1
|
Xu S, Shao D, Wang J, Zheng X, Yang Z, Wang A, Chen Z, Gao Y. Pre-ligand-induced porous MOF as a peroxidase mimic for electrochemical analysis of deoxynivalenol (DON). Food Chem 2025; 480:143860. [PMID: 40112717 DOI: 10.1016/j.foodchem.2025.143860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/26/2025] [Accepted: 03/10/2025] [Indexed: 03/22/2025]
Abstract
Developing convenient and sensitive vomitoxin detection methods is crucial to prevent human health risks from excess deoxynivalenol (DON) in food products. This study synthesized porous electrochemical nanomaterial calcined PA-NH2-MIL-101 (CPNM) with abundant amino group modifications using a palmitic acid (PA) pre-ligand and amino functionalization scheme. PA-induced defect generation and which formed a high-stability porous structure that increased the peroxidase-like catalytic active site and thus improving electrochemical analytical performance. In addition, introducing amino groups in CPNM facilitated the covalent immobilization of DON antibodies. Therefore, an electrochemical immunosensing platform for detecting DON was developed by utilizing the electrocatalytic signals generated by Fe-MOF (MIL-101) nanozymes and thionine molecules. The proposed sensor showed a large linear range of 10-107 pg mL-1 with a detection limit of 9.6 pg mL-1 (S/N = 3) under optimized optimal conditions. Consequently, this innovative electrochemical immunosensing technique based on CPNM nanozymes paves the way for DON detection in food.
Collapse
Affiliation(s)
- Suhui Xu
- School of Food Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Dan Shao
- School of Food Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Jiamin Wang
- School of Food Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Xiangfeng Zheng
- School of Food Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Zhenquan Yang
- School of Food Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Aijian Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Zhiyan Chen
- School of Tourism and Culinary Science, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Yajun Gao
- School of Food Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225127, China.
| |
Collapse
|
2
|
Zhou S, Qiu P, Feng R, Zhang J, Su Z, Bai Y, He J. Magnetic field facilitated-colorimetric aptasensor for selective and sensitive detection of Staphylococcus aureus using aptamer-labeled Zn/Co ICPs nanoenzyme. Talanta 2025; 287:127633. [PMID: 39884119 DOI: 10.1016/j.talanta.2025.127633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/21/2025] [Accepted: 01/23/2025] [Indexed: 02/01/2025]
Abstract
Colorimetric detection of pathogenic bacteria (such as S. aureus) in complex sample confronts challenges regarding sensitivity, selectivity, and accuracy. In this paper, a magnetic field facilitated (MFF)-colorimetric aptasensor was proposed for S. aureus detection based on magnetic separation and nanoenzyme-facilitated chromogenic reaction. The vancomycin-functionalized magnetic chitosan (CS-MNPs-Van) was introduced to capture and isolate S. aureus from the complex matrix through magnetic field separation. The zinc/cobalt infinite coordination polymers (Zn/Co ICPs) was rapidly prepared with a green synthesis technology at room temperature. It was directly functionalized with aptamer through interactions of Zn2+/Co2+ and phosphate backbone, large surface area and π-π stacking reactions, avoiding the tedious chemical modification. The aptamer-labeled Zn/Co ICPs (Zn/Co ICPs-Apt) exhibited not only the excellent peroxidase-like activity, but also the good specificity toward the captured S. aureus to generate CS-MNPs-Van@S. aureus@Zn/Co ICPs-Apt complexes. The residual unreacted Zn/Co ICPs-Apt catalyzed the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) to produce blue oxTMB, which can be distinguished with naked eyes. The S. aureus concentration showed a negative correlation with the absorbance (A652 nm) in the range of 1.8 × 101 to 1.8 × 10⁵ CFU/mL, with a detection limit of 4 CFU/mL. The MFF-colorimetric aptasensor presents advantages of high sensitivity, good selectivity, low matrix interference and naked visualization without complicated devices, making it competitive candidate for on-site and large-scale detection of pathogens.
Collapse
Affiliation(s)
- Siwei Zhou
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, 510310, China
| | - Peipei Qiu
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, 510310, China
| | - Ruihua Feng
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, 510310, China
| | - Junhe Zhang
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, 510310, China
| | - Zhengquan Su
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Yan Bai
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, 510310, China.
| | - Jincan He
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, 510310, China.
| |
Collapse
|
3
|
Damphathik C, Prakobkij A, Jarujamrus P, Boonmak J, Suebphanpho J, Bunkoed O, Samphao A. Colorimetric sensor comprising metal-organic frameworks and molecularly imprinted polymers for aflatoxin B1 detection in agricultural commodities. Food Chem 2025; 474:143105. [PMID: 39921979 DOI: 10.1016/j.foodchem.2025.143105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/17/2025] [Accepted: 01/25/2025] [Indexed: 02/10/2025]
Abstract
A novel colorimetric sensor was developed by integrating cerium metal-organic frameworks with molecularly imprinted polymers (Ce-MOF@MIP) for the highly selective and sensitive detection of Aflatoxin B1. The resulting composite leverages the peroxidase-like activity of cerium metal-organic frameworks to catalyze the oxidation of 3,3',5,5'-tetramethylbenzidine in the presence of hydrogen peroxide, while imprinted cavities confer specificity toward Aflatoxin B1. Detection is facilitated by monitoring the inhibition of the composite's catalytic activity, manifesting as colorimetric changes that can be quantified using ImageJ. The sensor exhibits two linear detection ranges (0.5-5 ng mL-1 and 5-50 ng mL-1) and achieves a detection limit of 0.25 ng mL-1. When applied to agricultural samples (peanuts, chicken feed, and corn), recoveries ranged from 95.1 % to 109.4 %, surpassing high-performance liquid chromatography according to a paired t-test. Taken together, these findings highlight the sensor's high sensitivity, selectivity, and robustness, underscoring its promise in food safety applications and broader mycotoxin surveillance.
Collapse
Affiliation(s)
- Chulalak Damphathik
- Department of Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
| | - Akarapong Prakobkij
- Department of Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand; Nanomaterials Science, Sensors & Catalysis for Problem-Based Projects, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand; Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
| | - Purim Jarujamrus
- Department of Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand; Nanomaterials Science, Sensors & Catalysis for Problem-Based Projects, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand; Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan; Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand.
| | - Jaursup Boonmak
- Materials Chemistry Research Center, Department of Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Jitti Suebphanpho
- Materials Chemistry Research Center, Department of Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Opas Bunkoed
- Center of Excellence for Innovation in Chemistry, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Anchalee Samphao
- Department of Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand; Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand.
| |
Collapse
|
4
|
Zhou Q, Wang X, Liu X, Wu J, Wu Q, Wang R, Yan L, Lei H, Yang Z, Zhang Z. AI One-Click Processing-Assisted Nanozyme-Based Fluorescence Capillary Imprinted Sensor Array for Microvolume Rapid Discrimination Antidepressants. Anal Chem 2025; 97:7333-7342. [PMID: 40134230 DOI: 10.1021/acs.analchem.4c07029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
The increasing global demand for antidepressants (ADs) has led to their widespread presence in wastewater and aquatic environments, posing risks to ecosystems and human health. In this study, a nanozyme fluorescence capillary imprinted sensor array combined with fluorescence mode and artificial intelligence (AI) one-click processing fluorescence image mode was developed for the rapid visual discrimination and quantification of five ADs (imipramine, citalopram, clomipramine, amitriptyline, and sertraline). Benefiting from the differential recognition of molecularly imprinted polymers with the high sensitivity of nanozyme, two imprinted polymers on the surface of nanozymes were prepared as two sensing units by the sol-gel method. The sensor array was constructed by siphoning the imprinted polymers into a capillary, enabling distinct response signals and color changes for recognition of five ADs only consuming 18 μL/time to generate fingerprint images. By coupling fluorescence detection with AI one-click image processing, the proposed sensor array achieves high-performance recognition of five ADs within 7 min with a 100% overall accuracy. With the lower detection limit for identification of five ADs, the nanozyme fluorescence capillary imprinted sensor array was successfully employed for the discrimination of unknown samples in lake water and hospital sewage and freeze-dried with an accuracy of 90.5%. With the advantage of high sensitivity and low reagent consumption, the nanozyme fluorescence capillary imprinted sensor array provides a new strategy for the rapid detection of ADs in trace multipollutant environmental samples.
Collapse
Affiliation(s)
- Qin Zhou
- Key Laboratory of Medicinal Resources Chemistry and Pharmacology in Wuling Mountainous of Hunan Province College, Jishou University, Jishou 416000, PR China
- College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, PR China
| | - Xiangni Wang
- Key Laboratory of Medicinal Resources Chemistry and Pharmacology in Wuling Mountainous of Hunan Province College, Jishou University, Jishou 416000, PR China
- College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, PR China
| | - Xuyun Liu
- Key Laboratory of Medicinal Resources Chemistry and Pharmacology in Wuling Mountainous of Hunan Province College, Jishou University, Jishou 416000, PR China
- College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, PR China
| | - Jianmei Wu
- Key Laboratory of Medicinal Resources Chemistry and Pharmacology in Wuling Mountainous of Hunan Province College, Jishou University, Jishou 416000, PR China
- College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, PR China
| | - Qiuyu Wu
- Key Laboratory of Medicinal Resources Chemistry and Pharmacology in Wuling Mountainous of Hunan Province College, Jishou University, Jishou 416000, PR China
| | - Ruoyan Wang
- Key Laboratory of Medicinal Resources Chemistry and Pharmacology in Wuling Mountainous of Hunan Province College, Jishou University, Jishou 416000, PR China
| | - Liang Yan
- Key Laboratory of Medicinal Resources Chemistry and Pharmacology in Wuling Mountainous of Hunan Province College, Jishou University, Jishou 416000, PR China
| | - Huibin Lei
- College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, PR China
| | - Zhaoxia Yang
- College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, PR China
| | - Zhaohui Zhang
- Key Laboratory of Medicinal Resources Chemistry and Pharmacology in Wuling Mountainous of Hunan Province College, Jishou University, Jishou 416000, PR China
- College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, PR China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, PR China
| |
Collapse
|
5
|
Zheng X, Li C, Yang N, Niu L, Gao F, Wang Q. Electrochemical Sensing of Perfluorooctanoic Acid via a Rationally Designed Fluorine-Functionalized Cu-MOF and In-Depth Analysis of Sensing Mechanism. Anal Chem 2025; 97:6347-6358. [PMID: 40062994 DOI: 10.1021/acs.analchem.5c00745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Perfluorooctanoic acid (PFOA), a prominent member of the per- and polyfluoroalkyl substance (PFAS) family, has emerged as a new perpetual pollutant posing significant environmental and health risks, necessitating developing highly selective materials for its sensitive detection in water. In this work, we developed an electroactive fluorine-functionalized Cu-MOF (F-Cu-NH2BDC) through postmodification of the copper-2-amino-terephthalic acid (Cu-NH2BDC) MOF with 2,3,5,6-tetrafluoroterephthalaldehyde (TFTA). Experimental and computational results suggested that F-F interactions between the decorated tetrafluorobenzaldehyde groups and PFOA, as well as among the PFOA molecules themselves, would induce self-aggregation of PFOA molecules on the surfaces or in the pores of F-Cu-NH2BDC. This specific aggregation inhibited contact and electron transfer between F-Cu-NH2BDC and the electrolyte, resulting in a decrease in the inherent electrochemical Cu2+/Cu+ redox signal from F-Cu-NH2BDC. Based on this, an F-Cu-NH2BDC-based label- and probe-free PFOA electrochemical sensor was exploited with an excellent linear range from 5 pM to 500 μM and an extremely low detection limit of 3.54 pM, surpassing most currently reported electrochemical and nonelectrochemical PFAS sensors. This sensor also exhibited good stability, reproducibility, and anti-interference performance, enabling the accurate measurement of PFOA concentrations in actual commercial drinking water. These findings shed light on the design of PFAS sensors utilizing the F-F interaction as the working mechanism.
Collapse
Affiliation(s)
- Xuan Zheng
- Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000 P. R. China
| | - Cun Li
- Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000 P. R. China
| | - Nairong Yang
- Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000 P. R. China
| | - Li Niu
- Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000 P. R. China
- Guangzhou Key Laboratory of Sensing Materials and Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Feng Gao
- Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000 P. R. China
| | - Qingxiang Wang
- Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000 P. R. China
| |
Collapse
|
6
|
Leoi MWN, Zheng XT, Yu Y, Gao J, Ong DHS, Koh CZH, Chen P, Yang L. Redefining Metal Organic Frameworks in Biosensors: Where Are We Now? ACS APPLIED MATERIALS & INTERFACES 2025; 17:13246-13278. [PMID: 39984305 DOI: 10.1021/acsami.4c19307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2025]
Abstract
As a broad class of porous nanomaterials, metal organic frameworks (MOFs) exhibit unique properties, such as broad tunability, high stability, atomically well-defined structure, and ordered uniform porosity. These features facilitate the rational design of MOFs as an outstanding nanomaterial candidate in biosensing, therapeutics delivery, and catalysis applications. Recently, novel modifications of the MOF nanoarchitecture and incorporation of synergistic guest materials have been investigated to achieve well-tailored functional design, gradually bridging the fundamental gap between structure and targeted activity. Specifically, the burgeoning studies of MOF-based high-performance biosensors have aimed to achieve high sensitivity, selectivity, and stability for a large variety of analytes in different sensing matrices. In this review, we elaborate the key roles of MOF nanomaterials in biosensors, including their high stability as a protective framework for biomolecules, their intrinsic sensitivity-enhancing functionalities, and their contribution of catalytic activity as a nanozyme. By examining the main structures of MOFs, we further identify varied structural engineering approaches, such as precursor tuning and guest molecule incorporation, that elucidate the concept of the structure-activity relationship of MOFs. Furthermore, we highlight the unique applications of MOF nanomaterials in electrochemical and optical biosensors for enhanced sensor performances. Finally, the challenges and future perspectives of developing next-generation MOF nanomaterials for biosensor applications are discussed.
Collapse
Affiliation(s)
- Melisa Wei Ning Leoi
- Institute of Materials Research and Engineering (IMRE), Agency for Science Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Republic of Singapore
| | - Xin Ting Zheng
- Institute of Materials Research and Engineering (IMRE), Agency for Science Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Yong Yu
- Institute of Materials Research and Engineering (IMRE), Agency for Science Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Jiajia Gao
- Institute of Materials Research and Engineering (IMRE), Agency for Science Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Deborah Hui Shan Ong
- Institute of Materials Research and Engineering (IMRE), Agency for Science Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Republic of Singapore
| | - Clarence Zhi Han Koh
- Institute of Materials Research and Engineering (IMRE), Agency for Science Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Republic of Singapore
| | - Peng Chen
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Republic of Singapore
| | - Le Yang
- Institute of Materials Research and Engineering (IMRE), Agency for Science Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575, Republic of Singapore
| |
Collapse
|
7
|
Tang Y, Li Y, Chen P, Zhong S, Yang Y. Nucleic Acid Aptamer-Based Sensors for Bacteria Detection: A Review. Bioessays 2025; 47:e202400111. [PMID: 39821800 DOI: 10.1002/bies.202400111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 12/01/2024] [Accepted: 12/02/2024] [Indexed: 01/19/2025]
Abstract
Bacteria have a significant impact on human production and life, endangering human life and health, so rapid detection of infectious agents is essential to improve human health. Aptamers, which are pieces of oligonucleotides (DNA or RNA) have been applied to biosensors for bacteria detection due to their high affinity, selectivity, robust chemical stability, and their compatibility with various signal amplification and signal transduction mechanisms. In this review, we summarize the different bacterial aptamers selected in recent years using SELEX technology and discuss the differences in optical and electrochemical bacterial aptamer sensors. In addition the technological developments and innovations in bacterial aptamer sensor technology are introduced. Combining new materials and methods, the efficiency and stability of the sensors have also been improved. This review summarizes the progress of current bacterial aptamer sensors based on their practical application status and provides an outlook on their future development.
Collapse
Affiliation(s)
- Yalan Tang
- Department of Biology and Medicine ,college of Chemistry and Chemical Engineering, Central South University, Changsha, China
| | - Yun Li
- Department of Biology and Medicine ,college of Chemistry and Chemical Engineering, Central South University, Changsha, China
| | - Ping Chen
- Department of Biology and Medicine ,college of Chemistry and Chemical Engineering, Central South University, Changsha, China
| | - Shian Zhong
- Department of Biology and Medicine ,college of Chemistry and Chemical Engineering, Central South University, Changsha, China
- Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, The "Double-First Class" Application Characteristic Discipline of Hunan Province (Pharmaceutical Science), Changsha Medical University, Changsha, China
| | - Yanjing Yang
- Department of Biology and Medicine ,college of Chemistry and Chemical Engineering, Central South University, Changsha, China
| |
Collapse
|
8
|
Chen S, Chen J, Wang X, Yang Z, Lan J, Wang L, Ji B, Yuan Y. Glucose-activated self-cascade antibacterial and pro-angiogenesis nanozyme-functionalized chitosan-arginine thermosensitive hydrogel for chronic diabetic wounds healing. Carbohydr Polym 2025; 348:122894. [PMID: 39567166 DOI: 10.1016/j.carbpol.2024.122894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/07/2024] [Accepted: 10/17/2024] [Indexed: 11/22/2024]
Abstract
Affected by persistent hyperglycemia, diabetic neuropathy, and vasculopathy hinder the progression of wound healing by exacerbating susceptibility to recurrent bacterial infection and impairing vascularization. In order to cater to the requirements of diabetic chronic wound healing at various stages, we designed an antibacterial and pro-angiogenic wound dressing with localized glucose-lowering capacity. In this study, we constructed a copper-based metal-organic framework (MOF) nanozyme and loaded with glucose oxidase (GOX) to prepare Cu-MOF/GOX, which was subsequently integrated with CS-Arg (chitosan modified by L-Arginine) and Pluronic (F127) to fabricate multifunctional Cu-MOF/GOX-Gel thermosensitive hydrogel. The GOX generated H2O2 (hydrogen peroxide) and gluconic acid by consuming high blood glucose at the wound site, thus initiating an efficient antibacterial self-cascade catalytic in the initial stages of wound healing. With the further catalysis of in situ generated H2O2, NO (nitric oxide) was gradually released from the hydrogel, facilitating angiogenesis and accumulation of collagen, thereby expediting subsequent phases of wound healing. Overall, the Cu-MOF/GOX-Gel exhibits a comprehensive ability to locally regulate blood glucose levels, while also synergistically promoting antibacterial activity and angiogenesis, that effectively chronic diabetic wounds healing.
Collapse
Affiliation(s)
- Shuhui Chen
- School of Pharmacy, Shenyang Key Laboratory of Functional Drug Carrier Materials, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, PR China
| | - Jiali Chen
- School of Pharmacy, Shenyang Key Laboratory of Functional Drug Carrier Materials, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, PR China
| | - Xinlong Wang
- School of Pharmacy, Shenyang Key Laboratory of Functional Drug Carrier Materials, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, PR China
| | - Zhaofei Yang
- School of Pharmacy, Shenyang Key Laboratory of Functional Drug Carrier Materials, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, PR China
| | - Jinxi Lan
- School of Pharmacy, Shenyang Key Laboratory of Functional Drug Carrier Materials, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, PR China
| | - Liudi Wang
- School of Pharmacy, Shenyang Key Laboratory of Functional Drug Carrier Materials, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, PR China
| | - Bingjie Ji
- School of Pharmacy, Shenyang Key Laboratory of Functional Drug Carrier Materials, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, PR China
| | - Yue Yuan
- School of Pharmacy, Shenyang Key Laboratory of Functional Drug Carrier Materials, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, PR China.
| |
Collapse
|
9
|
Gao F, Liu M, Wang W, Lou J, Chang Y, Xia N. Aggregation-induced emission-based competitive immunoassays for "signal-on" detection of proteins with multifunctional metal-organic frameworks as signal tags. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 325:125088. [PMID: 39241398 DOI: 10.1016/j.saa.2024.125088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/28/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024]
Abstract
An aggregation-induced emission (AIE)-based strategy was proposed for fluorescence immunoassays of protein biomarkers using Cu-based metal-organic frameworks (Cu-MOFs) to load recombinant targets and enzymes for dual signal amplification. The immunosensing platform was built based on the sequestration and consumption of the substrates of pyrophosphate (PPi) ions by Cu-MOFs and enzymatic catalysis. The negatively charged PPi could trigger the aggregation of positively charged tetraphenylethene (TPE)-substituted pyridinium salt nanoparticles (TPE-Py NPs) by electrostatic interactions, lighting up the fluorescence due to the AIE phenomenon. The consumption of PPi by the captured Cu-MOFs through the Cu2+-PPi chelation interaction and ALP-enzymatic hydrolysis depressed the aggregation of TPE-Py NPs. Capture of the tested targets in samples by the antibodies on the plate surface could prevent the attachment of target/ALP-loaded Cu-MOFs due to the competitive immunoreactions. The "signal-on" competitive immunoassay was applied for the detection of procalcitonin (PCT) as the model analyte with a linear range of 0.01-10 pg/mL and a detection limit down to 8 pg/mL. The conceptual integration of AIE with enzymatic and MOFs-based dual signal amplification endowed fluorescence immunoassays with high sensitivity and selectivity. The surface modification of Cu-MOFs with hexahistine (His6)-tagged recombinant proteins through metal coordination interactions should be evaluable for the design of novel biosensors.
Collapse
Affiliation(s)
- Fengli Gao
- Henan Province Key Laboratory of New Opto-electronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, China
| | - Meiling Liu
- Henan Province Key Laboratory of New Opto-electronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, China
| | - Weiqiang Wang
- Henan Province Key Laboratory of New Opto-electronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, China
| | - Jiaxin Lou
- Henan Province Key Laboratory of New Opto-electronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, China
| | - Yong Chang
- Shiyan Key Laboratory of Biological Resources and Eco-environmental Protection, Department of Chemistry and Environmental Engineering, Hanjiang Normal University, Shiyan 442000 China.
| | - Ning Xia
- Henan Province Key Laboratory of New Opto-electronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, China.
| |
Collapse
|
10
|
Wu W, Yan Y, Xie M, Liu Y, Deng L, Wang H. A critical review on metal organic frameworks (MOFs)-based sensors for foodborne pathogenic bacteria detection. Talanta 2025; 281:126918. [PMID: 39305763 DOI: 10.1016/j.talanta.2024.126918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/15/2024] [Accepted: 09/18/2024] [Indexed: 10/25/2024]
Abstract
The pervasive threat of foodborne pathogenic bacteria necessitates advancements in rapid and reliable detection methods. Traditional approaches suffer from significant limitations including prolonged processing times, limited sensitivity and specificity. This review comprehensively examines the integration of metal organic frameworks (MOFs) with sensor technologies for the enhanced detection of foodborne pathogens. MOFs, with their unique properties such as high porosity, tunable pore sizes, and ease of functionalization, offer new avenues for sensor enhancement. This paper provides a comprehensive analysis of recent developments in MOFs-based sensors, particularly focusing on electrochemical, fluorescence, colorimetric, and surface-enhanced Raman spectroscopy sensors. We have provided a detailed introduction for the operational principles of these sensors, highlighting the role of MOFs play in enhancing their performance. Comparative analyses demonstrate MOFs' superior capabilities in enhancing signal response, reducing response time, and expanding detection limits. This review culminates in presenting MOFs as transformative materials in the detection of foodborne pathogens, paving the way for their broader application in ensuring food safety.
Collapse
Affiliation(s)
- Wenbo Wu
- College of Pharmaceutical Engineering of Traditional Chinese Medicine (TCM), Tianjin University of TCM, Tianjin, 301617, China
| | - Yueling Yan
- College of Pharmaceutical Engineering of Traditional Chinese Medicine (TCM), Tianjin University of TCM, Tianjin, 301617, China
| | - Maomei Xie
- College of Pharmaceutical Engineering of Traditional Chinese Medicine (TCM), Tianjin University of TCM, Tianjin, 301617, China
| | - Yidan Liu
- College of Pharmaceutical Engineering of Traditional Chinese Medicine (TCM), Tianjin University of TCM, Tianjin, 301617, China
| | - Liyi Deng
- College of Pharmaceutical Engineering of Traditional Chinese Medicine (TCM), Tianjin University of TCM, Tianjin, 301617, China
| | - Haixia Wang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine (TCM), Tianjin University of TCM, Tianjin, 301617, China; Tianjin Key Laboratory of Intelligent and Green Pharmaceuticals for TCM, Tianjin, 301617, China; State Key Laboratory of Chinese Medicine Modernization, Tianjin University of TCM, Tianjin, 301617, China.
| |
Collapse
|
11
|
Zhang Y, Zhang C, Qian W, Lei F, Chen Z, Wu X, Lin Y, Wang F. Recent advances in MOF-based nanozymes: Synthesis, activities, and bioapplications. Biosens Bioelectron 2024; 263:116593. [PMID: 39059178 DOI: 10.1016/j.bios.2024.116593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024]
Abstract
Nanozymes have garnered considerable research interest for their unique capacity to bridge nanotechnology and biology. Current studies predominantly concentrate on exploring nanozymes with diverse catalytic activities and their potential applications across various disciplines. Among them, nanoscale metal-organic frameworks (MOFs) are promising nanomaterials for constructing nanozymes. In this review, we firstly introduce the general construction strategies for MOF-based nanozymes. In addition, we also classify the MOF-based nanozymes in detail based on their catalytic performance. Thirdly, the recent research progress of MOF-based nanozymes in the field of biosensing, cancer therapy, antibacterial infection, and antioxidation are also comprehensively reviewed. Finally, we discuss the current challenges and future perspectives of MOF-based nanozymes, with the aim of assisting in their construction and maximizing their potential in bioapplications. It is hoped that we could provide scientists in materials science and biomedical research with valuable and comprehensive information, fostering advancements in interdisciplinary fields.
Collapse
Affiliation(s)
- Yan Zhang
- Institute of Special Environmental Medicine, Nantong University, Nantong, 226019, China.
| | - Chengfeng Zhang
- Institute of Special Environmental Medicine, Nantong University, Nantong, 226019, China
| | - Wanlong Qian
- Institute of Special Environmental Medicine, Nantong University, Nantong, 226019, China
| | - Fang Lei
- School of Public Health, Nantong University, Nantong, 226019, China
| | - Zhongping Chen
- Institute of Special Environmental Medicine, Nantong University, Nantong, 226019, China
| | - Xiaomei Wu
- Institute of Special Environmental Medicine, Nantong University, Nantong, 226019, China
| | - Youhui Lin
- Department of Physics, Xiamen University, Xiamen, 361005, China.
| | - Faming Wang
- School of Public Health, Nantong University, Nantong, 226019, China.
| |
Collapse
|
12
|
Kamal W, Allah AE, Mahmoud R, Farghali AA, Kotp AA, Abdelwahab A. Metal-organic framework-derived nanoflower and nanoflake metal oxides as electrocatalysts for methanol oxidation. RSC Adv 2024; 14:32828-32838. [PMID: 39429937 PMCID: PMC11484592 DOI: 10.1039/d4ra04902k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 09/26/2024] [Indexed: 10/22/2024] Open
Abstract
The energy crisis is the most urgent issue facing contemporary society and needs to be given top priority. As energy consumption rises, environmental pollution is becoming a serious issue. Direct methanol fuel cells (DMFCs) have emerged as the most promising energy source for a variety of applications such as electric vehicles and portable devices. Unfortunately, the kinetics of methanol oxidation is slow and needs an electrocatalyst to improve the reaction kinetics and the overall fuel cell efficiency. Herein, a straightforward hydrothermal procedure was utilized to prepare copper, nickel, and cobalt-based MOF composites by altering the elemental molar ratios. Cu-MOF (MOFP1), Cu/Ni-MOF (MOFP2), and Cu/Ni/Co-MOF (MOFP3) were prepared after carbonization and characterized using several key techniques such as FTIR, XRD, SEM, and EDX. The SEM analysis reveals that the morphology of MOFP1 is spherical aggregated particles, while that of MOFP2 or MOFP3 is in the form of nanoflakes and nanoflowers. Moreover, upon application of these composites as electrocatalysts for methanol electro-oxidation in an alkaline medium of 1 M NaOH using cyclic voltammetry (CV) and chronoamperometry (CA) tests, the electrochemical performance of MOFP2 in 1 M methanol exhibits the best performance for methanol oxidation with a current density reaching 38.77 mA cm-2 at a scan rate of 60 mV s-1. This can be attributed to the unique porous open flower structure and the synergistic effect between copper, nickel, and 2-aminoterephthalic acid which develop its catalytic activity.
Collapse
Affiliation(s)
- W Kamal
- Department of Chemistry, Faculty of Science, Beni-Suef University 62514 Beni-Suef Egypt
| | - Abeer Enaiet Allah
- Department of Chemistry, Faculty of Science, Beni-Suef University 62514 Beni-Suef Egypt
| | - Rehab Mahmoud
- Department of Chemistry, Faculty of Science, Beni-Suef University 62514 Beni-Suef Egypt
| | - Ahmed A Farghali
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Science (PSAS), Beni-Suef University 62511 Beni-Suef Egypt
| | - Amna A Kotp
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Science (PSAS), Beni-Suef University 62511 Beni-Suef Egypt
| | - Abdalla Abdelwahab
- Department of Chemistry, Faculty of Science, Beni-Suef University 62514 Beni-Suef Egypt
- Department of Chemistry, College of Sciences, University of Ha'il Ha'il 81451 Saudi Arabia
| |
Collapse
|
13
|
Li S, Sun Z, He Z, Liu M. Colorimetric aptasensor based on peroxidase-mimetic metal-organic framework nanoparticles and magnetic carbon dots for visual detection of Staphylococcus aureus. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:6538-6545. [PMID: 39248651 DOI: 10.1039/d4ay01044b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
A colorimetric aptasensor based on the dual recognition of magnetic carbon dots (M-CDs) and copper-based metal-organic frameworks (Cu-MOFs) was constructed for the visual detection of Staphylococcus aureus (S. aureus). Aptamer-modified Cu-MOFs could specifically identify target bacteria and exhibited peroxidase-like activity by catalyzing the colorimetric reaction of the 3,3',5,5'-tetramethylbenzidine-H2O2 (TMB-H2O2) system. M-CDs electrostatically attracted bacteria because of their strong positive electrical properties and offered better capturing performance compared with magnetic beads owing to their smaller size. Visual detection of the target was achieved using the color change of the reaction catalyzed by the resuspension of the sandwich-structured complex. The bacteria were sensitively detected with a limit of detection (LOD) of 1 CFU mL-1 using the peroxidase catalytic activity of Cu-MOFs. Non-target bacteria produced negative results, demonstrating the excellent selectivity of the proposed aptasensor. The strategy showed good recovery in real sample detection, showing great potential for visual monitoring of pathogenic bacteria, and could provide a reference for further development of novel sensing platforms for bacterial detection.
Collapse
Affiliation(s)
- Shanglin Li
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
| | - Zhaomeng Sun
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
| | - Ziyang He
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
| | - Mei Liu
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
14
|
Tang S, Cai J, Zhou K, Mei Z, Huang D, Liu L, Yang L, Yin D, Hu L. Cu-MOFs@AuPtNPs nanozyme-based immunosorbent assay for colorimetric detection of alpha-fetoprotein. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:6443-6450. [PMID: 39225244 DOI: 10.1039/d4ay01410c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Accurate detection of tumor biomarkers in blood is crucial for diagnosing and treating tumor disease. In this study, a metal enzyme-linked immunosorbent assay (MeLISA) was fabricated for the ultrasensitive and naked-eye detection of tumor biomarker alpha-fetoprotein (AFP) in clinical serum samples. Herein, novel copper metal-organic frameworks and gold platinum nanoparticle composites (Cu-MOFs@AuPtNPs) were synthesized for the first time by an in situ method, which showed an enormous specific surface area and excellent peroxidase (POx) mimicking properties. Cu-MOFs@AuPtNPs linked with antibodies targeting AFP served as a signal nanoprobe to amplify the detection signal. Additionally, the specificity of MeLISA was significantly enhanced through a conventional antigen-antibody reaction and efficient blocking of non-specific sites with BSA. Under optimal conditions, the sandwich-type MeLISA exhibited a wide range from 0.001 to 1000 ng mL-1 (R2 = 0.997) and a low detection limit of 0.86 pg mL-1 (S/N = 3) with acceptable stability, selectivity, and reproducibility. It is noteworthy that the suggested MeLISA performed exceptionally well in detecting clinical serum samples, which were visible to the naked eye and did not require complex platforms. To sum up, the innovative MeLISA based on Cu-MOFs@AuPtNPs provides an alternative method for early cancer diagnosis, particularly in economically backward areas where simple diagnostic apparatus is extremely desirable.
Collapse
Affiliation(s)
- Sitian Tang
- Department of Clinical Laboratory Medicine, The People's Hospital of Chongqing Liangjiang New Area, No. 199 Ren Xing Road, Yubei, Chongqing, 401121, PR China.
| | - Juan Cai
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University, Chongqing, 400038, PR China
| | - Kai Zhou
- Department of Spine Surgery, The People's Hospital of Chongqing Liangjiang New Area, No. 199 Ren Xing Road, Yubei, Chongqing, 401121, PR China
| | - Zhu Mei
- Department of Clinical Laboratory Medicine, The People's Hospital of Chongqing Liangjiang New Area, No. 199 Ren Xing Road, Yubei, Chongqing, 401121, PR China.
| | - Dongmei Huang
- Department of Clinical Laboratory Medicine, The People's Hospital of Chongqing Liangjiang New Area, No. 199 Ren Xing Road, Yubei, Chongqing, 401121, PR China.
| | - Ling Liu
- Department of Clinical Laboratory Medicine, The People's Hospital of Chongqing Liangjiang New Area, No. 199 Ren Xing Road, Yubei, Chongqing, 401121, PR China.
| | - Lunyu Yang
- Department of Clinical Laboratory Medicine, The People's Hospital of Chongqing Liangjiang New Area, No. 199 Ren Xing Road, Yubei, Chongqing, 401121, PR China.
| | - Dan Yin
- Department of Clinical Laboratory Medicine, The People's Hospital of Chongqing Liangjiang New Area, No. 199 Ren Xing Road, Yubei, Chongqing, 401121, PR China.
| | - Liyi Hu
- Department of Clinical Laboratory Medicine, The People's Hospital of Chongqing Liangjiang New Area, No. 199 Ren Xing Road, Yubei, Chongqing, 401121, PR China.
| |
Collapse
|
15
|
Liu J, Wang X, Sun Y, Luo C. A novel chemiluminescence sensor for alpha-fetoprotein detection based on an aptamer-luminol modified magnetic graphene oxide and copper-based MOF composite. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:5723-5732. [PMID: 39140150 DOI: 10.1039/d4ay01175a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Herein, an aptamer-luminol modified magnetic graphene oxide and copper-based MOF composite was prepared and used to build a novel target-triggered "turn on" chemiluminescence (CL) sensor for alpha-fetoprotein (AFP) detection. Magnetic graphene oxide (MGO) was functionalized with the complementary sequence of the AFP aptamer (cDNA), and then MGO-cDNA was linked to aptamer modified luminol (Apt-luminol) through the complementary base pairing effect. The functionalized magnetic graphene oxide (MGO-cDNA/Apt-luminol) was prepared as a specific magnetic separation and signal switch material. ZnONPs-Au@CuMOFs shows excellent catalytic performance and was used as a catalyst for the luminol-H2O2 reaction. AFP will specifically recognize and bind to Apt on MGO-cDNA/Apt-luminol when AFP is present, which causes luminol release and triggers the CL reaction. The released luminol encounters ZnONPs-Au@CuMOFs and produces strong CL intensity. Therefore, a novel target-triggered "turn on" CL method with high selectivity and sensitivity for detecting AFP has been established. The linear range and detection limit were 1.0 × 10-4-50 ng mL-1 and 4.2 × 10-5 ng mL-1, respectively. The sensor also exhibited good selectivity, reproducibility and stability, and was finally used for AFP detection in serum samples.
Collapse
Affiliation(s)
- Juntao Liu
- Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China
| | - Xueying Wang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China.
| | - Yuanling Sun
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China.
| | - Chuannan Luo
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China.
| |
Collapse
|
16
|
Zhang Z, Yu X, Peng X, Qi W, Wang M. A facile nanozyme-based colorimetric method to realize the quantitative and specific detection of casein phosphopeptides in food samples. Talanta 2024; 276:126212. [PMID: 38723475 DOI: 10.1016/j.talanta.2024.126212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/29/2024] [Accepted: 05/04/2024] [Indexed: 06/14/2024]
Abstract
As a popular nutritional enhancer, casein phosphopeptides (CPPs) have attracted growing attention in food industry. However, conventional methods for CPPs detection are usually less precise or requires expensive instruments. Herein, a nanozyme-based colorimetric method was developed to achieve the quantitative detection of CPPs in food samples. This method is based on a facilely fabricated peroxidase-like nanozyme (Fe@UiO-66), which combines the specific binding of CPPs, as well as the nanozyme-catalyzed colorimetric sensing that can be easily detected by spectrometer. The method displayed good quantitative ability toward CPPs with the linear range of 2-30 μg/mL, the low limit of detection of 0.267 μg/mL and limit of quantification of 1.335 μg/mL. We highlighted the specificity, anti-interference and practicability of this method, by investigating the performances toward food samples. Besides, a smartphone-based colorimetric sensing platform was also established, which is conducive to the portable detection. The developed nanozyme-based colorimetric sensing method provides a promising strategy for CPPs detection in food samples.
Collapse
Affiliation(s)
- Zhiyi Zhang
- School of Life Sciences, Tianjin University, Tianjin, 300072, PR China; School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, 300350, PR China.
| | - Xiaoxiao Yu
- School of Life Sciences, Tianjin University, Tianjin, 300072, PR China; School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, 300350, PR China.
| | - Xin Peng
- School of Life Sciences, Tianjin University, Tianjin, 300072, PR China.
| | - Wei Qi
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, 300350, PR China; Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin, 300072, PR China; The Co-Innovation Centre of Chemistry and Chemical Engineering of Tianjin, Tianjin, 300350, PR China.
| | - Mengfan Wang
- School of Life Sciences, Tianjin University, Tianjin, 300072, PR China; School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, 300350, PR China; Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin, 300072, PR China.
| |
Collapse
|
17
|
Patil PD, Kelkar RK, Patil NP, Pise PV, Patil SP, Patil AS, Kulkarni NS, Tiwari MS, Phirke AN, Nadar SS. Magnetic nanoflowers: a hybrid platform for enzyme immobilization. Crit Rev Biotechnol 2024; 44:795-816. [PMID: 37455411 DOI: 10.1080/07388551.2023.2230518] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 04/04/2023] [Indexed: 07/18/2023]
Abstract
The use of organic-inorganic hybrid nanoflowers as a support material for enzyme immobilization has gained significant attention in recent years due to their high stability, ease of preparation, and enhanced catalytic activity. However, a major challenge in utilizing these hybrid nanoflowers for enzyme immobilization is the difficulty in handling and separating them due to their low density and high dispersion. To address this issue, magnetic nanoflowers have emerged as a promising alternative enzyme immobilization platform due to their easy separation, structural stability, and ability to enhance catalytic efficiency. This review focuses on different methods for designing magnetic nanoflowers, as well as future research directions. Additionally, it provides examples of enzymes immobilized in the form of magnetic nanoflowers and their applications in environmental remediation, biosensors, and food industries. Finally, the review discusses possible ways to improve the material for enhanced catalytic activity, structural stability, and scalability.
Collapse
Affiliation(s)
- Pravin D Patil
- Department of Basic Science & Humanities, SVKM'S NMIMS Mukesh Patel School of Technology Management & Engineering, Mumbai, Maharashtra, India
| | - Radhika K Kelkar
- Department of Biotechnology Engineering, Kolhapur Institute of Technology's College of Engineering (Autonomous), Kolhapur, India
| | - Neha P Patil
- Department of Biotechnology Engineering, Kolhapur Institute of Technology's College of Engineering (Autonomous), Kolhapur, India
| | - Pradnya V Pise
- Department of Biological Engineering, Indian Institute of Technology, Gandhinagar, Gandhinagar, India
| | - Sadhana P Patil
- Department of Biotechnology, National Institute of Technology, Tadepalligudam, India
| | - Arundhatti S Patil
- Department of Biotechnology Engineering, Kolhapur Institute of Technology's College of Engineering (Autonomous), Kolhapur, India
| | - Nishant S Kulkarni
- Department of Biotechnology Engineering, Kolhapur Institute of Technology's College of Engineering (Autonomous), Kolhapur, India
| | - Manishkumar S Tiwari
- Department of Chemical Engineering, SVKM'S NMIMS Mukesh Patel School of Technology Management & Engineering, Mumbai, Maharashtra, India
| | - Ajay N Phirke
- Department of Chemical Engineering, SVKM'S NMIMS Mukesh Patel School of Technology Management & Engineering, Mumbai, Maharashtra, India
| | - Shamraja S Nadar
- Department of Chemical Engineering, Institute of Chemical Technology, Mumbai, India
| |
Collapse
|
18
|
Cheng Z, He G, Liao R, Tan Y, Deng W. A sensitive immunosensing platform based on the high cathodic photoelectrochemical activity of Zr-MOF and dual-signal amplification of peroxidase-mimetic Fe-MOF. Bioelectrochemistry 2024; 157:108677. [PMID: 38430576 DOI: 10.1016/j.bioelechem.2024.108677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 02/20/2024] [Accepted: 02/27/2024] [Indexed: 03/04/2024]
Abstract
Cathodic photoelectrochemical (PEC) analysis has received special concerns because of its outstanding anti-interference capability toward reductive substances in samples, so it is highly desirable to develop high-performance photocathodic materials for PEC analysis. Herein, a Zr-based metal-organic framework (Zr-MOF), MOF-525, is explored as a photoactive material in aqueous solution for the first time, which shows a narrow band-gap of 1.82 eV, excellent visible-light absorption, and high cathodic PEC activity. A sandwiched-type PEC immunosensor for detecting prostate-specific antigen (PSA) is fabricated by using MIL-101-NH2(Fe) label and MOF-525 photoactive material. MIL-101-NH2(Fe) as a typical Fe-MOF can serve as a peroxidase mimic to catalyze the production of precipitates on the photoelectrode. Both the produced precipitates and the MIL-101-NH2(Fe) labels can quench the photocathodic current, enabling "signal-off" immunosensing of PSA. The detection limit is 3 fg mL-1, and the linear range is between 10 fg mL-1 and 100 ng mL-1 for detecting PSA. The present study not only develops a high-performance Zr-MOF photoactive material for cathodic PEC analysis but also constructs a sensitive PEC immunosensing platform based on the dual-signal amplification of peroxidase-mimetic Fe-MOF.
Collapse
Affiliation(s)
- Zhong Cheng
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Guihua He
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Rong Liao
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Yueming Tan
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China.
| | - Wenfang Deng
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha 410081, China.
| |
Collapse
|
19
|
Liu MC, Wei JZ, Xie LH, Jing CY, Yu Y, Qiao Y, Zhang FM. Electrochemical Synthesis and Electrocatalytic Oxygen-Evolution Performance of Two-Dimensional NiCo-BPDC Materials. Chempluschem 2024; 89:e202300640. [PMID: 37947764 DOI: 10.1002/cplu.202300640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/12/2023]
Abstract
Metal-organic frameworks (MOFs) have been widely studied as electrocatalysts, and the research strategy to improve their electrocatalytic oxygen evolution reaction (OER) performance is to modify their structure. In this paper, two-dimensional bimetallic MOFs were constructed to improve electrocatalytic OER performance. Using a mild electrochemical method with Ni and Co as metal sources and 4, 4 '-biphenyl dicarboxylic acid (H2BPDC) as ligand, two-dimensional NiCo-BPDC was synthesized and then deposited on a carbon cloth electrode. The results show that NiCo-BPDC/CC possessed a low overpotential of 356 mV at a current density of 20 mA cm-2 with a small Tafel slope of 86 mV dec-1 in 1.0 M KOH solution. The two-dimensional NiCo-BPDC exhibits excellent electrocatalytic OER performance because the coordination of Ni and Co in the material and the interaction of the two-dimensional materials provide a large electrochemically active surface area and expose more metal active sites for OER, thus improving the reaction efficiency and indicating NiCo-BPDC as potential OER electrocatalyst.
Collapse
Affiliation(s)
- Mei-Chen Liu
- Key Laboratory of CO2 resource utilization and energy catalytic materials in Heilongjiang Province, School of Material Science and Chemical Engineering, Harbin University of Science and Technology, No.4, Linyuan Road, Harbin, 150040, P. R. China
| | - Jin-Zhi Wei
- Key Laboratory of CO2 resource utilization and energy catalytic materials in Heilongjiang Province, School of Material Science and Chemical Engineering, Harbin University of Science and Technology, No.4, Linyuan Road, Harbin, 150040, P. R. China
| | - Lu-Hang Xie
- Key Laboratory of CO2 resource utilization and energy catalytic materials in Heilongjiang Province, School of Material Science and Chemical Engineering, Harbin University of Science and Technology, No.4, Linyuan Road, Harbin, 150040, P. R. China
| | - Chang-Yi Jing
- Key Laboratory of CO2 resource utilization and energy catalytic materials in Heilongjiang Province, School of Material Science and Chemical Engineering, Harbin University of Science and Technology, No.4, Linyuan Road, Harbin, 150040, P. R. China
| | - Yue Yu
- Key Laboratory of CO2 resource utilization and energy catalytic materials in Heilongjiang Province, School of Material Science and Chemical Engineering, Harbin University of Science and Technology, No.4, Linyuan Road, Harbin, 150040, P. R. China
| | - Yu Qiao
- Key Laboratory of CO2 resource utilization and energy catalytic materials in Heilongjiang Province, School of Material Science and Chemical Engineering, Harbin University of Science and Technology, No.4, Linyuan Road, Harbin, 150040, P. R. China
| | - Feng-Ming Zhang
- Key Laboratory of CO2 resource utilization and energy catalytic materials in Heilongjiang Province, School of Material Science and Chemical Engineering, Harbin University of Science and Technology, No.4, Linyuan Road, Harbin, 150040, P. R. China
| |
Collapse
|
20
|
Ramesh M, Umamatheswari S, Vivek PM, Sankar C, Jayavel R. Synthesis of silver‑bismuth oxide encapsulated hydrazone functionalized chitosan (AgBi 2O 3/FCS) nanocomposite for electrochemical sensing of glucose, H 2O 2 and Escherichia coli O157:H7. Int J Biol Macromol 2024; 264:130533. [PMID: 38428782 DOI: 10.1016/j.ijbiomac.2024.130533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/19/2024] [Accepted: 02/27/2024] [Indexed: 03/03/2024]
Abstract
In this work, silver‑bismuth oxide encapsulated 1,3,5-triazine-bis(4-methylbenzenesulfonyl)-hydrazone functionalized chitosan (SBO/FCS) nanocomposite was synthesized by a simple hydrothermal method. The amine (-NH2) group was functionalized by the addition of cyanuric acid chloride followed by 4-methylbenzenesulfonol hydrazide. The SBO/FCS has been characterized by FT-IR, X-ray diffraction, XPS, HR-SEM, HR-TEM, AFM, and thermogravimetry (TGA). Under the optimum conditions, the SBO/FCS sensor showed brilliant electrochemical accomplishment for the sensing of glucose and H2O2 by a limit of detection (LOD) of 0.057 μM and 0.006 μM. It also showed linearity for glucose 0.008-4.848 mM and for H2O2 of 0.01-6.848 mM. Similarly, the sensor exhibited a low sensitivity to glucose (32 μA mM-1 cm-2) and a good sensitivity to H2O2 (295 μA mM-1 cm-2). In addition, that the prepared electrode could be used to sense the glucose and H2O2 levels in real samples such as blood serum and HeLa cell lines. The screen printed electrode (SPE) immunosensor could sense the E. coli O157:H7 concurrently and quantitatively with a linear range of 1.0 × 101-1.0 × 109 CFU mL-1 and a LOD of 4 CFU mL-1. Likewise, the immunosensor efficiently detect spiked E. coli O157:H7 in milk, chicken, and pork samples, with recoveries ranging from 89.70 to 104.72 %, demonstrating that the immunosensor was accurate and reliable.
Collapse
Affiliation(s)
- M Ramesh
- PG and Research Department of Chemistry, Government Arts College (Affiliated to Bharathidasan University), Tiruchirappalli 620 022, Tamil Nadu, India
| | - S Umamatheswari
- PG and Research Department of Chemistry, Government Arts College (Affiliated to Bharathidasan University), Tiruchirappalli 620 022, Tamil Nadu, India.
| | - P M Vivek
- Department of Chemistry, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology (Deemed University), Chennai 600 062, Tamil Nadu, India
| | - C Sankar
- Department of Chemistry, Velammal College of Engineering and Technology, Madurai 625 009, Tamil Nadu, India.
| | - R Jayavel
- Centre for Nanoscience and Technology, Anna University, Chennai 600 025, Tamil Nadu, India
| |
Collapse
|
21
|
Xia N, Liu G, Chen Y, Wu T, Liu L, Yang S, Li Y. Magnetically-assisted electrochemical immunoplatform for simultaneous detection of active and total prostate-specific antigen based on proteolytic reaction and sandwich affinity analysis. Talanta 2024; 270:125534. [PMID: 38091743 DOI: 10.1016/j.talanta.2023.125534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 11/28/2023] [Accepted: 12/05/2023] [Indexed: 01/27/2024]
Abstract
Simultaneous detection of active and inactive proteases is clinically meaningful for improving diagnostic specificity. In this work, we reported an electrochemical method for simultaneous immunoassays of active and total proteases. Magnetic beads (MBs) were used as the solid supports for immobilization of capture antibodies and enrichment of targets. For the detection of active protease, the proteolytic-reaction-based analysis was carried out by the generation of Cu2+-binding peptide, in which a label-free peptide was used as the proteolytic substrate. The redox potential of the resulting peptide-Cu2+ complex was intrinsically distinguished from that of free Cu2+, thus allowing the "signal-on" detection of active protease. For the immunoassay of total protease in a sandwich-like format, electroactive metal-organic frameworks (Cu-MOFs) were used as the signal tags. The captured Cu-MOFs could directly produce a well-defined electrochemical signal from the reduction of Cu2+ ions. The analytical performances of the immunoplatform were evaluated by determining the model analytes of free and total prostate-specific antigen (fPSA and tPSA) in buffer and serum. The detection limits were found to be 0.3 pM for fPSA and 2 pM for tPSA. This work proposed a new strategy for simultaneous detection of active and total proteases, which should be evaluable for clinical diagnosis and treatment of protease-relative diseases.
Collapse
Affiliation(s)
- Ning Xia
- Henan Province of Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan, 455000, People's Republic of China.
| | - Gang Liu
- Henan Province of Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan, 455000, People's Republic of China; College of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, Henan, 450001, People's Republic of China
| | - Yonghong Chen
- Henan Province of Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan, 455000, People's Republic of China
| | - Tong Wu
- College of Chemistry and Environmental Engineering, Anyang Institute of Technology, Anyang, Henan, 455000, People's Republic of China
| | - Lin Liu
- Henan Province of Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan, 455000, People's Republic of China
| | - Suling Yang
- Henan Province of Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan, 455000, People's Republic of China
| | - Yuanyuan Li
- College of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, Henan, 450001, People's Republic of China.
| |
Collapse
|
22
|
Lin X, Li J, Wu J, Guo K, Duan N, Wang Z, Wu S. Fe-Co-Based Metal-Organic Frameworks as Peroxidase Mimics for Sensitive Colorimetric Detection and Efficient Degradation of Aflatoxin B 1. ACS APPLIED MATERIALS & INTERFACES 2024; 16:11809-11820. [PMID: 38386848 DOI: 10.1021/acsami.3c18878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Building multifunctional platforms for integrating the detection and control of hazards has great significance in food safety and environment protection. Herein, bimetallic Fe-Co-based metal-organic frameworks (Fe-Co-MOFs) peroxidase mimics are prepared and applied to develop a bifunctional platform for the synergetic sensitive detection and controllable degradation of aflatoxin B1 (AFB1). On the one hand, Fe-Co-MOFs with excellent peroxidase-like activity are combined with target-induced catalyzed hairpin assembly (CHA) to construct a colorimetric aptasensor for the detection of AFB1. Specifically, the binding of aptamer with AFB1 releases the prelocked Trigger to initiate the CHA cycle between hairpin H2-modified Fe-Co-MOFs and hairpin H1-tethered magnetic nanoparticles to form complexes. After magnetic separation, the colorimetric signal of the supernatant in the presence of TMB and H2O2 is inversely proportional to the target contents. Under optimal conditions, this biosensor enables the analysis of AFB1 with a limit of detection of 6.44 pg/mL, and high selectivity and satisfactory recovery in real samples are obtained. On the other hand, Fe-Co-MOFs with remarkable Fenton-like catalytic degradation performance for organic contaminants are further used for the detoxification of AFB1 after colorimetric detection. The AFB1 is almost completely removed within 120 min. Overall, the introduction of CHA improves the sensing sensitivity; efficient postcolorimetric-detection degradation of AFB1 reduces the secondary contamination and risk to the experimental environment and operators. This strategy is expected to provide ideas for designing other multifunctional platforms to integrate the detection and degradation of various hazards.
Collapse
Affiliation(s)
- Xianfeng Lin
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jin Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jiajun Wu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Kaixi Guo
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Nuo Duan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Shijia Wu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
23
|
Paknia F, Roostaee M, Isaei E, Mashhoori MS, Sargazi G, Barani M, Amirbeigi A. Role of Metal-Organic Frameworks (MOFs) in treating and diagnosing microbial infections. Int J Biol Macromol 2024; 262:130021. [PMID: 38331063 DOI: 10.1016/j.ijbiomac.2024.130021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 01/22/2024] [Accepted: 02/05/2024] [Indexed: 02/10/2024]
Abstract
This review article highlights the innovative role of metal-organic frameworks (MOFs) in addressing global healthcare challenges related to microbial infections. MOFs, comprised of metal nodes and organic ligands, offer unique properties that can be applied in the treatment and diagnosis of these infections. Traditional methods, such as antibiotics and conventional diagnostics, face issues such as antibiotic resistance and diagnostic limitations. MOFs, with their highly porous and customizable structure, can encapsulate and deliver therapeutic or diagnostic molecules precisely. Their large surface area and customizable pore structures allow for sensitive detection and selective recognition of microbial pathogens. They also show potential in delivering therapeutic agents to infection sites, enabling controlled release and possible synergistic effects. However, challenges like optimizing synthesis techniques, enhancing stability, and developing targeted delivery systems remain. Regulatory and safety considerations for clinical translation also need to be addressed. This review not only explores the potential of MOFs in treating and diagnosing microbial infections but also emphasizes their unique approach and discusses existing challenges and future directions.
Collapse
Affiliation(s)
- Fatemeh Paknia
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran 14115-154, Iran
| | - Maryam Roostaee
- Department of Chemistry, Faculty of Sciences, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
| | - Elham Isaei
- Noncommunicable Diseases Research Center, Bam University of Medical Sciences, Bam, Iran.
| | - Mahboobeh-Sadat Mashhoori
- Department of Chemistry, Faculty of Science, University of Birjand, P.O.Box 97175-615, Birjand, Iran
| | - Ghasem Sargazi
- Noncommunicable Diseases Research Center, Bam University of Medical Sciences, Bam, Iran
| | - Mahmood Barani
- Student Research Committee, Kerman University of Medical Sciences, Kerman 7616913555, Iran; Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman 7616913555, Iran.
| | - Alireza Amirbeigi
- Department of General Surgery, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
24
|
An Y, Fang X, Cheng J, Yang S, Chen Z, Tong Y. Research progress of metal-organic framework nanozymes in bacterial sensing, detection, and treatment. RSC Med Chem 2024; 15:380-398. [PMID: 38389881 PMCID: PMC10880901 DOI: 10.1039/d3md00581j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/30/2023] [Indexed: 02/24/2024] Open
Abstract
The high efficiency and specificity of enzymes make them play an important role in life activities, but the high cost, low stability and high sensitivity of natural enzymes severely restrict their application. In recent years, nanozymes have become convincing alternatives to natural enzymes, finding utility across diverse domains, including biosensing, antibacterial interventions, cancer treatment, and environmental preservation. Nanozymes are characterized by their remarkable attributes, encompassing high stability, cost-effectiveness and robust catalytic activity. Within the contemporary scientific landscape, metal-organic frameworks (MOFs) have garnered considerable attention, primarily due to their versatile applications, spanning catalysis. Notably, MOFs serve as scaffolds for the development of nanozymes, particularly in the context of bacterial detection and treatment. This paper presents a comprehensive review of recent literature pertaining to MOFs and their pivotal role in bacterial detection and treatment. We explored the limitations and prospects for the development of MOF-based nanozymes as a platform for bacterial detection and therapy, and anticipate their great potential and broader clinical applications in addressing medical challenges.
Collapse
Affiliation(s)
- Yiwei An
- School of Pharmacy, Guangdong Medical University Dongguan 523808 China
- Guangdong Second Provincial General Hospital Guangzhou 510317 China
| | - Xuankun Fang
- School of Pharmacy, Guangdong Medical University Dongguan 523808 China
- Guangdong Second Provincial General Hospital Guangzhou 510317 China
| | - Jie Cheng
- School of Pharmaceutical Sciences, SunYat-sen University Guangzhou 510006 China +86 20 39943071 +86 20 39943044
| | - Shuiyuan Yang
- Guangdong Second Provincial General Hospital Guangzhou 510317 China
| | - Zuanguang Chen
- School of Pharmaceutical Sciences, SunYat-sen University Guangzhou 510006 China +86 20 39943071 +86 20 39943044
| | - Yanli Tong
- School of Pharmacy, Guangdong Medical University Dongguan 523808 China
- Guangdong Second Provincial General Hospital Guangzhou 510317 China
| |
Collapse
|
25
|
Liu S, Zhou J, Yuan X, Xiong J, Zong MH, Wu X, Lou WY. A dual-mode sensing platform based on metal-organic framework for colorimetric and ratiometric fluorescent detection of organophosphorus pesticide. Food Chem 2024; 432:137272. [PMID: 37657347 DOI: 10.1016/j.foodchem.2023.137272] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/11/2023] [Accepted: 08/22/2023] [Indexed: 09/03/2023]
Abstract
Pesticide residues have raised considerable concern about environmental health and food safety. Despite a great advance in enzymatic sensors for pesticide detection, the intrinsic fragility of native enzyme and possible fake results due to single mode signal have hindered its wide application. Here, a novel dual-mode sensor is reported for organophosphorus pesticide detection by using metal-organic framework (MOF) nanozyme NH2-CuBDC as sensing element. The intrinsic peroxidase-mimicking activity and fluorescence property of NH2-CuBDC enable both colorimetric and fluorescent detection of chlorpyrifos. Compared with previously reported chlorpyrifos sensors, our sensor exhibits outstanding sensitivity, and the limits of detection (LOD, S/N = 3) in colorimetric and fluorescent modes are 1.57 ng/mL and 2.33 ng/mL, respectively. No obvious interferences from other substances were measured and chlorpyrifos analysis in real samples presented good reliability, showing practical potential. This work is anticipated to provide new insights to develop multifunctional nanozymes and integrated multi-mode sensing platforms.
Collapse
Affiliation(s)
- Shuli Liu
- Lab of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, No. 381 Wushan Road, Guangzhou, Guangdong 510640, China
| | - Jintao Zhou
- Lab of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, No. 381 Wushan Road, Guangzhou, Guangdong 510640, China
| | - Xin Yuan
- Lab of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, No. 381 Wushan Road, Guangzhou, Guangdong 510640, China
| | - Jun Xiong
- Lab of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, No. 381 Wushan Road, Guangzhou, Guangdong 510640, China
| | - Min-Hua Zong
- Lab of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, No. 381 Wushan Road, Guangzhou, Guangdong 510640, China
| | - Xiaoling Wu
- Lab of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, No. 381 Wushan Road, Guangzhou, Guangdong 510640, China; Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, No. 381 Wushan Road, Guangzhou 510640, Guangdong, China.
| | - Wen-Yong Lou
- Lab of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, No. 381 Wushan Road, Guangzhou, Guangdong 510640, China; Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, No. 381 Wushan Road, Guangzhou 510640, Guangdong, China.
| |
Collapse
|
26
|
Ioannou P, Baliou S, Samonis G. Nanotechnology in the Diagnosis and Treatment of Antibiotic-Resistant Infections. Antibiotics (Basel) 2024; 13:121. [PMID: 38391507 PMCID: PMC10886108 DOI: 10.3390/antibiotics13020121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/21/2024] [Accepted: 01/23/2024] [Indexed: 02/24/2024] Open
Abstract
The development of antimicrobial resistance (AMR), along with the relative reduction in the production of new antimicrobials, significantly limits the therapeutic options in infectious diseases. Thus, novel treatments, especially in the current era, where AMR is increasing, are urgently needed. There are several ongoing studies on non-classical therapies for infectious diseases, such as bacteriophages, antimicrobial peptides, and nanotechnology, among others. Nanomaterials involve materials on the nanoscale that could be used in the diagnosis, treatment, and prevention of infectious diseases. This review provides an overview of the applications of nanotechnology in the diagnosis and treatment of infectious diseases from a clinician's perspective, with a focus on pathogens with AMR. Applications of nanomaterials in diagnosis, by taking advantage of their electrochemical, optic, magnetic, and fluorescent properties, are described. Moreover, the potential of metallic or organic nanoparticles (NPs) in the treatment of infections is also addressed. Finally, the potential use of NPs in the development of safe and efficient vaccines is also reviewed. Further studies are needed to prove the safety and efficacy of NPs that would facilitate their approval by regulatory authorities for clinical use.
Collapse
Affiliation(s)
- Petros Ioannou
- School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Stella Baliou
- School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - George Samonis
- School of Medicine, University of Crete, 71003 Heraklion, Greece
- First Department of Medical Oncology, Metropolitan Hospital of Neon Faliron, 18547 Athens, Greece
| |
Collapse
|
27
|
Fan Q, Wang J, Biazik JM, Geng S, Mazur F, Li Y, Ke PC, Chandrawati R. UiO-66-NH 2 Metal-Organic Framework for the Detection of Alzheimer's Biomarker Aβ (1-42). ACS APPLIED BIO MATERIALS 2024; 7:182-192. [PMID: 38126321 DOI: 10.1021/acsabm.3c00768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Neurodegenerative disorders pose a significant challenge to global healthcare, with Alzheimer's disease (AD) being one of the most prevalent forms. Early and accurate detection of amyloid-β (Aβ) (1-42) monomers, a key biomarker of AD pathology, is crucial for effective diagnosis and intervention of the disease. Current gold standard detection techniques for Aβ include enzyme-linked immunosorbent assay and surface plasmon resonance. Although reliable, they are limited by their cost and time-consuming nature, thus restricting their point-of-care applicability. Here we present a sensitive and rapid colorimetric sensor for the detection of Aβ (1-42) monomers within 5 min. This was achieved by harnessing the peroxidase-like activity of metal-loaded metal-organic frameworks (MOFs), specifically UiO-66-NH2, coupled with the strong affinity of Aβ (1-42) to the MOFs. Various metal-loaded MOFs were synthesized and investigated, and platinum-loaded UiO-66-NH2 was identified as the optimal candidate for our purpose. The Pt-loaded UiO-66-NH2 sensor demonstrated detection limits of 2.76 and 4.65 nM Aβ (1-42) monomers in water and cerebrospinal fluid, respectively, with a linear range from 0.75 to 25 nM (R2 = 0.9712), outperforming traditional detection techniques in terms of both detection time and complexity. Moreover, the assay was specific toward Aβ (1-42) monomers when evaluated against interfering compounds. The rapid and cost-effective sensor may help circumvent the limitations of conventional detection methods, thus providing a promising avenue for early AD diagnosis and facilitating improved clinical outcomes.
Collapse
Affiliation(s)
- Qingqing Fan
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN), The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Junrong Wang
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN), The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Joanna M Biazik
- Electron Microscopy Unit, Mark Wainwright Analytical Centre, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Shu Geng
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN), The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Federico Mazur
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN), The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Yuhuan Li
- Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, Shanghai 200032, China
| | - Pu Chun Ke
- Nanomedicine Center, The Great Bay Area National Institute for Nanotechnology Innovation, 136 Kaiyuan Avenue, Guangzhou 510700, China
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Rona Chandrawati
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN), The University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
28
|
Dadakhani S, Dehghan G, Khataee A, Erfanparast A. Design and application of histidine-functionalized ZnCr-LDH nanozyme for promoting bacteria-infected wound healing. RSC Adv 2024; 14:1195-1206. [PMID: 38174270 PMCID: PMC10762333 DOI: 10.1039/d3ra07364e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024] Open
Abstract
Excessive use of antibiotics can lead to an increase in antibiotic-resistant bacteria, which makes it a serious health threat. Therefore, developing new materials with antibacterial activity, such as nanozymes, has gained considerable attention. Reactive oxygen species (ROS) produced by nanozymes have rapid and effective antibacterial efficacy. Here, histidine (His) modified ZnCr layered double hydroxide (LDH) was synthesized inspired by the natural enzyme, and the enzyme-like activity of His/ZnCr-LDH was tested using a colorimetric method. Then, we developed an acid-enhanced antibacterial method based on the high peroxidase-like activity of His/ZnCr-LDH, and its ROS-generating capability in the presence of glucose oxidase (GOx) and glucose (Glu) as a source of hydrogen peroxide (H2O2). Gluconic acid (GA), the main product of the GOx reaction, provides an acidic environment and promotes ROS generation. The mentioned strategy shows high antibacterial activity at a low minimum inhibitory concentration (MIC) which represents the potential of His/ZnCr-LDH for effective bacterial elimination (3.5 μg mL-1 for S. aureus and 6 μg mL-1 for E. coli). In addition, animal experiments illustrated that the His/ZnCr-LDH can successfully boost the curing of infected wounds. The outcomes indicate that amino acid modified LDHs offer a new strategy for effective bacterial removal in different medical applications.
Collapse
Affiliation(s)
- Sonya Dadakhani
- Department of Biology, Faculty of Natural Sciences, University of Tabriz 51666-16471 Tabriz Iran
| | - Gholamreza Dehghan
- Department of Biology, Faculty of Natural Sciences, University of Tabriz 51666-16471 Tabriz Iran
| | - Alireza Khataee
- Department of Applied Chemistry, Faculty of Chemistry, Research Laboratory of Advanced Water and Wastewater Treatment Processes, University of Tabriz 51666-16471 Tabriz Iran
- Department of Chemical Engineering, Istanbul Technical University 34469 Istanbul Turkey
| | - Amir Erfanparast
- Department of Basic Sciences, Division of Physiology, Faculty of Veterinary Medicine, Urmia University 575615-1818 Urmia Iran
| |
Collapse
|
29
|
Tan G, Wang S, Yu J, Chen J, Liao D, Liu M, Nezamzadeh-Ejhieh A, Pan Y, Liu J. Detection mechanism and the outlook of metal-organic frameworks for the detection of hazardous substances in milk. Food Chem 2024; 430:136934. [PMID: 37542961 DOI: 10.1016/j.foodchem.2023.136934] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 08/07/2023]
Abstract
Milk has a high nutritional value. However, milk is easily contaminated in the production, processing, and storage processes, which harms consumers' health. Therefore, the harmful substances' detection in milk is important. Metal-organic frameworks (MOFs) have proven high potential in food safety detection due to their unique porous structure, large effective surface area, large porosity, and structural tunability. This article systematically describes the detection mechanism of fluorescence, electrochemical, colorimetric, and enzyme-linked immunosorbent assay based on MOFs. The progress of the application of MOFs in the detection of antibiotics, harmful microorganisms and their toxins, harmful ions, and other harmful substances in milk in recent years is reviewed. The structural tunability of MOFs enables them to be functionalized, giving the ability to be applied to different detection methods or substances. Therefore, MOFs can be used as an advantageous sensing material for detecting harmful substances in the complex environment of milk.
Collapse
Affiliation(s)
- Guijian Tan
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China; Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan 523808, China
| | - Sanying Wang
- Department of Pain, Dalang Hospital, Dongguan 523770, China
| | - Jialin Yu
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan 523808, China
| | - Jiahao Chen
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan 523808, China
| | - Donghui Liao
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan 523808, China
| | - Miao Liu
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan 523808, China
| | | | - Ying Pan
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China; Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan 523808, China.
| | - Jianqiang Liu
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China; Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan 523808, China.
| |
Collapse
|
30
|
Elkomy HA, El-Naggar SA, Elantary MA, Gamea SM, Ragab MA, Basyouni OM, Mouhamed MS, Elnajjar FF. Nanozyme as detector and remediator to environmental pollutants: between current situation and future prospective. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:3435-3465. [PMID: 38141123 PMCID: PMC10794287 DOI: 10.1007/s11356-023-31429-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023]
Abstract
The term "nanozyme" refers to a nanomaterial possessing enzymatic capabilities, and in recent years, the field of nanozymes has experienced rapid advancement. Nanozymes offer distinct advantages over natural enzymes, including ease of production, cost-effectiveness, prolonged storage capabilities, and exceptional environmental stability. In this review, we provide a concise overview of various common applications of nanozymes, encompassing the detection and removal of pollutants such as pathogens, toxic ions, pesticides, phenols, organic contaminants, air pollution, and antibiotic residues. Furthermore, our focus is directed towards the potential challenges and future developments within the realm of nanozymes. The burgeoning applications of nanozymes in bioscience and technology have kindled significant interest in research in this domain, and it is anticipated that nanozymes will soon become a topic of explosive discussion.
Collapse
Affiliation(s)
- Hager A Elkomy
- Biochemistry Sector, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Shimaa A El-Naggar
- Chemistry/Biochemistry Sector, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Mariam A Elantary
- Chemistry/Biochemistry Sector, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Sherif M Gamea
- Chemistry/Biochemistry Sector, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Mahmoud A Ragab
- Chemistry/Biochemistry Sector, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Omar M Basyouni
- Chemistry/Zoology Sector, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Moustafa S Mouhamed
- Microbiology Sector, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Fares F Elnajjar
- Chemistry/Biochemistry Sector, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| |
Collapse
|
31
|
Xing Z, Guo J, Wu Z, He C, Wang L, Bai M, Liu X, Zhu B, Guan Q, Cheng C. Nanomaterials-Enabled Physicochemical Antibacterial Therapeutics: Toward the Antibiotic-Free Disinfections. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303594. [PMID: 37626465 DOI: 10.1002/smll.202303594] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/17/2023] [Indexed: 08/27/2023]
Abstract
Bacterial infection continues to be an increasing global health problem with the most widely accepted treatment paradigms restricted to antibiotics. However, the overuse and misuse of antibiotics have triggered multidrug resistance of bacteria, frustrating therapeutic outcomes, and leading to higher mortality rates. Even worse, the tendency of bacteria to form biofilms on living and nonliving surfaces further increases the difficulty in confronting bacteria because the extracellular matrix can act as a robust barrier to prevent the penetration of antibiotics and resist environmental damage. As a result, the inability to eliminate bacteria and biofilms often leads to persistent infection, implant failure, and device damage. Therefore, it is of paramount importance to develop alternative antimicrobial agents while avoiding the generation of bacterial resistance to prevent the large-scale growth of bacterial resistance. In recent years, nano-antibacterial materials have played a vital role in the antibacterial field because of their excellent physical and chemical properties. This review focuses on new physicochemical antibacterial strategies and versatile antibacterial nanomaterials, especially the mechanism and types of 2D antibacterial nanomaterials. In addition, this advanced review provides guidance on the development direction of antibiotic-free disinfections in the antibacterial field in the future.
Collapse
Affiliation(s)
- Zhenyu Xing
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Jiusi Guo
- Department of Orthodontics, Department of Endodontics, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Zihe Wu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Chao He
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Liyun Wang
- Department of Medical Ultrasound, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Mingru Bai
- Department of Orthodontics, Department of Endodontics, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Xikui Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Bihui Zhu
- Department of Medical Ultrasound, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qiuyue Guan
- Department of Geriatrics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
32
|
Zheng L, Jin W, Xiong K, Zhen H, Li M, Hu Y. Nanomaterial-based biosensors for the detection of foodborne bacteria: a review. Analyst 2023; 148:5790-5804. [PMID: 37855707 DOI: 10.1039/d3an01554h] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Ensuring food safety is a critical concern for the development and well-being of humanity, as foodborne illnesses caused by foodborne bacteria have increasingly become a major public health concern worldwide. Traditional food safety monitoring systems are expensive and time-consuming, relying heavily on specialized equipment and operations. Therefore, there is an urgent need to develop low-cost, user-friendly and highly sensitive biosensors for detecting foodborne bacteria. In recent years, the combination of nanomaterials with optical biosensors has provided a prospective future platform for the detection of foodborne bacteria. By harnessing the unique properties of nanomaterials, such as their high surface area-to-volume ratio and exceptional sensitivity, in tandem with the precision of optical biosensing techniques, a new prospect has opened up for the rapid and accurate identification of potential bacterial contaminants in food. This review focuses on recent advances and new trends of nanomaterial-based biosensors for the detection of foodborne pathogens, which mainly include noble metal nanoparticles (NMPs), metal organic frameworks (MOFs), graphene nanomaterials, quantum dot (QD) nanomaterials, upconversion fluorescent nanomaterials (UCNPs) and carbon dots (CDs). Additionally, we summarized the research progress of color indicators, nanozymes, natural enzyme vectors and fluorescent dye biosensors, focusing on the advantages and disadvantages of nanomaterial-based biosensors and their development prospects. This review provides an outlook on future technological directions and potential applications to help identify the most promising areas of development in this field.
Collapse
Affiliation(s)
- Lingyan Zheng
- Beijing Engineering and Technology Research Centre of Food Additives, Beijing Technology & Business University (BTBU), Beijing, 100048, China.
- Beijing Laboratory for Food Quality and Safety, Beijing Technology & Business University (BTBU), Beijing, 100048, China
- Beijing Innovation Centre for Food Nutrition and Human Health, Beijing Technology & Business University (BTBU), Beijing, 100048, China
| | - Wen Jin
- Beijing Engineering and Technology Research Centre of Food Additives, Beijing Technology & Business University (BTBU), Beijing, 100048, China.
- Beijing Laboratory for Food Quality and Safety, Beijing Technology & Business University (BTBU), Beijing, 100048, China
- Beijing Innovation Centre for Food Nutrition and Human Health, Beijing Technology & Business University (BTBU), Beijing, 100048, China
| | - Ke Xiong
- Beijing Engineering and Technology Research Centre of Food Additives, Beijing Technology & Business University (BTBU), Beijing, 100048, China.
- Beijing Laboratory for Food Quality and Safety, Beijing Technology & Business University (BTBU), Beijing, 100048, China
- Beijing Innovation Centre for Food Nutrition and Human Health, Beijing Technology & Business University (BTBU), Beijing, 100048, China
| | - Hongmin Zhen
- Beijing Engineering and Technology Research Centre of Food Additives, Beijing Technology & Business University (BTBU), Beijing, 100048, China.
- Beijing Laboratory for Food Quality and Safety, Beijing Technology & Business University (BTBU), Beijing, 100048, China
- Beijing Innovation Centre for Food Nutrition and Human Health, Beijing Technology & Business University (BTBU), Beijing, 100048, China
| | - Mengmeng Li
- Beijing Engineering and Technology Research Centre of Food Additives, Beijing Technology & Business University (BTBU), Beijing, 100048, China.
| | - Yumeng Hu
- Beijing Engineering and Technology Research Centre of Food Additives, Beijing Technology & Business University (BTBU), Beijing, 100048, China.
| |
Collapse
|
33
|
Hou J, Liu X, Hou C, Huo D, Li J. A PVDF-based colorimetric sensor array for noninvasive detection of multiple disease-related volatile organic compounds. Anal Bioanal Chem 2023; 415:6647-6661. [PMID: 37848579 DOI: 10.1007/s00216-023-04941-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 10/19/2023]
Abstract
Detection of human-generated volatile organic compounds (VOCs) is a new pathway for assessing health. Herein, a polyvinylidene fluoride (PVDF)-based colorimetric sensor array was designed for detecting disease-related VOCs (DVOCs) within 15 min, using a complex of Cu metal-organic framework, graphene aerogel, and dyes as response materials. Fingermaps derived from 28 DVOCs were obtained for further data processing. Pattern recognition was successfully employed in the correct discrimination of 28 DVOCs in low (10 μM), medium (100 μM), and high (300 μM) concentrations. Importantly, the sensor array also presented excellent discrimination ability and application potential when detecting VOCs produced by human cancer and normal cells. In general, VOC acquisition is noninvasive and harmless, and the PVDF-based sensor arrays are simple and visual. Such advantages expand their further application potential.
Collapse
Affiliation(s)
- Jingzhou Hou
- Postdoctoral Research Station, Chongqing University, Bioengineering College of Chongqing University, Chongqing, 400044, People's Republic of China
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, 400044, People's Republic of China
| | - Xiaofang Liu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, 400044, People's Republic of China
| | - Changjun Hou
- Postdoctoral Research Station, Chongqing University, Bioengineering College of Chongqing University, Chongqing, 400044, People's Republic of China
| | - Danqun Huo
- Postdoctoral Research Station, Chongqing University, Bioengineering College of Chongqing University, Chongqing, 400044, People's Republic of China.
- Chongqing Key Laboratory of Bio-Perception & Intelligent Information Processing, School of Microelectronics and Communication Engineering, Chongqing University, Chongqing, 400044, People's Republic of China.
| | - Jiawei Li
- Three Gorges Hospital of Chongqing University, Chongqing Municipality Clinical Research Center for Geriatric Diseases, Chongqing, 404000, People's Republic of China.
| |
Collapse
|
34
|
Chang Y, Chen Y, Wu M, Liu L, Song Q. Electrochemical detection of glycoproteins using boronic acid-modified metal-organic frameworks as dual-functional signal reporters. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:4452-4458. [PMID: 37641924 DOI: 10.1039/d3ay01164j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
The sensitive analysis of glycoproteins is of great importance for early diagnosis and prognosis of diseases. In this work, a sandwich-type electrochemical aptasensor was developed for the detection of glycoproteins using 4-formylphenylboric acid (FPBA)-modified Cu-based metal-organic frameworks (FPBA-Cu-MOFs) as dual-functional signal probes. The target captured by the aptamer-modified electrode allowed the attachment of FPBA-Cu-MOFs based on the interaction between boronic acid and glycan on glycoproteins. Large numbers of Cu2+ ions in FPBA-Cu-MOFs produced an amplified signal for the direct voltammetric detection of glycoproteins. The electrochemical aptasensor showed a detection limit as low as 6.5 pg mL-1 for prostate specific antigen detection. The method obviates the use of antibody and enzymes for molecular recognition and signal output. The dual-functional MOFs can be extended to the design of other biosensors for the determination of diol-containing biomolecules in clinical diagnosis.
Collapse
Affiliation(s)
- Yong Chang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Jiangsu 214122, P. R. China.
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, P. R. China.
| | - Yixuan Chen
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, P. R. China.
| | - Mian Wu
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, P. R. China.
| | - Lin Liu
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, P. R. China.
| | - Qijun Song
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Jiangsu 214122, P. R. China.
| |
Collapse
|
35
|
Chang Y, Liu G, Li S, Liu L, Song Q. Biorecognition element-free electrochemical detection of recombinant glycoproteins using metal-organic frameworks as signal tags. Anal Chim Acta 2023; 1273:341540. [PMID: 37423655 DOI: 10.1016/j.aca.2023.341540] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/08/2023] [Accepted: 06/16/2023] [Indexed: 07/11/2023]
Abstract
Accurate and sensitive determination of recombinant glycoproteins is in great demand for the treatment of anemia-induced chronic kidney disease and the illegal use of doping agents in sports. In this study, an antibody and enzyme-free electrochemical method for the detection of recombinant glycoproteins was proposed via the sequential chemical recognition of hexahistidine (His6) tag and glycan residue on the target protein under the cooperation interaction of nitrilotriacetic acid (NTA)-Ni2+complex and boronic acid, respectively. Specifically, NTA-Ni2+ complex-modified magnetic beads (MBs-NTA-Ni2+) are employed to selectively capture the recombinant glycoprotein through the coordination interaction between His6 tag and NTA-Ni2+ complex. Then, boronic acid-modified Cu-based metal-organic frameworks (Cu-MOFs) were recruited by glycans on the glycoprotein via the formation of reversible boronate ester bonds. MOFs with abundant Cu2+ ions acted as efficient electroactive labels to directly produce amplified electrochemical signals. By using recombinant human erythropoietin as a model analyte, this method showed a wide linear detection range from 0.01 to 50 ng/mL and a low detection limit of 5.3 pg/mL. With the benefits from the simple operation and low cost, the stepwise chemical recognition-based method shows great promise in the determination of recombinant glycoproteins in the fields of biopharmaceutical research, anti-doping analysis and clinical diagnosis.
Collapse
Affiliation(s)
- Yong Chang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China; College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan, 455000, People's Republic of China
| | - Gang Liu
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan, 455000, People's Republic of China; College of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, Henan, 450001, People's Republic of China
| | - Shuang Li
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan, 455000, People's Republic of China
| | - Lin Liu
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan, 455000, People's Republic of China.
| | - Qijun Song
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China.
| |
Collapse
|
36
|
Liu X, Huo D, Li J, Ma Y, Liu H, Luo H, Zhang S, Luo X, Hou C. Pattern-recognizing-assisted detection of mildewed wheat by Dyes/Dyes-Cu-MOF paper-based colorimetric sensor array. Food Chem 2023; 415:135525. [PMID: 36870207 DOI: 10.1016/j.foodchem.2023.135525] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 01/09/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023]
Abstract
In order to timely discriminate wheat with different mildew rates, a Dyes/Dyes-Cu-MOF paper-based colorimetric sensor array was designed. Using array points to capture volatile gases of wheat with different mildew rates, and output RGB values. The correlation between ΔR/ΔG/ΔB values and odor components was established. The ΔG values of array points 2' and 3' showed the best correlation with mildew rate, with R2 of 0.9816 and 0.9642. The ΔR value of 3 and the ΔG value of 2 correlate well with the mildew rate, with R2 of 0.9625 and 0.9502, respectively. Then, the ΔRGB values are subjected to pattern recognition processing, and LDA achieves 100% correct discrimination for all samples, or divides high and low mildew areas. This method provides an odor-based monitoring tool for fast, visual and nondestructive evaluation of food safety and quality through visualization of odors produced by different mildew rates.
Collapse
Affiliation(s)
- Xiaofang Liu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China
| | - Danqun Huo
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China; Liquor Making Biology Technology and Application of Key Laboratory of Sichuan Province, College of Bioengineering, Sichuan University of Science and Engineering, Zigong 643000, PR China
| | - Jiawei Li
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China; Chongqing University Three Gorges Hospital, Chongqing 404000,PR China
| | - Yi Ma
- Liquor Making Biology Technology and Application of Key Laboratory of Sichuan Province, College of Bioengineering, Sichuan University of Science and Engineering, Zigong 643000, PR China
| | - Huan Liu
- Chongqing Institute for Food and Drug Control, Chongqing 401121, PR China
| | - Huibo Luo
- Liquor Making Biology Technology and Application of Key Laboratory of Sichuan Province, College of Bioengineering, Sichuan University of Science and Engineering, Zigong 643000, PR China
| | - Suyi Zhang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China; National Engineering Research Center of Solid-State Brewing, Luzhou Laojiao Group Co. Ltd., Luzhou 646000, PR China.
| | - Xiaogang Luo
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China.
| | - Changjun Hou
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China.
| |
Collapse
|
37
|
Wu Y, Liu X, Zhang X, Zhang S, Niu P, Gao H. Photothermal theranostics with glutathione depletion and enhanced reactive oxygen species generation for efficient antibacterial treatment. RSC Adv 2023; 13:22863-22874. [PMID: 37520103 PMCID: PMC10375255 DOI: 10.1039/d3ra03246a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/24/2023] [Indexed: 08/01/2023] Open
Abstract
Drug-resistant bacteria caused by the abuse of antibiotics have brought great challenges to antimicrobial therapy. Herein an antibiotic-free polydopamine (PDA) modified metal-organic framework (PDA-FDM-23) with photothermal-enhanced chemodynamic effect was developed for synergistic antibacterial treatment. The PDA-FDM-23 antibacterial agent exhibited high peroxidase-like activity. Moreover, the process was significantly accelerated by consuming glutathione (GSH) to generate more efficient oxidizing Cu+. In addition, the photothermal therapy (PTT) derived from PDA improved the chemodynamic therapy (CDT) activity triggering a reactive oxygen species explosion. This PTT-enhanced CDT strategy illustrated 100% antibacterial efficiency against both Staphylococcus aureus and Escherichia coli. Cytotoxicity and hemolysis analyses fully demonstrated the excellent biocompatibility of PDA-FDM-23. Overall, our work highlighted the strong peroxidase catalytic activity, excellent GSH consumption and photothermal performance of PDA-FDM-23, providing a new strategy for antibiotic-free reactive oxygen species (ROS) synergistic sterilization.
Collapse
Affiliation(s)
- Yuelan Wu
- Qingdao University Qingdao Shandong 266071 P. R. China
- Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology Qingdao Shandong 250071 P. R. China
| | - Xiaoxue Liu
- Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology Qingdao Shandong 250071 P. R. China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences Jinan Shandong 250117 P. R. China
| | - Xiaoyu Zhang
- Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology Qingdao Shandong 250071 P. R. China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences Jinan Shandong 250117 P. R. China
| | - Shuping Zhang
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences Jinan Shandong 250117 P. R. China
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences Jinan 250117 P. R. China
| | - Panhong Niu
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences Jinan 250117 P. R. China
| | - Hua Gao
- Qingdao University Qingdao Shandong 266071 P. R. China
- Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology Qingdao Shandong 250071 P. R. China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences Jinan Shandong 250117 P. R. China
| |
Collapse
|
38
|
Wang KY, Zhang J, Hsu YC, Lin H, Han Z, Pang J, Yang Z, Liang RR, Shi W, Zhou HC. Bioinspired Framework Catalysts: From Enzyme Immobilization to Biomimetic Catalysis. Chem Rev 2023; 123:5347-5420. [PMID: 37043332 PMCID: PMC10853941 DOI: 10.1021/acs.chemrev.2c00879] [Citation(s) in RCA: 100] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Indexed: 04/13/2023]
Abstract
Enzymatic catalysis has fueled considerable interest from chemists due to its high efficiency and selectivity. However, the structural complexity and vulnerability hamper the application potentials of enzymes. Driven by the practical demand for chemical conversion, there is a long-sought quest for bioinspired catalysts reproducing and even surpassing the functions of natural enzymes. As nanoporous materials with high surface areas and crystallinity, metal-organic frameworks (MOFs) represent an exquisite case of how natural enzymes and their active sites are integrated into porous solids, affording bioinspired heterogeneous catalysts with superior stability and customizable structures. In this review, we comprehensively summarize the advances of bioinspired MOFs for catalysis, discuss the design principle of various MOF-based catalysts, such as MOF-enzyme composites and MOFs embedded with active sites, and explore the utility of these catalysts in different reactions. The advantages of MOFs as enzyme mimetics are also highlighted, including confinement, templating effects, and functionality, in comparison with homogeneous supramolecular catalysts. A perspective is provided to discuss potential solutions addressing current challenges in MOF catalysis.
Collapse
Affiliation(s)
- Kun-Yu Wang
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- Department
of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry
(MOE) and Renewable Energy Conversion and Storage Center (RECAST),
College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jiaqi Zhang
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- Department
of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry
(MOE) and Renewable Energy Conversion and Storage Center (RECAST),
College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yu-Chuan Hsu
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Hengyu Lin
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Zongsu Han
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- Department
of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry
(MOE) and Renewable Energy Conversion and Storage Center (RECAST),
College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jiandong Pang
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- School
of Materials Science and Engineering, Tianjin Key Laboratory of Metal
and Molecule-Based Material Chemistry, Nankai
University, Tianjin 300350, China
| | - Zhentao Yang
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- Department
of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry
(MOE) and Renewable Energy Conversion and Storage Center (RECAST),
College of Chemistry, Nankai University, Tianjin 300071, China
| | - Rong-Ran Liang
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Wei Shi
- Department
of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry
(MOE) and Renewable Energy Conversion and Storage Center (RECAST),
College of Chemistry, Nankai University, Tianjin 300071, China
| | - Hong-Cai Zhou
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
39
|
Chu C, Wang X, Deng Y, Ma Y, Zou C, Yang M, Luo H, Huo D, Hou C. Discrimination of Chinese green tea according to tea polyphenols using fluorescence sensor array based on Tb (III) and Eu (III) doped Zr (IV) metal-organic frameworks. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 292:122380. [PMID: 36736046 DOI: 10.1016/j.saa.2023.122380] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/24/2022] [Accepted: 01/13/2023] [Indexed: 06/18/2023]
Abstract
A facile and rapid fluorescence sensor array based on Tb (III) and Eu (III) doped Zr (IV) metal-organic frameworks was proposed for Chinese green tea discrimination. According to large porosity of Tb@UiO-66-(COOH)2 and Eu@UiO-66-(COOH)2, phenolic hydroxyl groups of tea polyphenols could coordinate with free carboxylic acid groups and was captured into the pores, which led to the disturbance of electronic structure of ligand and inhibited the energy transfer efficiency from ligand to Tb (III) and Eu (III) center, causing the fluorescence quenching effect. Based on Hierarchy Cluster Analysis and Linear Discrimination Analysis, the fluorescence sensor array was employed for successful tea polyphenols classification through the analysis of different fluorescence quenching effect to tea polyphenols. Green tea samples within different categories and grades were also successfully discriminated using this assay according to tea polyphenols, providing a new method for Chinese green tea identification.
Collapse
Affiliation(s)
- Chengxiang Chu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, PR China
| | - Xianfeng Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, PR China
| | - Yuanyi Deng
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, PR China
| | - Yi Ma
- Liquor Making Biology Technology and Application of Key Laboratory of Sichuan Province, College of Bioengineering, Sichuan University of Science and Engineering, Zigong 643000, PR China
| | - Chengyue Zou
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, PR China
| | - Mei Yang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, PR China
| | - Huibo Luo
- Liquor Making Biology Technology and Application of Key Laboratory of Sichuan Province, College of Bioengineering, Sichuan University of Science and Engineering, Zigong 643000, PR China
| | - Danqun Huo
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, PR China; Chongqing Key Laboratory of Bio-perception & Intelligent Information Processing, School of Microelectronics and Communication Engineering, Chongqing University, Chongqing 400044, PR China.
| | - Changjun Hou
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, PR China; Chongqing Key Laboratory of Bio-perception & Intelligent Information Processing, School of Microelectronics and Communication Engineering, Chongqing University, Chongqing 400044, PR China.
| |
Collapse
|
40
|
Zhang H, Xu G, Chen Y, Li X, Wang S, Jiang F, Zhan P, Lu C, Cao X, Ye Y, Tao Y. Electrochemical Detection of ompA Gene of C. sakazakii Based on Glucose-Oxidase-Mimicking Nanotags of Gold-Nanoparticles-Doped Copper Metal-organic Frameworks. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23094396. [PMID: 37177600 PMCID: PMC10181677 DOI: 10.3390/s23094396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023]
Abstract
The present work developed an electrochemical genosensor for the detection of virulence outer membrane protein A (ompA, tDNA) gene of Cronobacter sakazakii (C. sakazakii) by exploiting the excellent glucose-oxidase-mimicking activity of copper Metal-organic frameworks (Cu-MOF) doped with gold nanoparticle (AuNPs). The signal nanotags of signal probes (sDNA) that biofunctionalized AuNPs@Cu-MOF (sDNA-AuNPs@Cu-MOF) were designed using an Au-S bond. The biosensor was prepared by immobilization capture probes (cDNA) onto an electrodeposited AuNPs-modified glassy carbon electrode (GCE). AuNPs@Cu-MOF was introduced onto the surface of the GCE via a hybridization reaction between cDNA and tDNA, as well as tDNA and sDNA. Due to the enhanced oxidase-mimicking activity of AuNPs@Cu-MOF to glucose, the biosensor gave a linear range of 1.0 × 10-15 to 1.0 × 10-9 mol L-1 to tDNA with a detection limit (LOD) of 0.42 fmol L-1 under optimized conditions using differential pulse voltammetry measurement (DPV). It can be applied in the direct detection of ompA gene segments in total DNA extracts from C. sakazakii with a broad linear range of 5.4-5.4 × 105 CFU mL-1 and a LOD of 0.35 CFU mL-1. The biosensor showed good selectivity, fabricating reproducibility and storage stability, and can be used for the detection of ompA gene segments in real samples with recovery between 87.5% and 107.3%.
Collapse
Affiliation(s)
- Hongyan Zhang
- School of Food Science and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Guiqing Xu
- School of Food Science and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yuming Chen
- Department of Food Science, Xuancheng Campus, Hefei University of Technology, Xuancheng 242000, China
| | - Xu Li
- School of Food Science and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Shaopeng Wang
- School of Food Science and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Feihao Jiang
- Department of Food Science, Xuancheng Campus, Hefei University of Technology, Xuancheng 242000, China
| | - Pengyang Zhan
- Department of Food Science, Xuancheng Campus, Hefei University of Technology, Xuancheng 242000, China
| | - Chuanfu Lu
- Department of Food Science, Xuancheng Campus, Hefei University of Technology, Xuancheng 242000, China
| | - Xiaodong Cao
- School of Food Science and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yongkang Ye
- School of Food Science and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yunlai Tao
- Anhui Institute of Food and Drug Inspection, Hefei 230051, China
| |
Collapse
|
41
|
Zhang P, Xu X, He W, Li H, Huang Y, Wu G. Autocatalytically hydroxyl-producing composite wound dressing for bacteria-infected wound healing. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2023; 51:102683. [PMID: 37105341 DOI: 10.1016/j.nano.2023.102683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/30/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023]
Abstract
The creation of wound dressings with low drug resistance and broad-spectrum antibacterial capability is a key topic of scientific interest. To achieve this, a bactericidal wound dressing with the capacity to autocatalytically produce hydroxyl radicals (OH) was developed. The wound dressing was an electrospun PCL/gelatin/glucose composite fiber mesh (PGD) with functional iron-containing metal-organic framework (Fe-MOF) nanozymes. These functional nanozymes (G@Fe) were formed by coupling glucose oxidase (GOx) and Fe-MOF through amide bonds. These nanozymes enabled the conversion of glucose released from the PGD composite mesh into hydroxyl radicals via an autocatalytic cascade reaction to destroy bacteria. The antibacterial efficiency of wound dressings and their stimulation of tissue regeneration were assessed using a MRSA-infected skin wound infection model on the back of SD mice. The G@Fe/PGD wound dressing exhibited improved wound healing capacity and had comparable biosafety to commercial silver-containing dressings, suggesting a potential replacement in the future.
Collapse
Affiliation(s)
- Pinrui Zhang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, PR China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, PR China
| | - Xiaomu Xu
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, PR China
| | - Wangmei He
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, PR China
| | - Hong Li
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, PR China
| | - Yue Huang
- School of Stomatology, Jinan University, Guangzhou 510632, PR China.
| | - Gang Wu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, PR China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
42
|
Karimi S, Gholinejad M, Khezri R, Sansano JM, Nájera C, Yus M. Gold and palladium supported on an ionic liquid modified Fe-based metal-organic framework (MOF) as highly efficient catalysts for the reduction of nitrophenols, dyes and Sonogashira-Hagihara reactions. RSC Adv 2023; 13:8101-8113. [PMID: 36909743 PMCID: PMC10001704 DOI: 10.1039/d3ra00283g] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 03/01/2023] [Indexed: 03/12/2023] Open
Abstract
Two supported noble metal species, gold and palladium anchored on an ionic liquid-modified Fe-based metal-organic framework (MOF), were successfully synthesized and characterized by FT-IR, XRD, TEM, XPS, SEM, EDX, and elemental mapping. The ionic liquid post-modified MOF was used for anchoring Au or Pd at ppm levels, and the resulting materials were employed as catalysts in the reduction of nitrophenol isomers, dyes, and Sonogashira-Hagihara reactions. Using the Au@Fe-MOF-IL catalyst, reduction of nitrophenol isomers, as well as the reductive degradation of dyes, e.g., methylene blue (MB), methyl orange (MO), and methyl red (MR) were performed efficiently in water. On the other hand, Pd@Fe-MOF-IL was used as an effective catalyst in the Sonogashira-Hagihara coupling reaction of aryl iodides and bromides using very low amounts of Pd. These catalysts were recycled and reused for several runs without deteriorating remarkably in catalytic performance.
Collapse
Affiliation(s)
- Shirin Karimi
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS) P. O. Box 45195-1159, Gavazang Zanjan 45137-66731 Iran
| | - Mohammad Gholinejad
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS) P. O. Box 45195-1159, Gavazang Zanjan 45137-66731 Iran .,Research Center for Basic Sciences & Modern Technologies (RBST), Institute for Advanced Studies in Basic Sciences (IASBS) Zanjan 45137-66731 Iran
| | - Rahimeh Khezri
- Department of Chemistry, Faculty of Sciences, Persian Gulf University Bushehr 75169 Iran
| | - José M Sansano
- Departamento de Química Orgánica, Instituto de Síntesis Orgánica, Universidad de Alicante Apdo. 99 03690-Alicante Spain.,Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Alicante Apdo. 99 03690-Alicante Spain
| | - Carmen Nájera
- Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Alicante Apdo. 99 03690-Alicante Spain
| | - Miguel Yus
- Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Alicante Apdo. 99 03690-Alicante Spain
| |
Collapse
|
43
|
Chen Y, Chen Y, Yi HC, Gu HW, Yin XL, Xiang DL, Zou P. An electrochemical and colorimetric dual-mode aptasensor for Staphylococcus aureus based on a multifunctional MOF and magnetic separation technique. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
44
|
Hatta MHM, Matmin J, Malek NANN, Kamisan FH, Badruzzaman A, Batumalaie K, Ling Lee S, Abdul Wahab R. COVID‐19: Prevention, Detection, and Treatment by Using Carbon Nanotubes‐Based Materials. ChemistrySelect 2023. [DOI: 10.1002/slct.202204615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Affiliation(s)
- Mohd Hayrie Mohd Hatta
- Centre for Research and Development Asia Metropolitan University 81750 Johor Bahru Johor Malaysia
| | - Juan Matmin
- Department of Chemistry Faculty of Science Universiti Teknologi Malaysia 81310 UTM Johor Bahru Johor Malaysia
- Centre for Sustainable Nanomaterials Ibnu Sina Institute for Scientific and Industrial Research Universiti Teknologi Malaysia 81310 UTM Johor Bahru Johor Malaysia
| | - Nik Ahmad Nizam Nik Malek
- Centre for Sustainable Nanomaterials Ibnu Sina Institute for Scientific and Industrial Research Universiti Teknologi Malaysia 81310 UTM Johor Bahru Johor Malaysia
- Department of Biosciences, Faculty of Science Universiti Teknologi Malaysia 81310 UTM Johor Bahru Johor Malaysia
| | - Farah Hidayah Kamisan
- Department of Biomedical Sciences Faculty of Health Sciences Asia Metropolitan University 81750 Johor Bahru Johor Malaysia
| | - Aishah Badruzzaman
- Centre for Foundation, Language and General Studies Asia Metropolitan University 81750 Johor Bahru Johor Malaysia
| | - Kalaivani Batumalaie
- Department of Biomedical Sciences Faculty of Health Sciences Asia Metropolitan University 81750 Johor Bahru Johor Malaysia
| | - Siew Ling Lee
- Department of Chemistry Faculty of Science Universiti Teknologi Malaysia 81310 UTM Johor Bahru Johor Malaysia
- Centre for Sustainable Nanomaterials Ibnu Sina Institute for Scientific and Industrial Research Universiti Teknologi Malaysia 81310 UTM Johor Bahru Johor Malaysia
| | - Roswanira Abdul Wahab
- Department of Chemistry Faculty of Science Universiti Teknologi Malaysia 81310 UTM Johor Bahru Johor Malaysia
| |
Collapse
|
45
|
Xu Y, Jin Z, Zhao Y. Tunable Preparation of SERS-Active Au-Ag Janus@Au NPs for Label-Free Staphylococcal Enterotoxin C Detection. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1224-1233. [PMID: 36606875 DOI: 10.1021/acs.jafc.2c08147] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Trace staphylococcal enterotoxin C (SEC) in food poses a serious risk to human health, and it is vital to develop a sensitive and accurate approach for SEC monitoring. Herein, a surface-enhanced Raman scattering (SERS) aptasensor was developed for the quantitative detection of SEC. SERS-active gold-silver Janus@gold nanoparticles (Au-Ag Janus@Au NPs) were prepared and showed tunable solid and hollow nanostructures by simply controlling the pH values of the reaction system. Solid Au-Ag Janus@Au NPs exhibited intrinsic and enhanced SERS activity due to the intense plasmonic coupling effect between Au dots and Au-Ag Janus NPs, which was 2.27-fold and 17.46-fold higher than that of Au-Ag Janus NPs and hollow Au-Ag Janus@Au NPs, respectively. The attachment of multiple Au dots also protected Ag islands from oxidization, which increased the stability of Au-Ag Janus@Au NPs. Solid Au-Ag Janus@Au NPs served as a label-free, strong, and stable SERS detection probe and achieved sensitive and reliable detection of SEC. The limit of detection was as low as 0.55 pg/mL. This study will expand the application prospects of label-free SERS detection probes in complex systems for food safety monitoring.
Collapse
Affiliation(s)
- Yinjuan Xu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, International Joint Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhao Jin
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, International Joint Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yuan Zhao
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, International Joint Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
46
|
Guo X, Wang L, Wang L, Huang Q, Bu L, Wang Q. Metal-organic frameworks for food contaminant adsorption and detection. Front Chem 2023; 11:1116524. [PMID: 36742039 PMCID: PMC9890379 DOI: 10.3389/fchem.2023.1116524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/02/2023] [Indexed: 01/19/2023] Open
Abstract
Metal-organic framework materials (MOFs) have been widely used in food contamination adsorption and detection due to their large specific surface area, specific pore structure and flexible post-modification. MOFs with specific pore size can be targeted for selective adsorption of some contaminants and can be used as pretreatment and pre-concentration steps to purify samples and enrich target analytes for food contamination detection to improve the detection efficiency. In addition, MOFs, as a new functional material, play an important role in developing new rapid detection methods that are simple, portable, inexpensive and with high sensitivity and accuracy. The aim of this paper is to summarize the latest and insightful research results on MOFs for the adsorption and detection of food contaminants. By summarizing Zn-based, Cu-based and Zr-based MOFs with low cost, easily available raw materials and convenient synthesis conditions, we describe their principles and discuss their applications in chemical and biological contaminant adsorption and sensing detection in terms of stability, adsorption capacity and sensitivity. Finally, we present the limitations and challenges of MOFs in food detection, hoping to provide some ideas for future development.
Collapse
|
47
|
Sarkar DJ, Behera BK, Parida PK, Aralappanavar VK, Mondal S, Dei J, Das BK, Mukherjee S, Pal S, Weerathunge P, Ramanathan R, Bansal V. Aptamer-based NanoBioSensors for seafood safety. Biosens Bioelectron 2023; 219:114771. [PMID: 36274429 DOI: 10.1016/j.bios.2022.114771] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/16/2022] [Accepted: 09/28/2022] [Indexed: 11/06/2022]
Abstract
Chemical and biological contaminants are of primary concern in ensuring seafood safety. Rapid detection of such contaminants is needed to keep us safe from being affected. For over three decades, immunoassay (IA) technology has been used for the detection of contaminants in seafood products. However, limitations inherent to antibody generation against small molecular targets that cannot elicit an immune response, along with the instability of antibodies under ambient conditions greatly limit their wider application for developing robust detection and monitoring tools, particularly for non-biomedical applications. As an alternative, aptamer-based biosensors (aptasensors) have emerged as a powerful yet robust analytical tool for the detection of a wide range of analytes. Due to the high specificity of aptamers in recognising targets ranging from small molecules to large proteins and even whole cells, these have been suggested to be viable molecular recognition elements (MREs) in the development of new diagnostic and biosensing tools for detecting a wide range of contaminants including heavy metals, antibiotics, pesticides, pathogens and biotoxins. In this review, we discuss the recent progress made in the field of aptasensors for detection of contaminants in seafood products with a view of effectively managing their potential human health hazards. A critical outlook is also provided to facilitate translation of aptasensors from academic laboratories to the mainstream seafood industry and consumer applications.
Collapse
Affiliation(s)
- Dhruba Jyoti Sarkar
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, 700120, West Bengal, India.
| | - Bijay Kumar Behera
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, 700120, West Bengal, India.
| | - Pranaya Kumar Parida
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, 700120, West Bengal, India
| | - Vijay Kumar Aralappanavar
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, 700120, West Bengal, India
| | - Shirsak Mondal
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, 700120, West Bengal, India
| | - Jyotsna Dei
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, 700120, West Bengal, India
| | - Basanta Kumar Das
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, 700120, West Bengal, India
| | - Subhankar Mukherjee
- Centre for Development of Advance Computing, Kolkata, 700091, West Bengal, India
| | - Souvik Pal
- Centre for Development of Advance Computing, Kolkata, 700091, West Bengal, India
| | - Pabudi Weerathunge
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC, 3000, Australia
| | - Rajesh Ramanathan
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC, 3000, Australia
| | - Vipul Bansal
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC, 3000, Australia.
| |
Collapse
|
48
|
Liu M, Geng L, Zhang F, Dou S, Li F, Liu Z, Guo Y, Sun X. Isolation of Bacteria Aptamers with Non-SELEX for the Development of a Highly Sensitive Colorimetric Assay Based on Dual Signal Amplification. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:15990-15998. [PMID: 36508287 DOI: 10.1021/acs.jafc.2c06167] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In this work, an aptamer against Escherichia coli is isolated via non-SELEX, which executes efficient selection by employing repetitive cycles of centrifugation-based partitioning, and the binding site of the aptamer on E. coli cell surfaces is inferred to be a membrane protein. Moreover, truncated sequence 2-17-2 with a higher affinity (Kd = 101.76 nM) is employed for highly sensitive colorimetric detection of bacteria based on the dual signal amplification strategy. When targets exist, the release of DNA 1 from the polymer activates a hybridization chain reaction (HCR) between DNA 1 and DNA 2, thereby inducing the aggregation of probe 1. Subsequently, DNA 3 dissociated from probe 1 as a linker DNA further assembles probe 2/3. In this system, two types of DNA@gold nanoparticles (AuNPs) coexist and successively aggregate AuNPs based on divergent triggering mechanisms. Under optimal conditions, the dual signal amplification strategy presents excellent sensitivity (10 CFU mL-1) and specificity, as well as the realization of real sample analysis.
Collapse
Affiliation(s)
- Mengyue Liu
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo 255049, Shandong, China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo 255049, Shandong, China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo 255049, Shandong, China
| | - Lingjun Geng
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo 255049, Shandong, China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo 255049, Shandong, China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo 255049, Shandong, China
| | - Fengjuan Zhang
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo 255049, Shandong, China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo 255049, Shandong, China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo 255049, Shandong, China
| | - Shouyi Dou
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo 255049, Shandong, China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo 255049, Shandong, China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo 255049, Shandong, China
| | - Falan Li
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo 255049, Shandong, China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo 255049, Shandong, China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo 255049, Shandong, China
| | - Zhanli Liu
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo 255049, Shandong, China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo 255049, Shandong, China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo 255049, Shandong, China
| | - Yemin Guo
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo 255049, Shandong, China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo 255049, Shandong, China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo 255049, Shandong, China
| | - Xia Sun
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo 255049, Shandong, China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo 255049, Shandong, China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo 255049, Shandong, China
| |
Collapse
|
49
|
Li H, Wu H, Chen J, Su Y, Lin P, Xiao W, Cao D. Highly Sensitive Colorimetric Detection of Glutathione in Human Serum Based on Iron-Copper Metal-Organic Frameworks. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:15559-15569. [PMID: 36503243 DOI: 10.1021/acs.langmuir.2c02218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Emerging metal-organic framework (MOF)-based mimic enzymes have been exploited to design a colorimetric sensor for the detection of biomolecules. However, it is challenging to figure out the glutathione (GSH) detection method and the corresponding sensing mechanism using an MOF-based colorimetric sensor. In this work, a novel iron-copper MOF with high activity is synthesized by a wet-chemical method. A GSH colorimetric sensor based on the peroxidase-like properties of the iron-copper MOF is developed. Hydrogen peroxide is converted to hydroxyl radicals by the peroxidase-like properties of the iron-copper MOF mimic enzyme, which can catalyze the colorless 3,3',5,5'-tetramethylbenzidine (TMB) to blue oxidized TMB (ox-TMB). The kinetic constant of the MOF mimic enzyme (0.02 mM for H2O2) is superior to horseradish peroxidase (HRP). The GSH content can be quantified by proposing a sensor based on the colorimetric method and color turn-off mechanism. The turn-off mechanism of GSH analysis includes two aspects. On the one hand, the blue ox-TMB can be deoxidized to colorless TMB by GSH. On the other hand, hydroxyl radicals (•OH) can be consumed by GSH. The linear range and limit of detection are 2-20 and 0.439 μM, respectively. At the same time, GSH detection also shows good specificity and anti-interference characteristics. Therefore, MOF-based colorimetric sensors have been used to qualitatively and quantitatively measure GSH contents in human serum. The mechanism and application of the iron-copper MOF pave a way for the development of mimic enzymes with polymetallic active sites in the field of colorimetric sensing.
Collapse
Affiliation(s)
- Huiqin Li
- Guangdong Provincial Key Laboratory on Functional Soft Condensed Matter, Materials and Energy School, Guangdong University of Technology, Panyu District, Guangzhou510006, China
- Department of Laboratory Medicine, Guangdong Second Provincial General Hospital, Guangzhou510317, China
| | - Hongjiao Wu
- Guangdong Provincial Key Laboratory on Functional Soft Condensed Matter, Materials and Energy School, Guangdong University of Technology, Panyu District, Guangzhou510006, China
- Department of Laboratory Medicine, Guangdong Second Provincial General Hospital, Guangzhou510317, China
| | - Jiaqi Chen
- Guangdong Provincial Key Laboratory on Functional Soft Condensed Matter, Materials and Energy School, Guangdong University of Technology, Panyu District, Guangzhou510006, China
| | - Yiqian Su
- Guangdong Provincial Key Laboratory on Functional Soft Condensed Matter, Materials and Energy School, Guangdong University of Technology, Panyu District, Guangzhou510006, China
| | - Pengcheng Lin
- Guangdong Provincial Key Laboratory on Functional Soft Condensed Matter, Materials and Energy School, Guangdong University of Technology, Panyu District, Guangzhou510006, China
| | - Wei Xiao
- Department of Laboratory Medicine, Guangdong Second Provincial General Hospital, Guangzhou510317, China
| | - Donglin Cao
- Department of Laboratory Medicine, Guangdong Second Provincial General Hospital, Guangzhou510317, China
| |
Collapse
|
50
|
Choline oxidase immobilized onto hierarchical porous metal–organic framework: biochemical characterization and ultrasensitive choline bio-sensing. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2022. [DOI: 10.1007/s13738-022-02691-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|