1
|
Xiao H, Jiang B, Zhang Z, Zhu C, Chen J, Wang Y, Dong Y, Hao Y, Liu Y, Li Y, Xiao X, He G, Zhou Y, Luo X. New insight of electrogenerated H 2O 2 into oxychlorides inhibition and decontamination promotion: From radical to nonradical pathway during anodic oxidation of high Cl --laden wastewater process. JOURNAL OF HAZARDOUS MATERIALS 2025; 486:136948. [PMID: 39721481 DOI: 10.1016/j.jhazmat.2024.136948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 12/12/2024] [Accepted: 12/18/2024] [Indexed: 12/28/2024]
Abstract
Anodic oxidation (AO) has been extensively hailed as a robust and promising technology for pollutant degradation, but the parasitic formation of oxychlorides (ClOx-) would induce a seriously over-evaluated electrochemical COD removal performance and dramatical biotoxicity increasement of the AO-treated Cl--laden effluents. Herein, we shed new light on the roles of H2O2 high-efficiently electrogenerated in three-dimensional (3D) reactor in inhibiting ClOx- production and promoting pollutant degradation, which has been overlooked in previous literature. Total yield of ClOx- in phenol simulated wastewater containing 30 mM Cl- was dropped from 25 mM and 24.3 mM to only 0.26 mM and 0.23 mM within 120 min after treating by 3D H2O2-involing systems with Ti/Ru-IrO2 and BDD anode, respectively. Meanwhile, the COD removal of 3D Ti/Ru-IrO2-based system was increased by 57 % (85 % removal at 0.011 kWh g-1 COD), comparable to that of 3D BDD-based system (90 % removal at 0.008 kWh g-1 COD), the energy consumption of which were far less than those of conventional 2D and 3D electro-Fenton systems (0.08-0.2 kWh g-1 COD). During degradation process of Cl--bearing phenol by 3D AO-H2O2 systems, the anodically produced species (Cl•, Cl2•-, ClO-) were rapidly quenched by the in-situ electrogenerated H2O2 and then successfully transformed into 1O2. The radical pathway of reaction between H2O2 and Cl•/Cl2•- had a more obviously thermodynamical advantage (∆G = 11.5 kJ mol-1) than nonradical pathway between H2O2 and ClO- (∆G = 171 kJ mol-1) based on DFT analysis. And the steady-state concentration of 1O2 was 8.8 × 10-9 M and 4.2 × 10-10 M in 3D Ti/Ru-IrO2 and BDD-based system, respectively, which collectively took responsibility for the termination of ClOx- production and promotion of organic pollutant degradation. This work provides a technical feasibility in the practical utilization of AO technology to wastewater treatment without toxic oxychloride by-products.
Collapse
Affiliation(s)
- Huiji Xiao
- School of Life Sciences, Key Laboratory of Jiangxi Province for Functional Biology and Pollution Control in Red Soil Regions, Jinggangshan University, Ji'an 343009, PR China
| | - Bo Jiang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China.
| | - Zhitong Zhang
- School of Life Sciences, Key Laboratory of Jiangxi Province for Functional Biology and Pollution Control in Red Soil Regions, Jinggangshan University, Ji'an 343009, PR China
| | - Chenxi Zhu
- School of Life Sciences, Key Laboratory of Jiangxi Province for Functional Biology and Pollution Control in Red Soil Regions, Jinggangshan University, Ji'an 343009, PR China
| | - Jing Chen
- School of Life Sciences, Key Laboratory of Jiangxi Province for Functional Biology and Pollution Control in Red Soil Regions, Jinggangshan University, Ji'an 343009, PR China
| | - Yinghong Wang
- School of Life Sciences, Key Laboratory of Jiangxi Province for Functional Biology and Pollution Control in Red Soil Regions, Jinggangshan University, Ji'an 343009, PR China
| | - Yinghao Dong
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China
| | - Yongjie Hao
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China
| | - Yijie Liu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China
| | - Yifan Li
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China
| | - Xiaoyu Xiao
- School of Life Sciences, Key Laboratory of Jiangxi Province for Functional Biology and Pollution Control in Red Soil Regions, Jinggangshan University, Ji'an 343009, PR China
| | - Genhe He
- School of Life Sciences, Key Laboratory of Jiangxi Province for Functional Biology and Pollution Control in Red Soil Regions, Jinggangshan University, Ji'an 343009, PR China
| | - Yanbo Zhou
- School of Life Sciences, Key Laboratory of Jiangxi Province for Functional Biology and Pollution Control in Red Soil Regions, Jinggangshan University, Ji'an 343009, PR China
| | - Xubiao Luo
- School of Life Sciences, Key Laboratory of Jiangxi Province for Functional Biology and Pollution Control in Red Soil Regions, Jinggangshan University, Ji'an 343009, PR China.
| |
Collapse
|
2
|
Li C, Jiang X, Yang N. Synthesis, Surface Chemistry, and Applications of Non-Zero-Dimensional Diamond Nanostructures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400798. [PMID: 39340271 DOI: 10.1002/smll.202400798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 09/13/2024] [Indexed: 09/30/2024]
Abstract
Diamond nanomaterials are renowned for their exceptional properties, which include the inherent attributes of bulk diamond. Additionally, they exhibit unique characteristics at the nanoscale, including high specific surface areas, tunable surface structure, and excellent biocompatibility. These multifaceted attributes have piqued the interest of researchers globally, leading to an extensive exploration of various diamond nanostructures in a myriad of applications. This review focuses on non-zero-dimensional (non-0D) diamond nanostructures including diamond films and extended diamond nanostructures, such as diamond nanowires, nanoplatelets, and diamond foams. It delves into the fabrication, modification, and diverse applications of non-0D diamond nanostructures. This review begins with a concise review of the preparation methods for different types of diamond films and extended nanostructures, followed by an exploration of the intricacies of surface termination and the process of immobilizing target moieties of interest. It then transitions into an exploration of the applications of diamond films and extended nanostructures in the fields of biomedicine and electrochemistry. In the concluding section, this article provides a forward-looking perspective on the current state and future directions of diamond films and extended nanostructures research, offering insights into the opportunities and challenges that lie ahead in this exciting field.
Collapse
Affiliation(s)
- Changli Li
- Institute of Materials Engineering, University of Siegen, 57076, Siegen, Germany
| | - Xin Jiang
- Institute of Materials Engineering, University of Siegen, 57076, Siegen, Germany
| | - Nianjun Yang
- Department of Chemistry, Hasselt University, Diepenbeek, 3590, Belgium
- IMO-IMOMEC, Hasselt University, Diepenbeek, 3590, Belgium
| |
Collapse
|
3
|
Wang Y, Li L, Huang Q. Electrooxidation of per- and polyfluoroalkyl substances in chloride-containing water on surface-fluorinated Ti 4O 7 anodes: Mitigation and elimination of chlorate and perchlorate formation. CHEMOSPHERE 2022; 307:135877. [PMID: 35931258 DOI: 10.1016/j.chemosphere.2022.135877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/24/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
Electrooxidation (EO) has been shown effective in degrading per- and polyfluoroalkyl substances (PFASs) in water, but concurrent formation of chlorate and perchlorate in the presence of chloride is of concern due to their toxicity. This study examined EO treatment of three representative PFASs, perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA) and 6:2 fluorotelomer sulfonate (6:2 FTS), in chloride-containing solutions on pristine and surface-fluorinated Ti4O7 anodes having different percentage of surface fluorination. The experiment results indicate that surface fluorination of Ti4O7 anodes slightly inhibited PFAS degradation, while significantly decreased the formation of chlorate and perchlorate. Further studies with spectroscopic and electrochemical characterizations and density functional theory (DFT) computation reveal the mechanisms of the impact on EO performance by anode fluorination. In particular, chlorate and perchlorate formation were fully inhibited when fluorinated Ti4O7 anode was used in reactive electrochemical membrane (REM) under a proper anodic potential range (<3.0 V vs Standard Hydrogen Electrode), resulting from slower intermediate reaction steps and short residence time of the REM system. The results of this study provide a basis for design and optimization of modified Ti4O7 anodes for efficient EO treatment of PFAS while limiting chlorate and perchlorate formation.
Collapse
Affiliation(s)
- Yaye Wang
- College of Agricultural and Environmental Sciences, Department of Crop and Soil Sciences, University of Georgia, Griffin, GA, 30223, United States
| | - Lei Li
- College of Agricultural and Environmental Sciences, Department of Crop and Soil Sciences, University of Georgia, Griffin, GA, 30223, United States
| | - Qingguo Huang
- College of Agricultural and Environmental Sciences, Department of Crop and Soil Sciences, University of Georgia, Griffin, GA, 30223, United States.
| |
Collapse
|
4
|
Wang C, Zhang T, Yin L, Ni C, Ni J, Hou LA. Enhanced perfluorooctane acid mineralization by electrochemical oxidation using Ti 3+ self-doping TiO 2 nanotube arrays anode. CHEMOSPHERE 2022; 286:131804. [PMID: 34365167 DOI: 10.1016/j.chemosphere.2021.131804] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 08/01/2021] [Accepted: 08/03/2021] [Indexed: 06/13/2023]
Abstract
Perfluorooctanoic acid (PFOA) is of increasing concern due to its worldwide application and extremely environmental persistence. Herein, we demonstrated the electrochemical degradation of PFOA with high efficiency using the Ti3+ self-doping TiO2 nanotube arrays (Ti3+/TiO2-NTA) anode. The fabricated Ti3+/TiO2-NTA anode exhibited vertically aligned uniform nanotubes structure, and was demonstrated good performance on the electrochemical degradation of PFOA in water. The degradation rate, total organic carbon (TOC) removal rate and defluorination rate of PFOA reached 98.1 %, 93.3 % and 74.8 %, respectively, after electrolysis for 90 min at low current density of 2 mA cm-2. The energy consumption (7.6 Wh L-1) of this electrochemical oxidation system using Ti3+/TiO2-NTA anode for PFOA degradation was about 1 order of magnitude lower than using traditional PbO2 anodes. Cathodic polarization could effectively prolong the electrocatalytic activity of the anode by regenerating Ti3+ sites. PFOA molecular was underwent a rapidly mineralization to CO2 and F-, with only low concentration of short-chain perflfluorocarboxylic acids (PFCAs) intermediates identified. A possible electrochemical degradation mechanism of PFOA was proposed, in which the initial direct electron transfer (DET) on the anode to yield PFOA free radicals (C7F15COO•) and hydroxyl radicals (•OH) oxidation were greatly enhanced. This presented study provides a novel approach for the purification of the recalcitrant PFOA from wastewaters.
Collapse
Affiliation(s)
- Chong Wang
- College of Resources Adironment, Southwest University, Chongqing, 400716, China.
| | - Tianai Zhang
- College of Resources Adironment, Southwest University, Chongqing, 400716, China
| | - Lifeng Yin
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Chengsheng Ni
- College of Resources Adironment, Southwest University, Chongqing, 400716, China
| | - JiuPai Ni
- College of Resources Adironment, Southwest University, Chongqing, 400716, China
| | - Li-An Hou
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China; Xi'an High-Tech Institute, Xi'an, 710025, China
| |
Collapse
|
5
|
Pei S, Shi H, Zhang J, Wang S, Ren N, You S. Electrochemical removal of tetrabromobisphenol A by fluorine-doped titanium suboxide electrochemically reactive membrane. JOURNAL OF HAZARDOUS MATERIALS 2021; 419:126434. [PMID: 34323737 DOI: 10.1016/j.jhazmat.2021.126434] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 05/29/2021] [Accepted: 06/16/2021] [Indexed: 06/13/2023]
Abstract
This study reports fluorine-doped titanium suboxide anode for electrochemical mineralization of hydrophobic micro-contaminant, tetrabromobisphenol A. Fluorinated TiSO anode promoted electro-generated hydroxyl radicals (•OH) with higher selectivity and activity, due to increased O2 evolution potential and more loosely interaction with hydrophobic electrode surface. For electro-oxidation process, fluorine doping had an insignificant impact on outer-sphere reaction and exerted inhibition on inner-sphere reaction, as indicated by cyclic voltammogram performed on Ru(NH3)63+/2+, Fe(CN)63-/4- and Fe3+/2+ redox couple. This facilitated electrochemical conversion of TBBPA and intermediates via more efficient outer-sphere reaction and hydroxylation route. Additionally, generated O2 micro-bubbles could be stabilized on hydrophobic F-doped TiSO anode, which extended the three-phase boundary available for interfacial enrichment of TBBPA and subsequent mineralization. Under action of these comprehensive factors, 0.5% F-doped TiSO electrochemically reactive membrane could achieve 99.7% mineralization of TBBPA upon energy consumption of 0.52 kWh m-3 at current density of 7.8 ± 0.24 mA cm-2 (3.75 V vs SHE) and flow rate of 1628 LHM based on flow-through electrolysis. The modified anode exhibited superior performances compared with un-modified one with more efficient TBBPA removal, less toxic intermediate accumulation and lower energy consumption. The results may have important implications for electrochemical removal and detoxification of hydrophobic micro-pollutants.
Collapse
Affiliation(s)
- Shuzhao Pei
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Han Shi
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Jinna Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Shengli Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Shijie You
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| |
Collapse
|
6
|
Lin MH, Bulman DM, Remucal CK, Chaplin BP. Chlorinated Byproduct Formation during the Electrochemical Advanced Oxidation Process at Magnéli Phase Ti 4O 7 Electrodes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:12673-12683. [PMID: 32841010 DOI: 10.1021/acs.est.0c03916] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This research investigated chlorinated byproduct formation at Ti4O7 anodes. Resorcinol was used as a model organic compound representative of reactive phenolic groups in natural organic matter and industrial phenolic contaminants and was oxidized in the presence of NaCl (0-5 mM). Resorcinol mineralization was >68% in the presence and absence of NaCl at 3.1 V/SHE (residence time = 13 s). Results indicated that ∼4.3% of the initial chloride was converted to inorganic byproducts (free Cl2, ClO2-, ClO3-) in the absence of resorcinol, and this value decreased to <0.8% in the presence of resorcinol. Perchlorate formation rates from chlorate oxidation were 115-371 mol m-2 h-1, approximately two orders of magnitude lower than reported values for boron-doped diamond anodes. Liquid chromatography-mass spectroscopy detected two chlorinated organic products. Multichlorinated alcohol compounds (C3H2Cl4O and C3H4Cl4O) at 2.5 V/SHE and a monochlorinated phenolic compound (C8H7O4Cl) at 3.1 V/SHE were proposed as possible structures. Density functional theory calculations estimated that the proposed alcohol products were resistant to direct oxidation at 2.5 V/SHE, and the C8H7O4Cl compound was likely a transient intermediate. Chlorinated byproducts should be carefully monitored during electrochemical advanced oxidation processes, and multibarrier treatment approaches are likely necessary to prevent halogenated byproducts in the treated water.
Collapse
Affiliation(s)
- Meng-Hsuan Lin
- Department of Chemical Engineering, University of Illinois at Chicago, 929 West Taylor Street, Chicago, Illinois 60607, United States
| | - Devon Manley Bulman
- Environmental Chemistry and Technology Program, University of Wisconsin-Madison, 660 North Park Street, Madison, Wisconsin 53706, United States
| | - Christina K Remucal
- Environmental Chemistry and Technology Program, University of Wisconsin-Madison, 660 North Park Street, Madison, Wisconsin 53706, United States
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, 660 North Park Street, Madison, Wisconsin 53706, United States
| | - Brian P Chaplin
- Department of Chemical Engineering, University of Illinois at Chicago, 929 West Taylor Street, Chicago, Illinois 60607, United States
| |
Collapse
|
7
|
Shi H, Wang Y, Li C, Pierce R, Gao S, Huang Q. Degradation of Perfluorooctanesulfonate by Reactive Electrochemical Membrane Composed of Magnéli Phase Titanium Suboxide. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:14528-14537. [PMID: 31730354 DOI: 10.1021/acs.est.9b04148] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
This study investigated the degradation of perfluorooctanesulfonate (PFOS) in a reactive electrochemical membrane (REM) system in which a porous Magnéli phase titanium suboxide ceramic membrane served simultaneously as the anode and the membrane. Near complete removal (98.30 ± 0.51%) of PFOS was achieved under a cross-flow filtration mode at the anodic potential of 3.15 V vs standard hydrogen electrode (SHE). PFOS removal efficiency during the REM operation is much greater than that of the batch operation mode under the same anodic potential. A systematic reaction rate analysis in combination with electrochemical characterizations quantitatively elucidated the enhancement of PFOS removal in REM operation in relation to the increased electroactive surface area and improved interphase mass transfer. PFOS appeared to undergo rapid mineralization to CO2 and F-, with only trace levels of short-chain perfluorocarboxylic acids (PFCAs, C4-C8) identified as intermediate products. Density functional theory (DFT) simulations and experiments involving free radical scavengers indicated that PFOS degradation was initiated by direct electron transfer (DET) on anode to yield PFOS free radicals (PFOS•), which further react with hydroxyl radicals that were generated by water oxidation and adsorbed on the anode surface (•OHads). The attack of •OHads is essential to PFOS degradation, because, otherwise, PFOS• may react with water and revert to PFOS.
Collapse
Affiliation(s)
- Huanhuan Shi
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment , Nanjing University , Nanjing 210023 , P.R. China
- College of Agricultural and Environmental Sciences, Department of Crop and Soil Sciences , University of Georgia , Griffin , Georgia 30223 , United States
| | - Yaye Wang
- College of Agricultural and Environmental Sciences, Department of Crop and Soil Sciences , University of Georgia , Griffin , Georgia 30223 , United States
| | - Chenguang Li
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment , Nanjing University , Nanjing 210023 , P.R. China
- College of Agricultural and Environmental Sciences, Department of Crop and Soil Sciences , University of Georgia , Griffin , Georgia 30223 , United States
| | - Randall Pierce
- College of Agricultural and Environmental Sciences, Department of Crop and Soil Sciences , University of Georgia , Griffin , Georgia 30223 , United States
| | - Shixiang Gao
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment , Nanjing University , Nanjing 210023 , P.R. China
| | - Qingguo Huang
- College of Agricultural and Environmental Sciences, Department of Crop and Soil Sciences , University of Georgia , Griffin , Georgia 30223 , United States
| |
Collapse
|
8
|
Chaplin BP. The Prospect of Electrochemical Technologies Advancing Worldwide Water Treatment. Acc Chem Res 2019; 52:596-604. [PMID: 30768240 DOI: 10.1021/acs.accounts.8b00611] [Citation(s) in RCA: 159] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Growing worldwide population, climate change, and decaying water infrastructure have all contributed to a need for a better water treatment and conveyance model. Distributed water treatment is one possible solution, which relies on the local treatment of water from various sources to a degree dependent on its intended use and, finally, distribution to local consumers. This distributed, fit-for-purpose water treatment strategy requires the development of new modular point-of-use and point-of-entry technologies to bring this idea to fruition. Electrochemical technologies have the potential to contribute to this vision, as they have several advantages over established water treatment technologies. Electrochemical technologies have the ability to simultaneously treat multiple classes of contaminants through the in situ production of chemicals at the electrode surfaces with low power and energy demands, thereby allowing the construction of compact, modular water treatment technologies that require little maintenance and can be easily automated or remotely controlled. In addition, these technologies offer the opportunity for energy recovery through production of fuels at the cathode, which can further reduce their energy footprint. In spite of these advantages, there are several challenges that need to be overcome before widespread adoption of electrochemical water treatment technologies is possible. This Account will focus primarily on destructive electrolytic technologies that allow for removal of water contaminants without the need for residual treatment or management. Most important to the development of destructive electrochemical technologies is a need to fabricate nontoxic, inexpensive, high-surface-area electrodes that have a long operational life and can operate without the production of unwanted toxic byproducts. Overcoming these barriers will decrease the capital costs of water treatment and allow the development of the point-of-use and point-of-entry technologies that are necessary to promote more sustainable water treatment solutions. However, to accomplish this goal, a reprioritization of research is needed. Current research is primarily focused on investigating individual contaminant transformation pathways and mechanisms. While this research is important for understanding these technologies, additional work is needed in developing inexpensive, high-surface-area, stable electrode materials, minimizing toxic byproduct formation, and determining the life cycle and technoeconomic analyses necessary for commercialization. Better understanding of these critical research areas will allow for strategic deployment of electrochemical water treatment technologies to promote a more sustainable future.
Collapse
Affiliation(s)
- Brian P. Chaplin
- Department of Chemical Engineering, University of Illinois at Chicago, 810 S. Clinton Street, Chicago, Illinois 60607, United States
| |
Collapse
|
9
|
Henke AH, Saunders TP, Pedersen JA, Hamers RJ. Enhancing Electrochemical Efficiency of Hydroxyl Radical Formation on Diamond Electrodes by Functionalization with Hydrophobic Monolayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:2153-2163. [PMID: 30550713 DOI: 10.1021/acs.langmuir.8b04030] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Electrochemical formation of high-energy species such as hydroxyl radicals in aqueous media is inefficient because oxidation of H2O to form O2 is a more thermodynamically favorable reaction. Boron-doped diamond (BDD) is widely used as an electrode material for generating •OH radicals because it has a very large kinetic overpotential for O2 production, thus increasing electrochemical efficiency for •OH production. Yet, the underlying mechanisms of O2 and •OH production at diamond electrodes are not well understood. We demonstrate that boron-doped diamond surfaces functionalized with hydrophobic, polyfluorinated molecular ligands (PF-BDD) have significantly higher electrochemical efficiency for •OH production compared with hydrogen-terminated (H-BDD), oxidized (O-BDD), or poly(ethylene ether)-functionalized (E-BDD) boron-doped diamond samples. Our measurements show that •OH production is nearly independent of surface functionalization and pH (pH = 7.4 vs 9.2), indicating that •OH is produced by oxidation of H2O in an outer-sphere electron-transfer process. In contrast, the total electrochemical current, which primarily produces O2, differs strongly between samples with different surface functionalizations, indicating an inner-sphere electron-transfer process. X-ray photoelectron spectroscopy measurements show that although both H-BDD and PF-BDD electrodes are oxidized over time, PF-BDD showed longer stability (≈24 h of use) than H-BDD. This work demonstrates that increasing surface hydrophobicity using perfluorinated ligands selectively inhibits inner-sphere oxidation to O2 and therefore provides a pathway to increased efficiency for formation of •OH via an outer-sphere process. The use of hydrophobic electrodes may be a general approach to increasing selectivity toward outer-sphere electron-transfer processes in aqueous media.
Collapse
|
10
|
Yamaguchi C, Natsui K, Iizuka S, Tateyama Y, Einaga Y. Electrochemical properties of fluorinated boron-doped diamond electrodes via fluorine-containing plasma treatment. Phys Chem Chem Phys 2019; 21:13788-13794. [DOI: 10.1039/c8cp07402j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
It was systematically demonstrated that the electrochemical properties of fluorinated boron-doped diamond electrodes could be attributed to interfacial band bending.
Collapse
Affiliation(s)
- Chizu Yamaguchi
- Department of Chemistry
- Keio University
- Yokohama 223-8522
- Japan
| | - Keisuke Natsui
- Department of Chemistry
- Keio University
- Yokohama 223-8522
- Japan
| | - Shota Iizuka
- Center for Green Research on Energy and Environmental Materials (GREEN) and International Center for Materials Nanoarchitectonics (MANA)
- National Institute of Materials Science (NIMS)
- Tsukuba
- Japan
| | - Yoshitaka Tateyama
- Center for Green Research on Energy and Environmental Materials (GREEN) and International Center for Materials Nanoarchitectonics (MANA)
- National Institute of Materials Science (NIMS)
- Tsukuba
- Japan
| | - Yasuaki Einaga
- Department of Chemistry
- Keio University
- Yokohama 223-8522
- Japan
- ACCEL
| |
Collapse
|
11
|
Gayen P, Chen C, Abiade JT, Chaplin BP. Electrochemical Oxidation of Atrazine and Clothianidin on Bi-doped SnO 2-Ti nO 2 n-1 Electrocatalytic Reactive Electrochemical Membranes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:12675-12684. [PMID: 30239187 DOI: 10.1021/acs.est.8b04103] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
This research focused on improving mineralization rates during the advanced electrochemical oxidation treatment of agricultural water contaminants. For the first time, bismuth-doped tin oxide (BDTO) catalysts were deposited on Magnéli phase (Ti nO2 n-1, n = 4-6) reactive electrochemical membranes (REMs). Terephthalic acid (TA) was used as a OH• probe, whereas atrazine (ATZ) and clothianidin (CDN) were chosen as model agricultural water contaminants. The BDTO-deposited REMs (REM/BDTO) showed higher compound removal than the REM, due to enhanced OH• production. At 3.5 V/SHE, complete mineralization of TA, ATZ, and CDN was achieved for the REM/BDTO upon a single pass in the reactor (residence time ∼3.6 s). Energy consumption for REM/BDTO was as much as 31-fold lower than the REM, with minimal values per log removal of <0.53 kWh m-3 for TA (3.5 V/SHE), <0.42 kWh m-3 for ATZ (3.0 V/SHE), and 0.83 kWh m-3 for CDN (3.0 V/SHE). Density functional theory simulations provided potential dependent activation energy profiles for ATZ, CDN, and various oxidation products. Efficient mass transfer and a reaction mechanism involving direct electron transfer and reaction with OH• were responsible for the rapid and complete mineralization of ATZ and CDN at very short residence times.
Collapse
Affiliation(s)
- Pralay Gayen
- Department of Chemical Engineering , University of Illinois at Chicago , 810 S. Clinton St. , Chicago , Illinois 60607 , United States
| | - Chen Chen
- Department of Mechanical and Industrial Engineering , University of Illinois at Chicago , 842 W. Taylor St. , Chicago , Illinois 60607 , United States
| | - Jeremiah T Abiade
- Department of Mechanical and Industrial Engineering , University of Illinois at Chicago , 842 W. Taylor St. , Chicago , Illinois 60607 , United States
| | - Brian P Chaplin
- Department of Chemical Engineering , University of Illinois at Chicago , 810 S. Clinton St. , Chicago , Illinois 60607 , United States
| |
Collapse
|
12
|
Cobb SJ, Ayres ZJ, Macpherson JV. Boron Doped Diamond: A Designer Electrode Material for the Twenty-First Century. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2018; 11:463-484. [PMID: 29579405 DOI: 10.1146/annurev-anchem-061417-010107] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Boron doped diamond (BDD) is continuing to find numerous electrochemical applications across a diverse range of fields due to its unique properties, such as having a wide solvent window, low capacitance, and reduced resistance to fouling and mechanical robustness. In this review, we showcase the latest developments in the BDD electrochemical field. These are driven by a greater understanding of the relationship between material (surface) properties, required electrochemical performance, and improvements in synthetic growth/fabrication procedures, including material postprocessing. This has resulted in the production of BDD structures with the required function and geometry for the application of interest, making BDD a truly designer material. Current research areas range from in vivo bioelectrochemistry and neuronal/retinal stimulation to improved electroanalysis, advanced oxidation processes, supercapacitors, and the development of hybrid electrochemical-spectroscopic- and temperature-based technology aimed at enhancing electrochemical performance and understanding.
Collapse
Affiliation(s)
- Samuel J Cobb
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom; ,
- Centre for Doctoral Training in Diamond Science and Technology, University of Warwick, Coventry CV4 7AL, United Kingdom;
| | - Zoe J Ayres
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom; ,
| | - Julie V Macpherson
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom; ,
- Centre for Doctoral Training in Diamond Science and Technology, University of Warwick, Coventry CV4 7AL, United Kingdom;
| |
Collapse
|