while maintaining therapeutic efficacy. This work introduced rosette nanotube (RNT) as a potential drug vehicle for paclitaxel (PTX) due to its self-assembling property, biocompatibility, amphiphilicity, and low toxicity. Molecular dynamics (MD) simulations aided with molecular mechanics Poisson Boltzmann surface area (MMPBSA) analysis are used here to investigate the molecular behavior and the loading energetics of each type of RNT (K1, xK1, and iEt-xK1) with PTX. Analysis showed that the most probable configuration of PTX is on either end of each RNT. The binding free energies (-117.74 to -69.29 kJ/mol) when PTX is closer to one end were stronger than when it is in the inner channel (-53.51 to -40.88 kJ/mol). The latter alludes to the encapsulation of the PTX by each RNT. Thus, loading is possible by encapsulation during the self-assembly process given the favorable estimated binding free energies. Based on the results, RNT has potential as a drug vehicle for PTX, which warrants further investigation.
Collapse
Affiliation(s)
| | - Arthur A. Gonzales
- Department of the Chemical Engineering, University of the Philippines Diliman, Quezon City 1101, Philippines;
| |
Collapse
|
5
|
Yan X, Yue T, Winkler DA, Yin Y, Zhu H, Jiang G, Yan B. Converting Nanotoxicity Data to Information Using Artificial Intelligence and Simulation. Chem Rev 2023. [PMID: 37262026 DOI: 10.1021/acs.chemrev.3c00070] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Decades of nanotoxicology research have generated extensive and diverse data sets. However, data is not equal to information. The question is how to extract critical information buried in vast data streams. Here we show that artificial intelligence (AI) and molecular simulation play key roles in transforming nanotoxicity data into critical information, i.e., constructing the quantitative nanostructure (physicochemical properties)-toxicity relationships, and elucidating the toxicity-related molecular mechanisms. For AI and molecular simulation to realize their full impacts in this mission, several obstacles must be overcome. These include the paucity of high-quality nanomaterials (NMs) and standardized nanotoxicity data, the lack of model-friendly databases, the scarcity of specific and universal nanodescriptors, and the inability to simulate NMs at realistic spatial and temporal scales. This review provides a comprehensive and representative, but not exhaustive, summary of the current capability gaps and tools required to fill these formidable gaps. Specifically, we discuss the applications of AI and molecular simulation, which can address the large-scale data challenge for nanotoxicology research. The need for model-friendly nanotoxicity databases, powerful nanodescriptors, new modeling approaches, molecular mechanism analysis, and design of the next-generation NMs are also critically discussed. Finally, we provide a perspective on future trends and challenges.
Collapse
Affiliation(s)
- Xiliang Yan
- Institute of Environmental Research at the Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Tongtao Yue
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Institute of Coastal Environmental Pollution Control, Ocean University of China, Qingdao 266100, China
| | - David A Winkler
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- School of Pharmacy, University of Nottingham, Nottingham NG7 2QL, U.K
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Yongguang Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Hao Zhu
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, New Jersey 08028, United States
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Bing Yan
- Institute of Environmental Research at the Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
6
|
In-Situ Surface Modification of ITO Substrate via Bio-Inspired Mussel Chemistry for Organic Memory Devices. Biomimetics (Basel) 2022; 7:biomimetics7040237. [PMID: 36546937 PMCID: PMC9775351 DOI: 10.3390/biomimetics7040237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/09/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
The development of organic memory devices, regarding factors such as structure construction, principle exploration, and material design, has become a powerful supplement to traditional silicon-based information storage. The in-situ growth of materials on substrate surfaces can achieve closer bonding between materials and electrodes. Bio-inspired by mussel chemistry, polydopamine (PDA) was self-assembled on a flexible substrate as a connecting layer, and 2-bromoiso-butyryl bromide (BiBB) was utilized as an initiator for the polymerization of an iridium complex via surface-initiated atom-transfer radical polymerization (SI-ATRP). A device with the structure of Al/PDA-PPy3Ir/ITO was constructed after the deposition of aluminum. The device exhibited a nonvolatile rewritable memory characteristic with a turn-on voltage of -1.0 V and an ON/OFF current ratio of 6.3 × 103. In addition, the memory performance of the Al/PDA-PPy3Ir/ITO device remained stable at bending states due to the intrinsic flexibility of the active layer, which can be expanded into the establishment of flexible memory devices. Spectroscopy and electrochemical characterization suggested that the resistive memory properties of the device stemmed from charge transfer between PDA and iridium polymer in the active layer (PDA-PPy3Ir) under an applied voltage.
Collapse
|
7
|
Liu J, Huang M, Hua Z, Dong Y, Feng Z, Sun T, Chen C. Polyoxometalate‐Based Metal Organic Frameworks: Recent Advances and Challenges. ChemistrySelect 2022. [DOI: 10.1002/slct.202200546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jiale Liu
- Key Laboratory of Forest Plant Ecology Ministry of Education Engineering Research Center of Forest Bio-Preparation College of Chemistry Chemical Engineering and Resource Utilization Northeast Forestry University 26 Hexing Road Harbin, 150040 China
| | - Mengyao Huang
- Key Laboratory of Forest Plant Ecology Ministry of Education Engineering Research Center of Forest Bio-Preparation College of Chemistry Chemical Engineering and Resource Utilization Northeast Forestry University 26 Hexing Road Harbin, 150040 China
| | - Zhongyu Hua
- Key Laboratory of Forest Plant Ecology Ministry of Education Engineering Research Center of Forest Bio-Preparation College of Chemistry Chemical Engineering and Resource Utilization Northeast Forestry University 26 Hexing Road Harbin, 150040 China
| | - Yi Dong
- Key Laboratory of Forest Plant Ecology Ministry of Education Engineering Research Center of Forest Bio-Preparation College of Chemistry Chemical Engineering and Resource Utilization Northeast Forestry University 26 Hexing Road Harbin, 150040 China
| | - Zeran Feng
- Key Laboratory of Forest Plant Ecology Ministry of Education Engineering Research Center of Forest Bio-Preparation College of Chemistry Chemical Engineering and Resource Utilization Northeast Forestry University 26 Hexing Road Harbin, 150040 China
| | - Tiedong Sun
- Key Laboratory of Forest Plant Ecology Ministry of Education Engineering Research Center of Forest Bio-Preparation College of Chemistry Chemical Engineering and Resource Utilization Northeast Forestry University 26 Hexing Road Harbin, 150040 China
| | - Chunxia Chen
- Key Laboratory of Forest Plant Ecology Ministry of Education Engineering Research Center of Forest Bio-Preparation College of Chemistry Chemical Engineering and Resource Utilization Northeast Forestry University 26 Hexing Road Harbin, 150040 China
| |
Collapse
|
8
|
Yousaf R, Navid A, Azam SS. Discovery of novel Glutaminase allosteric inhibitors through drug repurposing and comparative MMGB/PBSA and molecular dynamics simulation. Comput Biol Med 2022; 146:105669. [PMID: 35654625 DOI: 10.1016/j.compbiomed.2022.105669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/21/2022] [Accepted: 05/23/2022] [Indexed: 11/03/2022]
Abstract
GLS1 enzymes (Glutaminase C (GAC) and kidney-type Glutaminase (KGA)) are gaining prominence as a target for tumor treatment including lung, breast, kidney, prostate, and colorectal. To date, several medicinal chemistry studies are being conducted to develop new and effective inhibitors against GLS1 enzymes. Telaglenastat, a drug that targets the allosteric site of GLS1, has undergone clinical trials for the first time for the therapy of solid tumors and hematological malignancies. A comprehensive computational investigation is performed to get insights into the inhibition mechanism of the Telaglenastat. Some novel inhibitors are also proposed against GLS1 enzymes using the drug repurposing approach using 2D-fingerprinting virtual screening method against 2.4 million compounds, application of pharmacokinetics, Molecular Docking, and Molecular Dynamic (MD) Simulations. A TIP3P water box of 10 Å was defined to solvate both enzymes to improve MD simulation reliability. The dynamics results were validated further by the MMGB/PBSA binding free energy method, RDF, and AFD analysis. Results of these computational analysis revealed a stable binding affinity of Telaglenastat, as well as an FDA approved drug Astemizole (IC50 ∼ 0.9 nM) and a novel para position oriented methoxy group containing Chembridge compound (Chem-64284604) that provides an effective inhibitory action against GAC and KGA.
Collapse
|
9
|
Côté S, Bouilly D, Mousseau N. The molecular origin of the electrostatic gating of single-molecule field-effect biosensors investigated by molecular dynamics simulations. Phys Chem Chem Phys 2022; 24:4174-4186. [PMID: 35113103 DOI: 10.1039/d1cp04626h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Field-effect biosensors (bioFETs) offer a novel way to measure the kinetics of biomolecular events such as protein function and DNA hybridization at the single-molecule level on a wide range of time scales. These devices generate an electrical current whose fluctuations are correlated to the kinetics of the biomolecule under study. BioFETs are indeed highly sensitive to changes in the electrostatic potential (ESP) generated by the biomolecule. Here, using all-atom solvent explicit molecular dynamics simulations, we further investigate the molecular origin of the variation of this ESP for two prototypical cases of proteins or nucleic acids attached to a carbon nanotube bioFET: the function of the lysozyme protein and the hybridization of a 10-nt DNA sequence, as previously done experimentally. Our results show that the ESP changes significantly on the surface of the carbon nanotube as the state of these two biomolecules changes. More precisely, the ESP distributions calculated for these molecular states explain well the magnitude of the conductance fluctuations measured experimentally. The dependence of the ESP with salt concentration is found to agree with the reduced conductance fluctuations observed experimentally for the lysozyme, but to differ for the case of DNA, suggesting that other mechanisms might be at play in this case. Furthermore, we show that the carbon nanotube does not impact significantly the structural stability of the lysozyme, corroborating that the kinetic rates measured using bioFETs are similar to those measured by other techniques. For DNA, we find that the structural ensemble of the single-stranded DNA is significantly impacted by the presence of the nanotube, which, combined with the ESP analysis, suggests a stronger DNA-device interplay. Overall, our simulations strengthen the comprehension of the inner working of field-effect biosensors used for single-molecule kinetics measurements on proteins and nucleic acids.
Collapse
Affiliation(s)
- Sébastien Côté
- Département de Physique, Faculté des Arts et des Sciences, Université de Montréal, Montréal, Canada. .,Département de Physique, Cégep de Saint-Jérôme, Saint-Jérôme, Canada
| | - Delphine Bouilly
- Département de Physique, Faculté des Arts et des Sciences, Université de Montréal, Montréal, Canada. .,Institut de recherche en immunologie et cancérologie (IRIC), Université de Montréal, Montréal, Canada.
| | - Normand Mousseau
- Département de Physique, Faculté des Arts et des Sciences, Université de Montréal, Montréal, Canada.
| |
Collapse
|
10
|
Wang J, Yu Y, Leng T, Li Y, Lee ST. The Inhibition of SARS-CoV-2 3CL M pro by Graphene and Its Derivatives from Molecular Dynamics Simulations. ACS APPLIED MATERIALS & INTERFACES 2022; 14:191-200. [PMID: 34933561 PMCID: PMC8713398 DOI: 10.1021/acsami.1c18104] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
At present, the most powerful new drugs for COVID-19 are antibody proteins. In addition, there are some star small molecule drugs. However, there are few studies on nanomaterials. Here, we study the intact graphene (IG), defective graphene (DG), and graphene oxide (GO) interacting with COVID-19 protein. We find that they show progressive inhibition of COVID-19 protein. By using molecular dynamics simulations, we study the interactions between SARS-CoV-2 3CL Mpro and graphene-related materials (GRMs): IG, DG, and GO. The results show that Mpro can be absorbed onto the surfaces of investigated materials. DG and GO interacted with Mpro more intensely, causing the decisive part of Mpro to become more flexible. Further analysis shows that compared to IG and GO, DG can inactivate Mpro and inhibit its expression effectively by destroying the active pocket of Mpro. Our work not only provides detailed and reliable theoretical guidance for the application of GRMs in treating with SARS-CoV-2 but also helps in developing new graphene-based anti-COVID-19 materials.
Collapse
Affiliation(s)
- Jiawen Wang
- Institute of Functional Nano & Soft Materials
(FUNSOM), Soochow University, Suzhou, Jiangsu 215123,
China
| | - Yi Yu
- Institute of Functional Nano & Soft Materials
(FUNSOM), Soochow University, Suzhou, Jiangsu 215123,
China
| | - Tianle Leng
- Dougherty Valley High School,
10550 Albion Rd, San Ramon, California 94582, United States
| | - Youyong Li
- Institute of Functional Nano & Soft Materials
(FUNSOM), Soochow University, Suzhou, Jiangsu 215123,
China
- Macao Institute of Materials Science and Engineering,
Macau University of Science and Technology, Taipa, 999078
Macau, SAR, China
| | - Shuit-Tong Lee
- Institute of Functional Nano & Soft Materials
(FUNSOM), Soochow University, Suzhou, Jiangsu 215123,
China
- Macao Institute of Materials Science and Engineering,
Macau University of Science and Technology, Taipa, 999078
Macau, SAR, China
| |
Collapse
|
11
|
Tracking the interaction between single-wall carbon nanotube and SARS-Cov-2 spike glycoprotein: A molecular dynamics simulations study. Comput Biol Med 2021; 136:104692. [PMID: 34333227 PMCID: PMC8314789 DOI: 10.1016/j.compbiomed.2021.104692] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 12/26/2022]
Abstract
COVID-19, a newly discovered type of coronavirus, is the cause of the pandemic infection that was first reported in Wuhan, China, in December 2019. One of the most critical problems in this regard is to identify innovative drugs that may reduce or manage this global health concern. Nanoparticles have shown a pivotal role in drug delivery systems in recent decades. The surface of nanoparticles could be covered by a layer composed of different biomolecules (e.g., proteins and macromolecules) following the incubation with a biological fluid. This protein-rich layer is called “Protein Corona.” In this study, an all-atom molecular dynamics simulation was used for investigating the monomeric B domain of the spike glycoprotein due to its role in the accessibility of the spike glycoprotein to single-wall carbon nanotubes (SWCNTs). The interaction energy values between the carbon nanotube and B domain of the viral spike glycoprotein were evaluated. The obtained results, based on Lennard-Jones potentials, demonstrated that SWCNTs had an affinity to the B domain of the S1 subunit in the spike glycoprotein. The adsorption of SWCNTs on the B domain surface led to a significant change in solvent-accessible surface, internal hydrogen bonds, and finally in the tertiary structure, which could provide a reasonable method to impede the interaction between the angiotensin-converting enzyme II and SARS-CoV-2 spike glycoprotein. A decrease in the mean square displacement of the B domain was shown after the adsorption of SWCNTs as a result of increasing the hydrophobic-hydrophilic properties of the B domain. The arrangement of SWCNTs on the B domain surface and their interaction using the 2-acetamido-2-deoxy-β-d-glucopyranose group (988, 991, and 992) demonstrated that a change in the affinity of the S1 subunit could be used as a barrier to viral replication. The analysis of the SWCNT-B domain complex indicated that the presence of SWCNTs is able to cause alterations in the S1 subunit of the spike protein, and these nanotubes could be employed for further in-vitro and in-vivo antiviral studies. Also, SWCNTs are able to be utilized in drug delivery systems.
Collapse
|
12
|
Di Giosia M, Marforio TD, Cantelli A, Valle F, Zerbetto F, Su Q, Wang H, Calvaresi M. Inhibition of α-chymotrypsin by pristine single-wall carbon nanotubes: Clogging up the active site. J Colloid Interface Sci 2020; 571:174-184. [DOI: 10.1016/j.jcis.2020.03.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 02/26/2020] [Accepted: 03/08/2020] [Indexed: 10/24/2022]
|
13
|
|
14
|
Wang X, Zhu Y, Chen M, Yan M, Zeng G, Huang D. How do proteins 'response' to common carbon nanomaterials? Adv Colloid Interface Sci 2019; 270:101-107. [PMID: 31200262 DOI: 10.1016/j.cis.2019.06.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 05/30/2019] [Accepted: 06/03/2019] [Indexed: 12/01/2022]
Abstract
Carbon nanomaterials are widely produced and applied in biological and environmental fields because of their outstanding physical and chemical properties, which pose a threat to the safety of living organisms and the ecological environment. Therefore, understanding how carbon nanomaterials and their derivatives work on organisms is becoming important. In recent years, more and more researchers have explored the damage of carbon nanomaterials to organisms at the molecular level. This review pays special emphasis on how proteins response to the main carbon nanomaterials (fullerene, carbon nanotubes, graphene and their derivatives). In addition, how to use the interaction between carbon nanomaterials and proteins to do some beneficial things for human and the development of safe nanomaterials is simply discussed. Finally, some suggestions have been made to lay a theoretical foundation for future research.
Collapse
Affiliation(s)
- Xianfeng Wang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Yi Zhu
- School of Environmental Science & Engineering, Hubei Polytechnic University, Huangshi 435003, PR China
| | - Ming Chen
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Ming Yan
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Danlian Huang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
15
|
Li N, Zhang Y, Huang B, Li H. Ultrasonic dispersion temperature- and pH-tuned spectral and electrochemical properties of bovine serum albumin on carbon nanotubes and its conformational transition. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2018.11.089] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Chakraborty S, Jana B. Ordered hydration layer mediated ice adsorption of a globular antifreeze protein: mechanistic insight. Phys Chem Chem Phys 2019; 21:19298-19310. [DOI: 10.1039/c9cp03135a] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The ice binding surface of a type III AFP induces water ordering at lower temperature, which mediates its adsorption on the ice surface.
Collapse
Affiliation(s)
- Sandipan Chakraborty
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata-700032
- India
| | - Biman Jana
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata-700032
- India
| |
Collapse
|
17
|
Sahoo AK, Kanchi S, Mandal T, Dasgupta C, Maiti PK. Translocation of Bioactive Molecules through Carbon Nanotubes Embedded in the Lipid Membrane. ACS APPLIED MATERIALS & INTERFACES 2018; 10:6168-6179. [PMID: 29373024 DOI: 10.1021/acsami.7b18498] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
One of the major challenges of nanomedicine and gene therapy is the effective translocation of drugs and genes across cell membranes. In this study, we describe a systematic procedure that could be useful for efficient drug and gene delivery into the cell. Using fully atomistic molecular dynamics (MD) simulations, we show that molecules of various shapes, sizes, and chemistries can be spontaneously encapsulated in a single-walled carbon nanotube (SWCNT) embedded in a 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) lipid bilayer, as we have exemplified with dendrimers, asiRNA, ssDNA, and ubiquitin protein. We compute the free energy gain by the molecules upon their entry inside the SWCNT channel to quantify the stability of these molecules inside the channel as well as to understand the spontaneity of the process. The free energy profiles suggest that all molecules can enter the channel without facing any energy barrier but experience a strong energy barrier (≫kBT) to translocate across the channel. We propose a theoretical model for the estimation of encapsulation and translocation times of the molecules. Whereas the model predicts the encapsulation time to be of the order of few nanoseconds, which match reasonably well with those obtained from the simulations, it predicts the translocation time to be astronomically large for each molecule considered in this study. This eliminates the possibility of passive diffusion of the molecules through the CNT-nanopore spanning across the membrane. To counter this, we put forward a mechanical method of ejecting the encapsulated molecules by pushing them with other free-floating SWCNTs of diameter smaller than the pore diameter. The feasibility of the proposed method is also demonstrated by performing MD simulations. The generic strategy described here should work for other molecules as well and hence could be potentially useful for drug- and gene-delivery applications.
Collapse
Affiliation(s)
- Anil Kumar Sahoo
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science , Bangalore 560012, India
| | - Subbarao Kanchi
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science , Bangalore 560012, India
| | - Taraknath Mandal
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science , Bangalore 560012, India
| | - Chandan Dasgupta
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science , Bangalore 560012, India
| | - Prabal K Maiti
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science , Bangalore 560012, India
| |
Collapse
|
18
|
Yu Y, Sun H, Hou T, Wang S, Li Y. Fullerene derivatives act as inhibitors of leukocyte common antigen based on molecular dynamics simulations. RSC Adv 2018; 8:13997-14008. [PMID: 35539330 PMCID: PMC9079904 DOI: 10.1039/c7ra13543b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 04/10/2018] [Indexed: 11/21/2022] Open
Abstract
Fullerene-based molecules are being studied as potential inhibitors of protein tyrosine phosphatases due to their unique properties and low toxicity. However, the underlying molecular mechanism remains elusive. In this study, molecular dynamics (MD) simulations in conjunction with molecular docking calculations were utilized to investigate the binding effects of C60, C60(NH2)30, and C60(OH)30 on the enzymatic activity of CD45 (a receptor-like protein tyrosine phosphatase). Our results show that all the investigated molecules can be docked into the region between D1 and D2 domains of CD45, and stabilize the protein structure. The average number of residues that directly interact with the C60(NH2)30 is two more than that of C60(OH)30, F819 and F820 (located in the loop connects α3 and β12), resulting in different effects of C60(NH2)30 and C60(OH)30 on protein activity. Detailed MD simulation analyses show that transformation of the interaction network caused by C60(NH2)30 is completely different from that of the control simulation due to the misfolding of α3. Furthermore, the movement of D1 active pocket and KNRY motif are most severely impaired by docking with C60(NH2)30. Our simulation results illustrate that fullerene derivatives modified with amino groups exhibit conspicuous tumor inhibition to protein tyrosine phosphatases, and can act as effective inhibitors. Our results give insight into the inhibitory effects of fullerene-based molecules on protein tyrosine phosphatases and providing a theoretical basis for the design of effective inhibitors. Fullerene-based molecules are being studied as potential inhibitors of protein tyrosine phosphatases due to their unique properties and low toxicity.![]()
Collapse
Affiliation(s)
- Yi Yu
- Institute of Functional Nano & Soft Materials (FUNSOM)
- Soochow University
- Suzhou 215123
- China
| | - Huiyong Sun
- Institute of Functional Nano & Soft Materials (FUNSOM)
- Soochow University
- Suzhou 215123
- China
| | - Tingjun Hou
- Institute of Functional Nano & Soft Materials (FUNSOM)
- Soochow University
- Suzhou 215123
- China
| | - Suidong Wang
- Institute of Functional Nano & Soft Materials (FUNSOM)
- Soochow University
- Suzhou 215123
- China
| | - Youyong Li
- Institute of Functional Nano & Soft Materials (FUNSOM)
- Soochow University
- Suzhou 215123
- China
| |
Collapse
|