1
|
Charconnet M, Korsa MT, Petersen S, Plou J, Hanske C, Adam J, Seifert A. Generalization of Self-Assembly Toward Differently Shaped Colloidal Nanoparticles for Plasmonic Superlattices. SMALL METHODS 2023; 7:e2201546. [PMID: 36807876 DOI: 10.1002/smtd.202201546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Periodic superlattices of noble metal nanoparticles have demonstrated superior plasmonic properties compared to randomly distributed plasmonic arrangements due to near-field coupling and constructive far-field interference. Here, a chemically driven, templated self-assembly process of colloidal gold nanoparticles is investigated and optimized, and the technology is extended toward a generalized assembly process for variously shaped particles, such as spheres, rods, and triangles. The process yields periodic superlattices of homogenous nanoparticle clusters on a centimeter scale. Electromagnetically simulated absorption spectra and corresponding experimental extinction measurements demonstrate excellent agreement in the far-field for all particle types and different lattice periods. The electromagnetic simulations reveal the specific nano-cluster near-field behavior, predicting the experimental findings provided by surface-enhanced Raman scattering measurements. It turns out that periodic arrays of spherical nanoparticles produce higher surface-enhanced Raman scattering enhancement factors than particles with less symmetry as a result of very well-defined strong hotspots.
Collapse
Affiliation(s)
- Mathias Charconnet
- CIC nanoGUNE BRTA, San Sebastián, 20018, Spain
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), San Sebastián, 20014, Spain
| | - Matiyas Tsegay Korsa
- University of Southern Denmark, SDU Centre for Photonics Engineering, Mads Clausen Institute, Odense, 5230, Denmark
| | - Søren Petersen
- University of Southern Denmark, SDU Centre for Photonics Engineering, Mads Clausen Institute, Odense, 5230, Denmark
| | - Javier Plou
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), San Sebastián, 20014, Spain
- CIBER-BBN, ISCIII, San Sebastián, 20014, Spain
| | - Christoph Hanske
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), San Sebastián, 20014, Spain
| | - Jost Adam
- University of Southern Denmark, SDU Centre for Photonics Engineering, Mads Clausen Institute, Odense, 5230, Denmark
| | - Andreas Seifert
- CIC nanoGUNE BRTA, San Sebastián, 20018, Spain
- IKERBASQUE - Basque Foundation for Science, Bilbao, 48009, Spain
| |
Collapse
|
2
|
Hwang Y, Koo DJ, Ferhan AR, Sut TN, Yoon BK, Cho NJ, Jackman JA. Optimizing Plasmonic Gold Nanorod Deposition on Glass Surfaces for High-Sensitivity Refractometric Biosensing. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3432. [PMID: 36234560 PMCID: PMC9565783 DOI: 10.3390/nano12193432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/13/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
Owing to high surface sensitivity, gold nanorods (AuNRs) are widely used to construct surface-based nanoplasmonic biosensing platforms for label-free molecular diagnostic applications. A key fabrication step involves controlling AuNR deposition onto the target surface, which requires maximizing surface density while minimizing inter-particle aggregation, and is often achieved by surface functionalization with a self-assembled monolayer (SAM) prior to AuNR deposition. To date, existing studies have typically used a fixed concentration of SAM-forming organic molecules (0.2-10% v/v) while understanding how SAM density affects AuNR deposition and resulting sensing performance would be advantageous. Herein, we systematically investigated how controlling the (3-aminopropyl)triethoxysilane (APTES) concentration (1-30% v/v) during SAM preparation affects the fabrication of AuNR-coated glass surfaces for nanoplasmonic biosensing applications. Using scanning electron microscopy (SEM) and UV-visible spectroscopy, we identified an intermediate APTES concentration range that yielded the highest density of individually deposited AuNRs with minimal aggregation and also the highest peak wavelength in aqueous solution. Bulk refractive index sensitivity measurements indicated that the AuNR configuration had a strong effect on the sensing performance, and the corresponding wavelength-shift responses ranged from 125 to 290 nm per refractive index unit (RIU) depending on the APTES concentration used. Biosensing experiments involving protein detection and antigen-antibody interactions further demonstrated the high surface sensitivity of the optimized AuNR platform, especially in the low protein concentration range where the measurement shift was ~8-fold higher than that obtained with previously used sensing platforms.
Collapse
Affiliation(s)
- Youngkyu Hwang
- School of Chemical Engineering and Translational Nanobioscience Research Center, Sungkyunkwan University, Suwon 16419, Korea
| | - Dong Jun Koo
- School of Chemical Engineering and Translational Nanobioscience Research Center, Sungkyunkwan University, Suwon 16419, Korea
| | - Abdul Rahim Ferhan
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Tun Naw Sut
- School of Chemical Engineering and Translational Nanobioscience Research Center, Sungkyunkwan University, Suwon 16419, Korea
| | - Bo Kyeong Yoon
- School of Healthcare and Biomedical Engineering, Chonnam National University, Yeosu 59626, Korea
| | - Nam-Joon Cho
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Joshua A. Jackman
- School of Chemical Engineering and Translational Nanobioscience Research Center, Sungkyunkwan University, Suwon 16419, Korea
| |
Collapse
|
3
|
Zheng J, Cheng X, Zhang H, Bai X, Ai R, Shao L, Wang J. Gold Nanorods: The Most Versatile Plasmonic Nanoparticles. Chem Rev 2021; 121:13342-13453. [PMID: 34569789 DOI: 10.1021/acs.chemrev.1c00422] [Citation(s) in RCA: 217] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Gold nanorods (NRs), pseudo-one-dimensional rod-shaped nanoparticles (NPs), have become one of the burgeoning materials in the recent years due to their anisotropic shape and adjustable plasmonic properties. With the continuous improvement in synthetic methods, a variety of materials have been attached around Au NRs to achieve unexpected or improved plasmonic properties and explore state-of-the-art technologies. In this review, we comprehensively summarize the latest progress on Au NRs, the most versatile anisotropic plasmonic NPs. We present a representative overview of the advances in the synthetic strategies and outline an extensive catalogue of Au-NR-based heterostructures with tailored architectures and special functionalities. The bottom-up assembly of Au NRs into preprogrammed metastructures is then discussed, as well as the design principles. We also provide a systematic elucidation of the different plasmonic properties associated with the Au-NR-based structures, followed by a discussion of the promising applications of Au NRs in various fields. We finally discuss the future research directions and challenges of Au NRs.
Collapse
Affiliation(s)
- Jiapeng Zheng
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Xizhe Cheng
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Han Zhang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Xiaopeng Bai
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Ruoqi Ai
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Lei Shao
- Beijing Computational Science Research Center, Beijing 100193, China
| | - Jianfang Wang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| |
Collapse
|
4
|
Cheng YT, Tsao HK, Sheng YJ. Interfacial assembly of nanorods: smectic alignment and multilayer stacking. NANOSCALE 2021; 13:14236-14244. [PMID: 34477706 DOI: 10.1039/d1nr03784f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Large-scale spatial arrangement and orientation ordering of nanorod assembly on substrates are critical for nanodevice fabrication. However, complicated processes and templates or surface modification of nanorods are often required. In this work, we demonstrate, by dissipative particle dynamics simulations, that various ordered structures of adsorbed nanorods on smooth substrates can be simply achieved by non-affinity adsorption. The structures of interfacial assembly, including monolayers with a nematic-like arrangement and multilayer stacking with a smectic-like arrangement, depend on the nanorod concentration and the solvent size. As the nanorod concentration increases, the adsorbed layer becomes densely packed and the arrangement of nanorods changes from nematic-like to smectic. The assembly process driven by entropy is a two-dimensional layer-by-layer growth. Multilayer stacking with a smectic-like arrangement takes place at dilute concentrations of nanorods for large solvents such as pentamers, but at concentrated concentrations, it takes place for small solvents such as monomers. Moreover, nanorod bundles appear in the bulk phase for large solvents at dilute concentrations. The proposed strategy for interfacial assembly is caused by the free volume released for solvents, which is independent of the chemical compositions of substrates and nanorods.
Collapse
Affiliation(s)
- Yi-Ting Cheng
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan, Republic of China.
| | | | | |
Collapse
|
5
|
Bär J, de Barros A, de Camargo DHS, Pereira MP, Merces L, Shimizu FM, Sigoli FA, Bufon CC, Mazali IO. Silicon Microchannel-Driven Raman Scattering Enhancement to Improve Gold Nanorod Functions as a SERS Substrate toward Single-Molecule Detection. ACS APPLIED MATERIALS & INTERFACES 2021; 13:36482-36491. [PMID: 34286952 PMCID: PMC8389530 DOI: 10.1021/acsami.1c08480] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/12/2021] [Indexed: 06/13/2023]
Abstract
The investigation of enhanced Raman signal effects and the preparation of high-quality, reliable surface-enhanced Raman scattering (SERS) substrates is still a hot topic in the SERS field. Herein, we report an effect based on the shape-induced enhanced Raman scattering (SIERS) to improve the action of gold nanorods (AuNRs) as a SERS substrate. Scattered electric field simulations reveal that bare V-shaped Si substrates exhibit spatially distributed interference patterns from the incident radiation used in the Raman experiment, resulting in constructive interference for an enhanced Raman signal. Experimental data show a 4.29 increase in Raman signal intensity for bare V-shaped Si microchannels when compared with flat Si substrates. The combination of V-shaped microchannels and uniform aggregates of AuNRs is the key feature to achieve detections in ultra-low concentrations, enabling reproducible SERS substrates having high performance and sensitivity. Besides SIERS effects, the geometric design of V-shaped microchannels also enables a "trap" to the molecule confinement and builds up an excellent electromagnetic field distribution by AuNR aggregates. The statistical projection of SERS spectra combined with the SIERS effect displayed a silhouette coefficient of 0.83, indicating attomolar (10-18 mol L-1) detection with the V-shaped Si microchannel.
Collapse
Affiliation(s)
- Jaciara Bär
- Laboratory
of Functional Materials, Institute of Chemistry, University of Campinas—UNICAMP, 13083-970 Campinas, São Paulo, Brazil
| | - Anerise de Barros
- Laboratory
of Functional Materials, Institute of Chemistry, University of Campinas—UNICAMP, 13083-970 Campinas, São Paulo, Brazil
| | - Davi H. S. de Camargo
- Brazilian
Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Giuseppe Máximo Scolfaro
10000, Polo II de Alta Tecnologia, 13083-100 Campinas, São Paulo, Brazil
| | - Mariane P. Pereira
- Brazilian
Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Giuseppe Máximo Scolfaro
10000, Polo II de Alta Tecnologia, 13083-100 Campinas, São Paulo, Brazil
| | - Leandro Merces
- Brazilian
Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Giuseppe Máximo Scolfaro
10000, Polo II de Alta Tecnologia, 13083-100 Campinas, São Paulo, Brazil
| | - Flavio Makoto Shimizu
- Brazilian
Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Giuseppe Máximo Scolfaro
10000, Polo II de Alta Tecnologia, 13083-100 Campinas, São Paulo, Brazil
- Department
of Applied Physics, “Gleb Wataghin” Institute of Physics
(IFGW), University of Campinas (UNICAMP), 13083-859 Campinas, São Paulo, Brazil
| | - Fernando A. Sigoli
- Laboratory
of Functional Materials, Institute of Chemistry, University of Campinas—UNICAMP, 13083-970 Campinas, São Paulo, Brazil
| | - Carlos César
Bof Bufon
- Brazilian
Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Giuseppe Máximo Scolfaro
10000, Polo II de Alta Tecnologia, 13083-100 Campinas, São Paulo, Brazil
| | - Italo Odone Mazali
- Laboratory
of Functional Materials, Institute of Chemistry, University of Campinas—UNICAMP, 13083-970 Campinas, São Paulo, Brazil
| |
Collapse
|
6
|
Large scale self-assembly of plasmonic nanoparticles on deformed graphene templates. Sci Rep 2021; 11:12232. [PMID: 34112874 PMCID: PMC8192528 DOI: 10.1038/s41598-021-91697-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 05/31/2021] [Indexed: 11/08/2022] Open
Abstract
Hierarchical heterostructures of two-dimensional (2D) nanomaterials are versatile platforms for nanoscale optoelectronics. Further coupling of these 2D materials with plasmonic nanostructures, especially in non-close-packed morphologies, imparts new metastructural properties such as increased photosensitivity as well as spectral selectivity and range. However, the integration of plasmonic nanoparticles with 2D materials has largely been limited to lithographic patterning and/or undefined deposition of metallic structures. Here we show that colloidally synthesized zero-dimensional (0D) gold nanoparticles of various sizes can be deterministically self-assembled in highly-ordered, anisotropic, non-close-packed, multi-scale morphologies with templates designed from instability-driven, deformed 2D nanomaterials. The anisotropic plasmonic coupling of the particle arrays exhibits emergent polarization-dependent absorbance in the visible to near-IR regions. Additionally, controllable metasurface arrays of nanoparticles by functionalization with varying polymer brushes modulate the plasmonic coupling between polarization dependent and independent assemblies. This self-assembly method shows potential for bottom-up nanomanufacturing of diverse optoelectronic components and can potentially be adapted to a wide array of nanoscale 0D, 1D, and 2D materials.
Collapse
|
7
|
Tago M, Takasaki M, Tokura Y, Oaki Y, Imai H. Self-Assembly of 2D Nematic and Random Arrays of Sterically Stabilized Nanoscale Rods with and without Evaporation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:6533-6539. [PMID: 33993696 DOI: 10.1021/acs.langmuir.1c00789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The adequate manipulation of nanometer-scale building blocks using dispersion systems is regarded as a fundamental technique to fabricate elaborate microstructures. Although a liquid flow with evaporation is generally regarded as an essential factor for the self-assembly of floating blocks, experimental evidence has not been sufficient to clarify the importance of the flow in the dispersion systems. In the present study, 2D nematic layers of sterically stabilized nanoscale calcite rods were achieved in a millimeter-scale region on a solid substrate via the very slow recession of an organic dispersion with evaporation. 2D random arrays of the nanorods were obtained via recession of the liquid in the same system without evaporation. When the nanorods were not sterically stabilized, 3D random arrays were formed even with evaporation. We demonstrated that the evaporation-driven flow of sterically stabilized nanorods to a confined space at the air-liquid-solid interface is essential for the formation of 2D nematic structures on a substrate.
Collapse
Affiliation(s)
- Makoto Tago
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Mihiro Takasaki
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Yuki Tokura
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Yuya Oaki
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Hiroaki Imai
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| |
Collapse
|
8
|
Nakamura S, Mitomo H, Ijiro K. Assembly and Active Control of Nanoparticles using Polymer Brushes as a Scaffold. CHEM LETT 2021. [DOI: 10.1246/cl.200767] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Satoshi Nakamura
- National Institute of Advanced Industrial Science and Technology (AIST), 2266-98 Anagahora, Shimo-Shidami, Moriyama-ku, Nagoya, Aichi 463-8560, Japan
| | - Hideyuki Mitomo
- Research Institute for Electronic Science, Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
- Global Station for Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University, Kita 21, Nishi 11, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
| | - Kuniharu Ijiro
- Research Institute for Electronic Science, Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
- Global Station for Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University, Kita 21, Nishi 11, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
| |
Collapse
|
9
|
Blanco-Formoso M, Pazos-Perez N, Alvarez-Puebla RA. Fabrication of Plasmonic Supercrystals and Their SERS Enhancing Properties. ACS OMEGA 2020; 5:25485-25492. [PMID: 33073075 PMCID: PMC7557218 DOI: 10.1021/acsomega.0c03412] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/15/2020] [Indexed: 05/24/2023]
Abstract
Supercrystals, made of ordered plasmonic nanoparticles (NPs) in close contact, turn out as efficient SERS substrates. However, the production of highly homogeneous structures implies precise control over a multitude of parameters including quality of the building blocks, solvent evaporation rate, and surface chemistry interactions. To pursue this goal, different approaches using templates to self-assembly NPs have been developed in recent years. Here, we review the most common procedures employing two different substrates, planar and patterned templates. Several approaches and strategies are described showing the optical properties of the resulted supercrystals and their behavior as SERS substrates.
Collapse
Affiliation(s)
- Maria Blanco-Formoso
- Department
of Physical Chemistry, Universitat Rovira
i Virgili, 43007 Tarragona, Spain
| | - Nicolas Pazos-Perez
- Department
of Physical Chemistry, Universitat Rovira
i Virgili, 43007 Tarragona, Spain
| | - Ramon A. Alvarez-Puebla
- Department
of Physical Chemistry, Universitat Rovira
i Virgili, 43007 Tarragona, Spain
- ICREA, Passeig Lluis
Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
10
|
Biutty MN, Zakia M, Yoo SI. Enhanced Photothermal Heating from
One‐dimensional
Assemblies of Au Nanoparticles Encapsulated by
TiO
2
Shell. B KOREAN CHEM SOC 2020. [DOI: 10.1002/bkcs.12106] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
| | - Maulida Zakia
- Department of Polymer Engineering Pukyong National University Busan 48547 Republic of Korea
| | - Seong Il Yoo
- Department of Polymer Engineering Pukyong National University Busan 48547 Republic of Korea
| |
Collapse
|
11
|
Nakamura S, Mitomo H, Sekizawa Y, Higuchi T, Matsuo Y, Jinnai H, Ijiro K. Strategy for Finely Aligned Gold Nanorod Arrays Using Polymer Brushes as a Template. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:3590-3599. [PMID: 32049537 DOI: 10.1021/acs.langmuir.9b03835] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The development of a strategy for the assembly of nanoscale building blocks, in particular, anisotropic nanoparticles, into desired structures is important for the construction of functional materials and devices. However, control over the orientation of rod-shaped nanoparticles on a substrate for integration into solid-state devices remains challenging. Here, we report a strategy for the fabrication of finely aligned gold nanorod (GNR) arrays using polymer (DNA) brushes as a nanoscale template. The gold nanorods modified with cationic surface ligands were electrostatically adsorbed onto the DNA brush substrates under various conditions. The orientational behavior of the GNRs was examined by spectral analyses and transmission electron microtomography (TEMT). As a result, we found several important factors, such as moderate interaction between GNRs and polymers and polymer densities on the substrate, related to the vertical alignment of GNRs on the substrates. We also developed a purification method to remove the undesired adsorption of GNRs onto the arrays. Finally, we have succeeded in the fabrication of extensive vertical GNR arrays of high quality via the easy bottom-up process.
Collapse
Affiliation(s)
- Satoshi Nakamura
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Kita 13, Nishi 8, Kita-Ku, Sapporo 060-8628, Japan
| | - Hideyuki Mitomo
- Research Institute for Electronic Science, Hokkaido University, Kita 21, Nishi 10, Kita-Ku, Sapporo 001-0021, Japan
- Global Station for Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University, Kita 21, Nishi 11, Kita-Ku, Sapporo 001-0021, Japan
| | - Yu Sekizawa
- Graduate School of Life Sciences, Hokkaido University, Kita 10, Nishi 8, Kita-Ku, Sapporo 060-0810, Japan
| | - Takeshi Higuchi
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi 980-8577, Japan
| | - Yasutaka Matsuo
- Research Institute for Electronic Science, Hokkaido University, Kita 21, Nishi 10, Kita-Ku, Sapporo 001-0021, Japan
| | - Hiroshi Jinnai
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi 980-8577, Japan
| | - Kuniharu Ijiro
- Research Institute for Electronic Science, Hokkaido University, Kita 21, Nishi 10, Kita-Ku, Sapporo 001-0021, Japan
- Global Station for Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University, Kita 21, Nishi 11, Kita-Ku, Sapporo 001-0021, Japan
| |
Collapse
|
12
|
Fernández-Toledano JC, Rigaut C, Mastrangeli M, De Coninck J. Controlling the pinning time of a receding contact line under forced wetting conditions. J Colloid Interface Sci 2020; 565:449-457. [PMID: 31982711 DOI: 10.1016/j.jcis.2020.01.054] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 10/25/2022]
Abstract
HYPOTHESIS The contact line pinning that appears in a flow coating process over substrates patterned with chemical or physical heterogeneities has been recently applied to deposit micro- and nanoparticles with great precision. However, the mechanism underlying pinning of a receding contact line at the nanoscale is not yet well understood. In the case of a contact line pinned at a chemical heterogeneity, we hypothesise that it is possible to establish a relation between the pinning time, the contact line velocity and the liquid/plate/heterogeneity affinity that can help to optimize particle deposition. METHODS We use large-scale molecular dynamic (MD) simulations of a finite liquid bridge formed between two parallel, non-identical, smooth solid plates. The top plate slides relative to the bottom plate inducing a displacement of the four different contact lines of the liquid bridge. The introduction of a chemical heterogeneity on the bottom plate by modifying locally the liquid-solid affinity provokes the transient pinning of the contact line in contact with the bottom substrate. By means of this simple MD simulation, we can study the mechanism of contact line pinning and its relation with the liquid/heterogeneity affinity and the contact line velocity. Additionally, we compare this mechanism with the case of the receding contact line pinned on a physical heterogeneity (a simple step discontinuity). FINDINGS We propose an analytical model that predicts the values of the dynamic contact angles in the general case of a capillary liquid bridge confined between two parallel plates with different wettabilities versus the relative velocity of the top plate. These predictions are successfully validated by the results of the large-scale MD simulations. The model allows thus to predict the value of the dynamic contact angles for the different contact lines of the system versus the relative speed of the moving plate. Once the chemical heterogeneity is introduced in the bottom plate, we show that when the receding contact line reaches the patch it remains temporarily pinned while the receding contact angle evolves with time. Once the receding angle reaches the value of the equilibrium contact angle of the patch, the receding contact line overcomes pinning. A geometrical model able to predict the pinning time is proposed and validated by our MD simulations. The pinning time depends not only on the relative plate velocity and plate wettability properties but also on the separation distance between the plates confining the capillary bridge. The model can consequently be used to select the substrate wettability or meniscus geometry suitable to impose the pinning time required for specific applications.
Collapse
Affiliation(s)
- J-C Fernández-Toledano
- Laboratory of Surface and Interfacial Physics (LPSI), University of Mons, 7000 Mons, Belgium.
| | - C Rigaut
- Laboratory of Surface and Interfacial Physics (LPSI), University of Mons, 7000 Mons, Belgium
| | - M Mastrangeli
- Electronic Components, Technology and Materials (ECTM), Delft University of Technology, 2628CT Delft, the Netherlands
| | - J De Coninck
- Laboratory of Surface and Interfacial Physics (LPSI), University of Mons, 7000 Mons, Belgium
| |
Collapse
|
13
|
Hu H, Wang S, Feng X, Pauly M, Decher G, Long Y. In-plane aligned assemblies of 1D-nanoobjects: recent approaches and applications. Chem Soc Rev 2020; 49:509-553. [DOI: 10.1039/c9cs00382g] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
One-dimensional (1D) nanoobjects have strongly anisotropic physical properties which are averaged out and cannot be exploited in disordered systems. We reviewed the in plane alignment approaches and potential applications with perspectives shared.
Collapse
Affiliation(s)
- Hebing Hu
- School of Materials Science and Engineering
- Nanyang Technological University
- Singapore
- Singapore-HUJ Alliance for Research and Enterprise (SHARE)
- Nanomaterials for Energy and Energy-Water Nexus (NEW)
| | - Shancheng Wang
- School of Materials Science and Engineering
- Nanyang Technological University
- Singapore
- Singapore-HUJ Alliance for Research and Enterprise (SHARE)
- Nanomaterials for Energy and Energy-Water Nexus (NEW)
| | - Xueling Feng
- Key Laboratory of Science and Technology of Eco-Textile
- Ministry of Education
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
| | - Matthias Pauly
- Université de Strasbourg
- CNRS
- Institut Charles Sadron
- F-67000 Strasbourg
- France
| | - Gero Decher
- Université de Strasbourg
- CNRS
- Institut Charles Sadron
- F-67000 Strasbourg
- France
| | - Yi Long
- School of Materials Science and Engineering
- Nanyang Technological University
- Singapore
- Singapore-HUJ Alliance for Research and Enterprise (SHARE)
- Nanomaterials for Energy and Energy-Water Nexus (NEW)
| |
Collapse
|
14
|
Takenaka Y, Matsuzawa Y, Ohzono T. Directed Assembly of Gold Nanorods by Microwrinkles. CHEM LETT 2019. [DOI: 10.1246/cl.190486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Yoshiko Takenaka
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Yoko Matsuzawa
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Takuya Ohzono
- Electronics and Photonics Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| |
Collapse
|
15
|
Inaba T, Takenaka Y, Kawabata Y, Kato T. Effect of the Crystallization Process of Surfactant Bilayer Lamellar Structures on the Elongation of High-Aspect-Ratio Gold Nanorods. J Phys Chem B 2019; 123:4776-4783. [PMID: 31038313 DOI: 10.1021/acs.jpcb.8b10897] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The growth mechanism of an "in-gel synthesis method", that is, the effects of composition and structure of the lamellar gel phase below the Krafft temperature of surfactant solutions on the growth of long gold nanorods, was investigated. We changed the alkyl chain length of surfactant molecules to investigate the effect of surfactant self-assembly on the elongation of gold nanorods systematically; eight mixed solutions of alkyltrimethylammonium bromide (C nTAB; n = 2-16; n = even) with C18TAB were used for investigation. The Krafft temperature, self-assembly of surfactant molecules, and the crystallization process of each mixture were observed by differential scanning calorimetry, wide-angle X-ray scattering, visual inspection, and small-angle X-ray scattering. Gold nanorods were synthesized in these eight surfactant mixtures. These observations demonstrated that when the surfactant Lβ phase sustains for a long time, the space of the water layer is also kept large enough for the seeds to take up Au ions bound to surfactant micelles. In this case, the seeds can form long nanorods between bilayers. We conclude that not only the stability of the lamellar gel phase but also co-existence of Au-ion carriers, that is, surfactant micelles, is essential for the elongation of long gold nanorods.
Collapse
Affiliation(s)
- Takamichi Inaba
- Department of Chemistry , Tokyo Metropolitan University , Hachioji , Tokyo 192-0397 , Japan
| | - Yoshiko Takenaka
- Research Institute for Sustainable Chemistry , National Institute of Advanced Industrial Science and Technology (AIST) , Tsukuba , Ibaraki 305-8565 , Japan
| | - Youhei Kawabata
- Department of Chemistry , Tokyo Metropolitan University , Hachioji , Tokyo 192-0397 , Japan
| | - Tadashi Kato
- Department of Chemistry , Tokyo Metropolitan University , Hachioji , Tokyo 192-0397 , Japan
| |
Collapse
|
16
|
Hung TY, Liu JAC, Lee WH, Li JR. Hierarchical Nanoparticle Assemblies Formed via One-Step Catalytic Stamp Pattern Transfer. ACS APPLIED MATERIALS & INTERFACES 2019; 11:4667-4677. [PMID: 30607942 DOI: 10.1021/acsami.8b19807] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The one-step catalytic stamp pattern transfer process is described for producing arrays of hierarchical nanoparticle assemblies. The method simply combines in situ nanoparticle synthesis triggered by free residual Si-H groups on PDMS stamps and the lift-off pattern transfer technique. No additional nanoparticle synthesis procedure is required before the pattern transfer process. Exquisitely uniform and precisely spaced hierarchical nanoparticle assemblies with designed geometry can be rapidly produced using the catalytic stamp pattern transfer process. Sequential catalytic stamp pattern transfer also is described to generate multilayered, hierarchical nanoparticle assemblies with various geometries. The hierarchical nanoparticle assemblies catalytically transferred onto the surface are not just nanoparticles but nanoparticle-polydimethylsiloxane residue composites. The in situ-synthesized nanoparticles retain optical properties. The hierarchical nanoparticle assemblies with precisely controlled geometry further show potential in the application of surface-enhanced Raman scattering. The capability of one-step catalytic stamp pattern transfer allows the scalable and reproducible fabrication of well-defined hierarchical nanoparticle assemblies.
Collapse
Affiliation(s)
- Tzu-Yi Hung
- Department of Chemistry , National Cheng Kung University , No. 1 College Road , Tainan 70101 , Taiwan
| | - Jessica An-Chieh Liu
- Department of Chemistry , National Cheng Kung University , No. 1 College Road , Tainan 70101 , Taiwan
| | - Wen-Hsiu Lee
- Department of Chemistry , National Cheng Kung University , No. 1 College Road , Tainan 70101 , Taiwan
| | - Jie-Ren Li
- Department of Chemistry , National Cheng Kung University , No. 1 College Road , Tainan 70101 , Taiwan
| |
Collapse
|
17
|
Yu C, Guo X, Muzzio M, Seto CT, Sun S. Self‐Assembly of Nanoparticles into Two‐Dimensional Arrays for Catalytic Applications. Chemphyschem 2018; 20:23-30. [DOI: 10.1002/cphc.201800870] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 11/14/2018] [Indexed: 02/02/2023]
Affiliation(s)
- Chao Yu
- Department of Chemistry Brown University Providence, RI 02912 United States
| | - Xuefeng Guo
- Department of Chemistry Brown University Providence, RI 02912 United States
| | - Michelle Muzzio
- Department of Chemistry Brown University Providence, RI 02912 United States
| | | | - Shouheng Sun
- Department of Chemistry Brown University Providence, RI 02912 United States
| |
Collapse
|
18
|
Mao M, Zhou B, Tang X, Chen C, Ge M, Li P, Huang X, Yang L, Liu J. Natural Deposition Strategy for Interfacial, Self-Assembled, Large-Scale, Densely Packed, Monolayer Film with Ligand-Exchanged Gold Nanorods for In Situ Surface-Enhanced Raman Scattering Drug Detection. Chemistry 2018; 24:4094-4102. [DOI: 10.1002/chem.201705700] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Mei Mao
- Institute of Intelligent Machines Institution; Chinese Academy of Sciences; Hefei 230031 P.R. China
- Department of Chemistry; University of Science and Technology of China; Hefei 230026 P.R. China
| | - Binbin Zhou
- Institute of Intelligent Machines Institution; Chinese Academy of Sciences; Hefei 230031 P.R. China
- Department of Chemistry; University of Science and Technology of China; Hefei 230026 P.R. China
| | - Xianghu Tang
- Institute of Intelligent Machines Institution; Chinese Academy of Sciences; Hefei 230031 P.R. China
| | - Cheng Chen
- Institute of Intelligent Machines Institution; Chinese Academy of Sciences; Hefei 230031 P.R. China
| | - Meihong Ge
- Institute of Intelligent Machines Institution; Chinese Academy of Sciences; Hefei 230031 P.R. China
- Department of Chemistry; University of Science and Technology of China; Hefei 230026 P.R. China
| | - Pan Li
- Institute of Intelligent Machines Institution; Chinese Academy of Sciences; Hefei 230031 P.R. China
| | - Xingjiu Huang
- Institute of Intelligent Machines Institution; Chinese Academy of Sciences; Hefei 230031 P.R. China
| | - Liangbao Yang
- Institute of Intelligent Machines Institution; Chinese Academy of Sciences; Hefei 230031 P.R. China
| | - Jinhuai Liu
- Institute of Intelligent Machines Institution; Chinese Academy of Sciences; Hefei 230031 P.R. China
| |
Collapse
|
19
|
Caseri WR. Dichroic nanocomposites based on polymers and metallic particles: from biology to materials science. POLYM INT 2017. [DOI: 10.1002/pi.5455] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Walter R Caseri
- Eidgenössische Technische Hochschule (ETH) Zürich; Department of Materials; Zürich Switzerland
| |
Collapse
|