1
|
Kawashima K, Márquez RA, Smith LA, Vaidyula RR, Carrasco-Jaim OA, Wang Z, Son YJ, Cao CL, Mullins CB. A Review of Transition Metal Boride, Carbide, Pnictide, and Chalcogenide Water Oxidation Electrocatalysts. Chem Rev 2023. [PMID: 37967475 DOI: 10.1021/acs.chemrev.3c00005] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Transition metal borides, carbides, pnictides, and chalcogenides (X-ides) have emerged as a class of materials for the oxygen evolution reaction (OER). Because of their high earth abundance, electrical conductivity, and OER performance, these electrocatalysts have the potential to enable the practical application of green energy conversion and storage. Under OER potentials, X-ide electrocatalysts demonstrate various degrees of oxidation resistance due to their differences in chemical composition, crystal structure, and morphology. Depending on their resistance to oxidation, these catalysts will fall into one of three post-OER electrocatalyst categories: fully oxidized oxide/(oxy)hydroxide material, partially oxidized core@shell structure, and unoxidized material. In the past ten years (from 2013 to 2022), over 890 peer-reviewed research papers have focused on X-ide OER electrocatalysts. Previous review papers have provided limited conclusions and have omitted the significance of "catalytically active sites/species/phases" in X-ide OER electrocatalysts. In this review, a comprehensive summary of (i) experimental parameters (e.g., substrates, electrocatalyst loading amounts, geometric overpotentials, Tafel slopes, etc.) and (ii) electrochemical stability tests and post-analyses in X-ide OER electrocatalyst publications from 2013 to 2022 is provided. Both mono and polyanion X-ides are discussed and classified with respect to their material transformation during the OER. Special analytical techniques employed to study X-ide reconstruction are also evaluated. Additionally, future challenges and questions yet to be answered are provided in each section. This review aims to provide researchers with a toolkit to approach X-ide OER electrocatalyst research and to showcase necessary avenues for future investigation.
Collapse
Affiliation(s)
- Kenta Kawashima
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Raúl A Márquez
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Lettie A Smith
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Rinish Reddy Vaidyula
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Omar A Carrasco-Jaim
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Ziqing Wang
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Yoon Jun Son
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Chi L Cao
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - C Buddie Mullins
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Center for Electrochemistry, The University of Texas at Austin, Austin, Texas 78712, United States
- H2@UT, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
2
|
Lin YC, Aulia S, Yeh MH, Hsiao LY, Tarigan AM, Ho KC. Graphene quantum dots induced defect-rich NiFe Prussian blue analogue as an efficient electrocatalyst for oxygen evolution reaction. J Colloid Interface Sci 2023; 648:193-202. [PMID: 37301144 DOI: 10.1016/j.jcis.2023.05.187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023]
Abstract
High energy resource demand has led to the rapid development of hydrogen as a clean fuel through electrolytic water splitting. The exploration of high-performance and cost-effective electrocatalysts for water splitting is a challenging task to obtain renewable and clean energy. However, the sluggish kinetics of oxygen evolution reaction (OER) greatly hindered its application. Herein, a novel oxygen plasma-treated graphene quantum dots embedded Ni-Fe Prussian blue analogue (O-GQD-NiFe PBA) is proposed as a highly active electrocatalysts for OER. Furthermore, the defect induced by GQD can provide an abundant lattice mismatch in the matrix of NiFe PBA, which further facilitates faster electron transport and kinetic performance. After optimization, the as-assembled O-GQD-NiFe PBA exhibits excellent electrocatalytic performance towards OER with a low overpotential of 259 mV for reaching a current density of 10 mA cm-2 and impressive long-term stability for 100 h in an alkaline solution. This work broadens the scope of metal-organic frameworks (MOF) and high-functioning carbon composite as an active material for energy conversion systems.
Collapse
Affiliation(s)
- Yin-Chen Lin
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Sofiannisa Aulia
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Min-Hsin Yeh
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan.
| | - Li-Yin Hsiao
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Angelina Melanita Tarigan
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Kuo-Chuan Ho
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan; Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10617, Taiwan; Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan.
| |
Collapse
|
3
|
A Review of Enhanced Electrocatalytic Composites Hydrogen/Oxygen Evolution Based on Quantum Dot. J IND ENG CHEM 2023. [DOI: 10.1016/j.jiec.2023.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
4
|
Shen L, Tang S, Yu L, Huang Q, Zhou T, Yang S, Yu H, Xiong H, Xu M, Zhong X, Zhang L. Efficient ternary CeFeCoP bifunctional electrocatalyst for overall water splitting. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
5
|
Ogundipe TO, Shen L, YanShi, Lu Z, Yan C. Recent Advances on Bimetallic Transition Metal Phosphides for Enhanced Hydrogen Evolution Reaction. ChemistrySelect 2022. [DOI: 10.1002/slct.202200291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Taiwo Oladapo Ogundipe
- Hydrogen Production and Utilization Group Guangzhou Institute of Energy Conversion Chinese Academy of Sciences Guangzhou 510640 P.R. China
- CAS Key Lab of Renewable Energy Guangdong Key Lab of New and Renewable Energy Research and Development Guangzhou 510640 P.R. China
- University of Chinese Academy of Sciences Beijing 100039 P.R. China
| | - Lisha Shen
- Hydrogen Production and Utilization Group Guangzhou Institute of Energy Conversion Chinese Academy of Sciences Guangzhou 510640 P.R. China
- CAS Key Lab of Renewable Energy Guangdong Key Lab of New and Renewable Energy Research and Development Guangzhou 510640 P.R. China
| | - YanShi
- Hydrogen Production and Utilization Group Guangzhou Institute of Energy Conversion Chinese Academy of Sciences Guangzhou 510640 P.R. China
- CAS Key Lab of Renewable Energy Guangdong Key Lab of New and Renewable Energy Research and Development Guangzhou 510640 P.R. China
| | - Zhuoxin Lu
- Hydrogen Production and Utilization Group Guangzhou Institute of Energy Conversion Chinese Academy of Sciences Guangzhou 510640 P.R. China
- CAS Key Lab of Renewable Energy Guangdong Key Lab of New and Renewable Energy Research and Development Guangzhou 510640 P.R. China
| | - Changfeng Yan
- Hydrogen Production and Utilization Group Guangzhou Institute of Energy Conversion Chinese Academy of Sciences Guangzhou 510640 P.R. China
- CAS Key Lab of Renewable Energy Guangdong Key Lab of New and Renewable Energy Research and Development Guangzhou 510640 P.R. China
| |
Collapse
|
6
|
Cheng R, Xiang Y, Guo R, Li L, Zou G, Fu C, Hou H, Ji X. Structure and Interface Modification of Carbon Dots for Electrochemical Energy Application. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2102091. [PMID: 34318998 DOI: 10.1002/smll.202102091] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Indexed: 05/15/2023]
Abstract
Carbon dots (CDs) as new nanomaterials have attracted much attention in recent years due to their unique characteristics. Notably, structure and interface modification (carbon core, edge, defects, and functional groups) of CDs have been considered as valid methods to regulate their properties, which contain electron transfer effect, electrochemical activity, fluorescence luminescent, and so on. Additionally, CDs with ultrasmall size, excellent dispersibility, high specific surface area, and abundant functional groups can guarantee positive and extraordinary effects in electrical energy storage and conversion. Therefore, CDs are used to couple with other materials by constructing a special interface structure to enhance their properties. Here, diverse structural and interfacial modifications of CDs with various heteroatoms and synergy effects are systematically analyzed. And not only several main syntheses of CDs-based composites (CDs/X) are summarized but also the merit and demerit of CDs/X in electrical energy storage are discussed. Finally, the applications of CDs/X in energy storage devices (supercapacitors, batteries) and electrocatalysts for practical applications are discussed. This review mainly provides a comprehensive summary and future prospect for synthesis, modification, and electrochemical applications of CDs.
Collapse
Affiliation(s)
- Ruiqi Cheng
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yinger Xiang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Ruiting Guo
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Lin Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Guoqiang Zou
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Chaopeng Fu
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hongshuai Hou
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Xiaobo Ji
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| |
Collapse
|
7
|
Li S, Sun J, Guan J. Strategies to improve electrocatalytic and photocatalytic performance of two-dimensional materials for hydrogen evolution reaction. CHINESE JOURNAL OF CATALYSIS 2021. [DOI: 10.1016/s1872-2067(20)63693-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
8
|
Chen W, Wei W, Wang K, Zhang N, Chen G, Hu Y, Ostrikov KK. Plasma-engineered bifunctional cobalt-metal organic framework derivatives for high-performance complete water electrolysis. NANOSCALE 2021; 13:6201-6211. [PMID: 33885606 DOI: 10.1039/d1nr00317h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Metal-organic framework (MOF) derivatives are among the most promising catalysts for the hydrogen evolution reaction (HER) for clean hydrogen energy production. Herein, we report the in situ synthesized MOF-derived CoPO hollow polyhedron nanostructures by simultaneous high temperature annealing and Ar-N2 radio frequency plasma treatment in the presence of a P precursor and subsequent oxygen incorporation from open air at lower temperature. The optimum Ar-N2 gas flow rates are used to precisely tune the P/O ratio, cut Co bonds within the MOFs and reconnect Co with P. Consequently, both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) performance are enhanced. Meanwhile, the filling of P elements can effectively change the electronic structure around the catalyst to ensure the uniform distribution of catalytically active sites. The resultant CoPO hollow nanocages with large specific surface areas show excellent bifunctional electrocatalytic activity towards both HER and OER with a low overpotential of 105 and 275 mV and a small Tafel slope of 48 and 52 mV dec-1, respectively. Our results open a new avenue for precise plasma-assisted engineering of MOF-derived hybrid hetero-structured electrocatalysts with rich oxygen vacancies and P dopants to simultaneously boost both half reactions in water electrolysis.
Collapse
Affiliation(s)
- Wenxia Chen
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan D&A Engineering Center of Advanced Battery Materials, Shangqiu Normal University, Shangqiu 476000, China.
| | | | | | | | | | | | | |
Collapse
|
9
|
Shi J, Hou C, Li L, Xu W, Fu Y, Huang Y, Xiong Z, Cheng W. Cobalt‐Molybdenum Bimetal Phosphides Encapsulated in Carbon as Efficient and Durable Electrocatalyst for Hydrogen Evolution. ChemistrySelect 2020. [DOI: 10.1002/slct.202003509] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jiazi Shi
- Beijing Key Lab of Printing & Packaging Materials and Technology Beijing Institute of Graphic Communication Beijing 102600 P.R. China
| | - Cunxia Hou
- Beijing Key Lab of Printing & Packaging Materials and Technology Beijing Institute of Graphic Communication Beijing 102600 P.R. China
| | - Le Li
- Beijing Key Lab of Printing & Packaging Materials and Technology Beijing Institute of Graphic Communication Beijing 102600 P.R. China
| | - Wencai Xu
- Beijing Key Lab of Printing & Packaging Materials and Technology Beijing Institute of Graphic Communication Beijing 102600 P.R. China
| | - Yabo Fu
- Beijing Key Lab of Printing & Packaging Materials and Technology Beijing Institute of Graphic Communication Beijing 102600 P.R. China
| | - Yanzhi Huang
- Beijing Key Lab of Printing & Packaging Materials and Technology Beijing Institute of Graphic Communication Beijing 102600 P.R. China
| | - Ziyi Xiong
- Beijing Key Lab of Printing & Packaging Materials and Technology Beijing Institute of Graphic Communication Beijing 102600 P.R. China
| | - Weijia Cheng
- Beijing Key Lab of Printing & Packaging Materials and Technology Beijing Institute of Graphic Communication Beijing 102600 P.R. China
| |
Collapse
|
10
|
Feng T, Tao S, Yue D, Zeng Q, Chen W, Yang B. Recent Advances in Energy Conversion Applications of Carbon Dots: From Optoelectronic Devices to Electrocatalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2001295. [PMID: 32529773 DOI: 10.1002/smll.202001295] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/06/2020] [Indexed: 05/19/2023]
Abstract
Exploitation and utilization of sustainable energy sources has increasingly become the common theme of global social development, which has promoted tremendous development of energy conversion devices/technologies. Owing to excellent and unique optical/electrical properties, carbon dots (CDs) have attracted extensive research interest for numerous energy conversion applications. Strong absorption, downconversion photoluminescence, electron acceptor/donor characteristics, and excellent electron conductivity endow CDs with enormous potential for applications in optoelectronic devices. Furthermore, excellent electron transfers/transport capacities and easily manipulable structural defects of CDs offer distinct advantages for electrocatalytic applications. Recent advances in CD-based energy conversion applications, including optoelectronic devices such as light-emitting diodes and solar cells, and electrocatalytic reactions including the hydrogen evolution reaction, oxygen evolution reaction, oxygen reduction reaction, and carbon dioxide reduction reaction, are summarized. Finally, current challenges and future prospects for CD-based energy conversion applications are proposed, highlighting the importance of controllable structural design and modifications.
Collapse
Affiliation(s)
- Tanglue Feng
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Songyuan Tao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Da Yue
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Qingsen Zeng
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Weihua Chen
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, University of Science and Technology of China, Changchun, 130022, China
| | - Bai Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| |
Collapse
|
11
|
Ali A, Shen PK. Recent Progress in Graphene-Based Nanostructured Electrocatalysts for Overall Water Splitting. ELECTROCHEM ENERGY R 2020. [DOI: 10.1007/s41918-020-00066-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
12
|
Pang L, Barras A, Zhang Y, Amin MA, Addad A, Szunerits S, Boukherroub R. CoO Promoted the Catalytic Activity of Nitrogen-Doped MoS 2 Supported on Carbon Fibers for Overall Water Splitting. ACS APPLIED MATERIALS & INTERFACES 2019; 11:31889-31898. [PMID: 31402641 DOI: 10.1021/acsami.9b09112] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Non-noble metal electrocatalysts have recently witnessed increasing attention for the hydrogen evolution reaction (HER) in acidic electrolytes. However, in alkaline electrolytes, the slow kinetics of water splitting leads to poor HER activities. In this study, we describe the preparation of a hybrid material consisting of cobalt oxide (CoO) decorated on nitrogen-doped MoS2 supported on carbon fibers (CoO/N-MoS2/CF) through a two-step process combining hydrothermal technique and electrochemical deposition. The electrochemical properties of the CoO/N-MoS2/CF electrocatalyst were assessed in alkaline medium. The results revealed that CoO/N-MoS2/CF exhibits excellent bifunctional electrocatalytic activity for the HER and oxygen evolution reaction (OER). The CoO/N-MoS2/CF delivered a current density of 10 mA/cm2 at an overpotential of only 78 mV for the HER and a current density of 50 mA/cm2 at 458 mV for the OER in 1.0 M KOH, performing better than many noble metal-free electrocatalysts. The enhanced catalytic properties of the hybrid nanomaterial could be ascribed to its hierarchical structure, and increased number of active sites, as well as the synergetic cooperation between its different components. Additionally, the CoO/N-MoS2/CF nanomaterial was investigated as both cathode and anode for full water splitting in 1.0 M KOH. The water electrolyzer delivered a maximum current density of 53 mA cm-2 at an applied cell voltage of 1.5 V, which is very favorable for overall water-splitting applications.
Collapse
Affiliation(s)
- Liuqing Pang
- Université Lille, CNRS, Central Lille, ISEN, Université Valenciennes, UMR 8520, IEMN , F-59000 Lille , France
| | - Alexandre Barras
- Université Lille, CNRS, Central Lille, ISEN, Université Valenciennes, UMR 8520, IEMN , F-59000 Lille , France
| | - Yuan Zhang
- Université Lille, CNRS, Central Lille, ISEN, Université Valenciennes, UMR 8520, IEMN , F-59000 Lille , France
| | - Mohammed A Amin
- Materials and Energy Group, Department of Chemistry, Faculty of Science , Taif University , 888 Hawiya , 26571 Taif , Saudi Arabia
- Department of Chemistry, Faculty of Science , Ain Shams University , Abbassia, 11566 Cairo , Egypt
| | - Ahmed Addad
- Université Lille, CNRS, UMR 8207-UMET , F-59000 Lille , France
| | - Sabine Szunerits
- Université Lille, CNRS, Central Lille, ISEN, Université Valenciennes, UMR 8520, IEMN , F-59000 Lille , France
| | - Rabah Boukherroub
- Université Lille, CNRS, Central Lille, ISEN, Université Valenciennes, UMR 8520, IEMN , F-59000 Lille , France
| |
Collapse
|
13
|
Chen Z, Hou J, Liu Q, Zhou Q, Liu H, Xu C. Graphene quantum dots modified nanoporous SiAl composite as an advanced anode for lithium storage. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.06.071] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Decorating MoS2 and CoSe2 nanostructures on 1D-CdS nanorods for boosting photocatalytic hydrogen evolution rate. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111164] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
15
|
Yang M, Feng T, Chen Y, Zhao X, Yang B. Ionic‐State Cobalt and Iron Co‐doped Carbon Dots with Superior Electrocatalytic Activity for the Oxygen Evolution Reaction. ChemElectroChem 2019. [DOI: 10.1002/celc.201900423] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Mingxi Yang
- State Key Laboratory of Supramolecular Structure and Materials College of ChemistryJilin University Changchun 130012 P. R. China
| | - Tanglue Feng
- State Key Laboratory of Supramolecular Structure and Materials College of ChemistryJilin University Changchun 130012 P. R. China
| | - Yixin Chen
- State Key Laboratory of Supramolecular Structure and Materials College of ChemistryJilin University Changchun 130012 P. R. China
| | - Xiaohuan Zhao
- State Key Laboratory of Supramolecular Structure and Materials College of ChemistryJilin University Changchun 130012 P. R. China
| | - Bai Yang
- State Key Laboratory of Supramolecular Structure and Materials College of ChemistryJilin University Changchun 130012 P. R. China
| |
Collapse
|
16
|
Li W, Xiong D, Gao X, Liu L. The oxygen evolution reaction enabled by transition metal phosphide and chalcogenide pre-catalysts with dynamic changes. Chem Commun (Camb) 2019; 55:8744-8763. [DOI: 10.1039/c9cc02845e] [Citation(s) in RCA: 167] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Dynamic morphological, structural and compositional changes will occur when transition metal phosphides and chalcogenides are used to catalyze the oxygen evolution reaction, which can substantially enhance their electrocatalytic performance.
Collapse
Affiliation(s)
- Wei Li
- International Iberian Nanotechnology Laboratory (INL)
- 4715-330 Braga
- Portugal
- Department of Mechanical and Aerospace Engineering
- West Virginia University
| | - Dehua Xiong
- International Iberian Nanotechnology Laboratory (INL)
- 4715-330 Braga
- Portugal
- State Key Laboratory of Silicate Materials for Architectures
- Wuhan University of Technology
| | - Xuefei Gao
- Department of Mechanical and Aerospace Engineering
- West Virginia University
- Morgantown
- USA
| | - Lifeng Liu
- International Iberian Nanotechnology Laboratory (INL)
- 4715-330 Braga
- Portugal
| |
Collapse
|
17
|
Du Z, Jannatun N, Yu D, Ren J, Huang W, Lu X. C 60-Decorated nickel-cobalt phosphide as an efficient and robust electrocatalyst for hydrogen evolution reaction. NANOSCALE 2018; 10:23070-23079. [PMID: 30511713 DOI: 10.1039/c8nr07472k] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
High-activity electrocatalysts play a crucial role in energy conversion through splitting water to produce hydrogen. Here we report the synthesis of a bimetallic phosphide of Ni-Co-P coupled with C60 molecules which acts as an electrocatalyst for the hydrogen evolution reaction (HER). Powder X-ray diffraction (XRD) and transmission electron microscopy (TEM) characterization reveals that the synthesized C60-decorated Ni-Co-P nanoparticles have an average diameter of ∼4 nm with rich structural defects. Electrochemical tests show that the as-synthesized C60-decorated Ni-Co-P catalyst with a C60-content of 3.93 wt% presents a low onset overpotential of 23.8 mV, a small Tafel slope value of 48 mV dec-1, and excellent hydrogen-evolution stability with a slight increase of its η10 from 97 mV to 102 mV after 500 cycles. Additionally, electrochemical impedance spectroscopy (EIS) confirms that the C60-decorated Ni-Co-P electrode possesses faster charge-transfer kinetics and hydrogen-adsorption kinetics than the C60-free Ni-Co-P electrode during the HER process. The synthesis of a C60-decorated composite is feasible and the composite can be used as an efficient and robust Pt-free catalyst.
Collapse
Affiliation(s)
- Zhiling Du
- State Key Laboratory of Materials Processing and Die & Mould Technology School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | | | | | | | | | | |
Collapse
|
18
|
Zhao C, Zhang Y, Chen L, Yan C, Zhang P, Ang JM, Lu X. Self-Assembly-Assisted Facile Synthesis of MoS 2-Based Hybrid Tubular Nanostructures for Efficient Bifunctional Electrocatalysis. ACS APPLIED MATERIALS & INTERFACES 2018; 10:23731-23739. [PMID: 29944337 DOI: 10.1021/acsami.8b04140] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this work, MoS2-based hybrid tubular nanostructures are facilely synthesized via a self-assembly-assisted process and evaluated as a bifunctional electrocatalyst for hydrogen evolution reactions (HERs) and oxygen reduction reactions (ORRs). By simply mixing the reactants under ambient conditions, (NH4)2MoS4/polydopamine (PDA) hybrid nanospheres are formed. The protonated dopamine is linked to tetrahedral [MoS4]2- via weak N-H···S and O-H···S interactions, causing the PDA nanospheres merging together and forming nanorods under stirring-induced shear force. Moreover, the oxidative polymerization of dopamine proceeds on the surface of the nanorods, whereas it is prohibited inside the nanorods owing to lack of oxygen, leading to outward diffusion of dopamine and hence cavitation. After annealing, the tubular morphology is perfectly retained, while ultrafine MoS2 monolayers are formed due to the confinement of the framework. Benefiting from these unique structural features, the MoS2/C hybrid nanotubes possess abundant active sites and high surface area, as well as boost electronic and ionic transport, remarkably enhancing their electrocatalytic activities. The onset and half-wave potentials are 0.91 and 0.82 V, respectively, for ORR, close to those of Pt/C. Moreover, low onset potential and small Tafel slope are also observed for HER, demonstrating the potential of the hybrid nanotubes as a promising non-noble metal bifunctional electrocatalyst.
Collapse
Affiliation(s)
- Chenyang Zhao
- College of Chemistry and Environmental Engineering , Shenzhen University , 1066 Xueyuan Avenue , Nanshan District, Shenzhen 518071 , PR China
- School of Materials Science and Engineering , Nanyang Technological University , 50 Nanyang Avenue , 639798 , Singapore
| | - Youfang Zhang
- School of Materials Science and Engineering , Nanyang Technological University , 50 Nanyang Avenue , 639798 , Singapore
| | - Lunfeng Chen
- College of Chemistry and Environmental Engineering , Shenzhen University , 1066 Xueyuan Avenue , Nanshan District, Shenzhen 518071 , PR China
| | - Chaoyi Yan
- College of Chemistry and Environmental Engineering , Shenzhen University , 1066 Xueyuan Avenue , Nanshan District, Shenzhen 518071 , PR China
| | - Peixin Zhang
- College of Chemistry and Environmental Engineering , Shenzhen University , 1066 Xueyuan Avenue , Nanshan District, Shenzhen 518071 , PR China
| | - Jia Ming Ang
- School of Materials Science and Engineering , Nanyang Technological University , 50 Nanyang Avenue , 639798 , Singapore
| | - Xuehong Lu
- School of Materials Science and Engineering , Nanyang Technological University , 50 Nanyang Avenue , 639798 , Singapore
| |
Collapse
|
19
|
Datta A, Singh RK, Teller H, Rozenfeld S, Cahan R, Schechter A. Electrodeposited Ternary Fe-Mo-P as an Efficient Electrode Material for Bifunctional Water Splitting in Neutral pH. Electrocatalysis (N Y) 2018. [DOI: 10.1007/s12678-018-0476-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
20
|
Liu J, Zhu D, Zheng Y, Vasileff A, Qiao SZ. Self-Supported Earth-Abundant Nanoarrays as Efficient and Robust Electrocatalysts for Energy-Related Reactions. ACS Catal 2018. [DOI: 10.1021/acscatal.8b01715] [Citation(s) in RCA: 261] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Jinlong Liu
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Dongdong Zhu
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Yao Zheng
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Anthony Vasileff
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Shi-Zhang Qiao
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Australia 5005, Australia
- School of Materials Science and Engineering, Tianjin University, Tianjin 300072, P.R. China
| |
Collapse
|
21
|
Wang XL, Dong LZ, Qiao M, Tang YJ, Liu J, Li Y, Li SL, Su JX, Lan YQ. Exploring the Performance Improvement of the Oxygen Evolution Reaction in a Stable Bimetal-Organic Framework System. Angew Chem Int Ed Engl 2018; 57:9660-9664. [DOI: 10.1002/anie.201803587] [Citation(s) in RCA: 254] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Indexed: 11/07/2022]
Affiliation(s)
- Xiao-Li Wang
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials; Jiangsu Key Laboratory of New Power Batteries; School of Chemistry and Materials Science; Nanjing Normal University; No. 1, Wenyuan Road Nanjing 210023 China
| | - Long-Zhang Dong
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials; Jiangsu Key Laboratory of New Power Batteries; School of Chemistry and Materials Science; Nanjing Normal University; No. 1, Wenyuan Road Nanjing 210023 China
| | - Man Qiao
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials; Jiangsu Key Laboratory of New Power Batteries; School of Chemistry and Materials Science; Nanjing Normal University; No. 1, Wenyuan Road Nanjing 210023 China
| | - Yu-Jia Tang
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials; Jiangsu Key Laboratory of New Power Batteries; School of Chemistry and Materials Science; Nanjing Normal University; No. 1, Wenyuan Road Nanjing 210023 China
| | - Jiang Liu
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials; Jiangsu Key Laboratory of New Power Batteries; School of Chemistry and Materials Science; Nanjing Normal University; No. 1, Wenyuan Road Nanjing 210023 China
| | - Yafei Li
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials; Jiangsu Key Laboratory of New Power Batteries; School of Chemistry and Materials Science; Nanjing Normal University; No. 1, Wenyuan Road Nanjing 210023 China
| | - Shun-Li Li
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials; Jiangsu Key Laboratory of New Power Batteries; School of Chemistry and Materials Science; Nanjing Normal University; No. 1, Wenyuan Road Nanjing 210023 China
| | - Jia-Xin Su
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials; Jiangsu Key Laboratory of New Power Batteries; School of Chemistry and Materials Science; Nanjing Normal University; No. 1, Wenyuan Road Nanjing 210023 China
| | - Ya-Qian Lan
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials; Jiangsu Key Laboratory of New Power Batteries; School of Chemistry and Materials Science; Nanjing Normal University; No. 1, Wenyuan Road Nanjing 210023 China
| |
Collapse
|
22
|
Wang XL, Dong LZ, Qiao M, Tang YJ, Liu J, Li Y, Li SL, Su JX, Lan YQ. Exploring the Performance Improvement of the Oxygen Evolution Reaction in a Stable Bimetal-Organic Framework System. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201803587] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Xiao-Li Wang
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials; Jiangsu Key Laboratory of New Power Batteries; School of Chemistry and Materials Science; Nanjing Normal University; No. 1, Wenyuan Road Nanjing 210023 China
| | - Long-Zhang Dong
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials; Jiangsu Key Laboratory of New Power Batteries; School of Chemistry and Materials Science; Nanjing Normal University; No. 1, Wenyuan Road Nanjing 210023 China
| | - Man Qiao
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials; Jiangsu Key Laboratory of New Power Batteries; School of Chemistry and Materials Science; Nanjing Normal University; No. 1, Wenyuan Road Nanjing 210023 China
| | - Yu-Jia Tang
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials; Jiangsu Key Laboratory of New Power Batteries; School of Chemistry and Materials Science; Nanjing Normal University; No. 1, Wenyuan Road Nanjing 210023 China
| | - Jiang Liu
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials; Jiangsu Key Laboratory of New Power Batteries; School of Chemistry and Materials Science; Nanjing Normal University; No. 1, Wenyuan Road Nanjing 210023 China
| | - Yafei Li
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials; Jiangsu Key Laboratory of New Power Batteries; School of Chemistry and Materials Science; Nanjing Normal University; No. 1, Wenyuan Road Nanjing 210023 China
| | - Shun-Li Li
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials; Jiangsu Key Laboratory of New Power Batteries; School of Chemistry and Materials Science; Nanjing Normal University; No. 1, Wenyuan Road Nanjing 210023 China
| | - Jia-Xin Su
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials; Jiangsu Key Laboratory of New Power Batteries; School of Chemistry and Materials Science; Nanjing Normal University; No. 1, Wenyuan Road Nanjing 210023 China
| | - Ya-Qian Lan
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials; Jiangsu Key Laboratory of New Power Batteries; School of Chemistry and Materials Science; Nanjing Normal University; No. 1, Wenyuan Road Nanjing 210023 China
| |
Collapse
|
23
|
Hou J, Zhang B, Li Z, Cao S, Sun Y, Wu Y, Gao Z, Sun L. Vertically Aligned Oxygenated-CoS2–MoS2 Heteronanosheet Architecture from Polyoxometalate for Efficient and Stable Overall Water Splitting. ACS Catal 2018. [DOI: 10.1021/acscatal.8b00668] [Citation(s) in RCA: 206] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Jungang Hou
- State Key Laboratory of Fine Chemicals, DUT-KTH Joint Education and Research Center on Molecular Devices, Institute of Energy Science and Technology, Dalian University of Technology (DUT), Dalian 116024, People’s Republic of China
| | - Bo Zhang
- State Key Laboratory of Fine Chemicals, DUT-KTH Joint Education and Research Center on Molecular Devices, Institute of Energy Science and Technology, Dalian University of Technology (DUT), Dalian 116024, People’s Republic of China
| | - Zhuwei Li
- State Key Laboratory of Fine Chemicals, DUT-KTH Joint Education and Research Center on Molecular Devices, Institute of Energy Science and Technology, Dalian University of Technology (DUT), Dalian 116024, People’s Republic of China
| | - Shuyan Cao
- State Key Laboratory of Fine Chemicals, DUT-KTH Joint Education and Research Center on Molecular Devices, Institute of Energy Science and Technology, Dalian University of Technology (DUT), Dalian 116024, People’s Republic of China
| | - Yiqing Sun
- State Key Laboratory of Fine Chemicals, DUT-KTH Joint Education and Research Center on Molecular Devices, Institute of Energy Science and Technology, Dalian University of Technology (DUT), Dalian 116024, People’s Republic of China
| | - Yunzhen Wu
- State Key Laboratory of Fine Chemicals, DUT-KTH Joint Education and Research Center on Molecular Devices, Institute of Energy Science and Technology, Dalian University of Technology (DUT), Dalian 116024, People’s Republic of China
| | - Zhanming Gao
- State Key Laboratory of Fine Chemicals, DUT-KTH Joint Education and Research Center on Molecular Devices, Institute of Energy Science and Technology, Dalian University of Technology (DUT), Dalian 116024, People’s Republic of China
| | - Licheng Sun
- State Key Laboratory of Fine Chemicals, DUT-KTH Joint Education and Research Center on Molecular Devices, Institute of Energy Science and Technology, Dalian University of Technology (DUT), Dalian 116024, People’s Republic of China
- Department of Chemistry, KTH Royal Institute of Technology, 10044 Stockholm, Sweden
| |
Collapse
|
24
|
Hou J, Wu Y, Cao S, Sun Y, Sun L. Active Sites Intercalated Ultrathin Carbon Sheath on Nanowire Arrays as Integrated Core-Shell Architecture: Highly Efficient and Durable Electrocatalysts for Overall Water Splitting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1702018. [PMID: 29024465 DOI: 10.1002/smll.201702018] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 08/19/2017] [Indexed: 06/07/2023]
Abstract
The development of active bifunctional electrocatalysts with low cost and earth-abundance toward oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) remains a great challenge for overall water splitting. Herein, metallic Ni4 Mo nanoalloys are firstly implanted on the surface of NiMoOx nanowires array (NiMo/NiMoOx ) as metal/metal oxides hybrid. Inspired by the superiority of carbon conductivity, an ultrathin nitrogen-doped carbon sheath intercalated NiMo/NiMoOx (NC/NiMo/NiMoOx ) nanowires as integrated core-shell architecture are constructed. The integrated NC/NiMo/NiMoOx array exhibits an overpotential of 29 mV at 10 mA cm-2 and a low Tafel slope of 46 mV dec-1 for HER due to the abundant active sites, fast electron transport, low charge-transfer resistance, unique architectural structure and synergistic effect of carbon sheath, nanoalloys, and oxides. Moreover, as OER catalysts, the NC/NiMo/NiMoOx hybrids require an overpotential of 284 mV at 10 mA cm-2 . More importantly, the NC/NiMo/NiMoOx array as a highly active and stable electrocatalyst approaches ≈10 mA cm-2 at a voltage of 1.57 V, opening an avenue to the rational design and fabrication of the promising electrode materials with architecture structures toward the electrochemical energy storage and conversion.
Collapse
Affiliation(s)
- Jungang Hou
- State Key Laboratory of Fine Chemicals, Institute of Artificial Photosynthesis, DUT-KTH Joint Education and Research Center on Molecular Devices, Dalian University of Technology (DUT), Dalian, 116024, China
| | - Yunzhen Wu
- State Key Laboratory of Fine Chemicals, Institute of Artificial Photosynthesis, DUT-KTH Joint Education and Research Center on Molecular Devices, Dalian University of Technology (DUT), Dalian, 116024, China
| | - Shuyan Cao
- State Key Laboratory of Fine Chemicals, Institute of Artificial Photosynthesis, DUT-KTH Joint Education and Research Center on Molecular Devices, Dalian University of Technology (DUT), Dalian, 116024, China
| | - Yiqing Sun
- State Key Laboratory of Fine Chemicals, Institute of Artificial Photosynthesis, DUT-KTH Joint Education and Research Center on Molecular Devices, Dalian University of Technology (DUT), Dalian, 116024, China
| | - Licheng Sun
- State Key Laboratory of Fine Chemicals, Institute of Artificial Photosynthesis, DUT-KTH Joint Education and Research Center on Molecular Devices, Dalian University of Technology (DUT), Dalian, 116024, China
- Department of Chemistry, KTH Royal Institute of Technology, 10044, Stockholm, Sweden
| |
Collapse
|