1
|
Li R, Xie F, Kuang P, Liu T, Yu J. Amino-Induced CO 2 Spillover to Boost the Electrochemical Reduction Activity of CdS for CO Production. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402867. [PMID: 38850185 DOI: 10.1002/smll.202402867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/26/2024] [Indexed: 06/10/2024]
Abstract
A considerable challenge in CO2 reduction reaction (CO2RR) to produce high-value-added chemicals comes from the adsorption and activation of CO2 to form intermediates. Herein, an amino-induced spillover strategy aimed at significantly enhancing the CO2 adsorption and activation capabilities of CdS supported on N-doped mesoporous hollow carbon sphere (NH2-CdS/NMHCS) for highly efficient CO2RR is presented. The prepared NH2-CdS/NMHCS exhibits a high CO Faradaic efficiency (FECO) exceeding 90% from -0.8 to -1.1 V versus reversible hydrogen electrode (RHE) with the highest FECO of 95% at -0.9 V versus RHE in H cell. Additional experimental and theoretical investigations demonstrate that the alkaline -NH2 group functions as a potent trapping site, effectively adsorbing the acidic CO2, and subsequently triggering CO2 spillover to CdS. The amino modification-induced CO2 spillover, combined with electron redistribution between CdS and NMHCS, not only readily achieves the spontaneous activation of CO2 to *COOH but also greatly reduces the energy required for the conversion of *COOH to *CO intermediate, thus endowing NH2-CdS/NMHCS with significantly improved reaction kinetics and reduced overpotential for CO2-to-CO conversion. It is believed that this research can provide valuable insights into the development of electrocatalysts with superior CO2 adsorption and activation capabilities for CO2RR application.
Collapse
Affiliation(s)
- Ruina Li
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan, 430078, P. R. China
| | - Fei Xie
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan, 430078, P. R. China
| | - Panyong Kuang
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan, 430078, P. R. China
| | - Tao Liu
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan, 430078, P. R. China
| | - Jiaguo Yu
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan, 430078, P. R. China
| |
Collapse
|
2
|
Yang J, Xiao S, Deng J, Li Y, Hu H, Wang J, Lu C, Li G, Zheng L, Wei Q, Zhong J. Oxygen vacancy-engineered cerium oxide mediated by copper-platinum exhibit enhanced SOD/CAT-mimicking activities to regulate the microenvironment for osteoarthritis therapy. J Nanobiotechnology 2024; 22:491. [PMID: 39155382 PMCID: PMC11330606 DOI: 10.1186/s12951-024-02678-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/30/2024] [Indexed: 08/20/2024] Open
Abstract
Cerium oxide (CeO2) nanospheres have limited enzymatic activity that hinders further application in catalytic therapy, but they have an "oxidation switch" to enhance their catalytic activity by increasing oxygen vacancies. In this study, according to the defect-engineering strategy, we developed PtCuOX/CeO2-X nanozymes as highly efficient SOD/CAT mimics by introducing bimetallic copper (Cu) and platinum (Pt) into CeO2 nanospheres to enhance the oxygen vacancies, in an attempt to combine near-infrared (NIR) irradiation to regulate microenvironment for osteoarthritis (OA) therapy. As expected, the Cu and Pt increased the Ce3+/Ce4+ ratio of CeO2 to significantly enhance the oxygen vacancies, and simultaneously CeO2 (111) facilitated the uniform dispersion of Cu and Pt. The strong metal-carrier interaction synergy endowed the PtCuOX/CeO2-X nanozymes with highly efficient SOD/CAT-like activity by the decreased formation energy of oxygen vacancy, promoted electron transfer, the increased adsorption energy of intermediates, and the decreased reaction activation energy. Besides, the nanozymes have excellent photothermal conversion efficiency (55.41%). Further, the PtCuOX/CeO2-X antioxidant system effectively scavenged intracellular ROS and RNS, protected mitochondrial function, and inhibited the inflammatory factors, thus reducing chondrocyte apoptosis. In vivo, experiments demonstrated the biosafety of PtCuOX/CeO2-X and its potent effect on OA suppression. In particular, NIR radiation further enhanced the effects. Mechanistically, PtCuOX/CeO2-X nanozymes reduced ras-related C3 botulinum toxin substrate 1 (Rac-1) and p-p65 protein expression, as well as ROS levels to remodel the inflammatory microenvironment by inhibiting the ROS/Rac-1/nuclear factor kappa-B (NF-κB) signaling pathway. This study introduces new clinical concepts and perspectives that can be applied to inflammatory diseases.
Collapse
Affiliation(s)
- Junxu Yang
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed By the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
- Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, Guangxi, 530021, People's Republic of China
| | - Shihui Xiao
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed By the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
- Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, Guangxi, 530021, People's Republic of China
| | - Jiejia Deng
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed By the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
- Life Sciences Institute, Guangxi Medical University, No. 22 Shuangyong Road, Nanning, Guangxi, 530021, People's Republic of China
| | - Yuquan Li
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed By the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
- Department of Orthopedics, The Second Affiliated Hospital of Guangxi Medical University, No. 166 East University Road, Nanning, Guangxi, 530005, People's Republic of China
| | - Hao Hu
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed By the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Jiawei Wang
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed By the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Chun Lu
- School of Materials and Environment, Guangxi Minzu University, Nanning, Guangxi, 53000, People's Republic of China
| | - Guanhua Li
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed By the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
- Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, Guangxi, 530021, People's Republic of China
| | - Li Zheng
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed By the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China.
| | - Qingjun Wei
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed By the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China.
- Department of Orthopedics, The Second Affiliated Hospital of Guangxi Medical University, No. 166 East University Road, Nanning, Guangxi, 530005, People's Republic of China.
| | - Jingping Zhong
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed By the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China.
| |
Collapse
|
3
|
Xu N, Xu L, Wang Y, Liu W, Xu W, Hu X, Han ZK. Unraveling the formation of oxygen vacancies on the surface of transition metal-doped ceria utilizing artificial intelligence. NANOSCALE 2024; 16:9853-9860. [PMID: 38712569 DOI: 10.1039/d3nr05950b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Ceria has been extensively utilized in different fields, with surface oxygen vacancies playing a central role. However, versatile oxygen vacancy regulation is still in its infancy. In this work, we propose an effective strategy to manipulate the oxygen vacancy formation energy via transition metal doping by combining first-principles calculations and analytical learning. We elucidate the underlying mechanism driving the formation of oxygen vacancies using combined symbolic regression and data analytics techniques. The results show that the Fermi level of the system and the electronegativity of the dopants are the paramount parameters (features) influencing the formation of oxygen vacancies. These insights not only enhance our understanding of the oxygen vacancy formation mechanism in ceria-based materials to improve their functionality but also potentially lay the groundwork for future strategies in the rational design of other transition metal oxide-based catalysts.
Collapse
Affiliation(s)
- Ning Xu
- Department of Physics, School of Physical Science and Technology, Ningbo University, Ningbo, 315211, China.
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Liangliang Xu
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-Ro, Yuseong-Gu, Daejeon 34141, Republic of Korea
| | - Yue Wang
- Department of Electrical Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Wen Liu
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Wenwu Xu
- Department of Physics, School of Physical Science and Technology, Ningbo University, Ningbo, 315211, China.
| | - Xiaojuan Hu
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany.
| | - Zhong-Kang Han
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
| |
Collapse
|
4
|
Sun X, Yang S, Liu X, Qiao Y, Liu Z, Li X, Pan J, Liu H, Wang L. The enhancement of benzene total oxidation over Ru xCeO 2 catalysts at low temperature: The significance of Ru incorporation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:165574. [PMID: 37474046 DOI: 10.1016/j.scitotenv.2023.165574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/06/2023] [Accepted: 07/14/2023] [Indexed: 07/22/2023]
Abstract
Catalytic oxidation is considered to be the most efficient technology for eliminating benzene from waste gas. The challenge is the reduction of the catalytic reaction temperature for the deep oxidation of benzene. Here, highly efficient RuxCeO2 catalysts were utilized to turn the number of surface oxygen vacancies and Ce-O-Ru bonds via a one-step hydrothermal method, resulting in a preferable low-temperature reducibility for the total oxidation of benzene. The T50 of the Ru0.2CeO2 catalyst for benzene oxidation was 135 °C, which was better than that of pristine CeO2 (239 °C) and 0.2Ru/CeO2 (190 °C). The superior performance of Ru0.2CeO2 was attributed to its large surface area (approximately 114.23 m2·g-1), abundant surface oxygen vacancies, and Ce-O-Ru bonds. The incorporation of Ru into the CeO2 lattice could effectively facilitate the destruction of the CeO bond and the facile release of lattice oxygen, inducing the generation of surface oxygen vacancies. Meanwhile, the bridging action of Ce-O-Ru bonds accelerated electron transfer and lattice oxygen transportation, which had a synergistic effect with surface oxygen vacancies to reduce the reaction temperature. The Ru0.2CeO2 catalyst also exhibited high catalytic stability, water tolerance, and impact resistance in terms of benzene abatement. Using in situ infrared spectroscopy, it was demonstrated that the Ru0.2CeO2 catalyst can effectively enhance the accumulation of maleate species, which are key intermediates for benzene ring opening, thereby enhancing the deep oxidation of benzene.
Collapse
Affiliation(s)
- Xiaoxia Sun
- Key Laboratory of Eco-chemical Engineering, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-chemical Process and Technology, Qingdao University of Science and Technology, Qingdao 266042, PR China; College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Shu Yang
- Key Laboratory of Eco-chemical Engineering, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-chemical Process and Technology, Qingdao University of Science and Technology, Qingdao 266042, PR China; College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.
| | - Xin Liu
- Institute of Green Chemistry and Chemical Technology, School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Yarui Qiao
- Key Laboratory of Eco-chemical Engineering, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-chemical Process and Technology, Qingdao University of Science and Technology, Qingdao 266042, PR China; College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Zhilou Liu
- School of Metallurgical Engineering, JiangXi University of Science and Technology, Ganzhou 341000, PR China
| | - Xinxin Li
- Key Laboratory of Eco-chemical Engineering, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-chemical Process and Technology, Qingdao University of Science and Technology, Qingdao 266042, PR China; College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Jingwen Pan
- Key Laboratory of Eco-chemical Engineering, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-chemical Process and Technology, Qingdao University of Science and Technology, Qingdao 266042, PR China; College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Hui Liu
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Lei Wang
- Key Laboratory of Eco-chemical Engineering, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-chemical Process and Technology, Qingdao University of Science and Technology, Qingdao 266042, PR China; College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.
| |
Collapse
|
5
|
Qin C, Ruan S, Xu K, He C, Shi Y, Feng B, Zhang L. Theoretical study on the reaction kinetics of CO oxidation by nitrogen-doped graphene catalysts with different ligand structures. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2023.113103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
6
|
Hydride Generation on the Cu-Doped CeO2(111) Surface and Its Role in CO2 Hydrogenation Reactions. Catalysts 2022. [DOI: 10.3390/catal12090963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Ceria-based catalysts exhibit great activity in catalyzing selective hydrogenation of CO2 to methanol. However, the underlying mechanism of this reaction, especially the generation of active H species, remains unclear. In this work, we performed extensive density functional theory calculations corrected by on-site Coulomb interaction (DFT + U) to investigate the H2 dissociation and the reaction between the active H species and CO2 on the pristine and Cu-doped CeO2(111) (denoted as Cu/CeO2(111)) surfaces. Our calculations evidenced that the heterolytic H2 dissociation for hydride generation can more readily occur on the Cu/CeO2(111) surface than on the pristine CeO2(111) surface. We also found that the Cu dopant can facilitate the formation of surface oxygen vacancies, further promoting the generation of hydride species. Moreover, the adsorption of CO2 and the hydrogenation of CO2 to HCOO* can be greatly promoted on the Cu/CeO2(111) surface with hydride species, which can lead to the high activity and selectivity toward CO2 hydrogenation to methanol.
Collapse
|
7
|
Constructing surface vacancy to activate the stuck MXenes for high-performance CO2 reduction reaction. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
8
|
Sang G, Ran J, Huang X, Ou Z, Tang L. Understanding the role of Ga on the activation mechanism of CO2 over modified Cu surface by DFT calculation. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
9
|
Chen L, Wu XP, Gong XQ. Unique catalytic mechanisms of methanol dehydrogenation at Pd-doped ceria: A DFT+U study. J Chem Phys 2022; 156:134701. [PMID: 35395884 DOI: 10.1063/5.0085913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Pd-doped ceria is highly active in promoting oxidative dehydrogenation (ODH) reactions and also a model single atom catalyst (SAC). By performing density functional theory calculations corrected by on-site Coulomb interactions, we systematically studied the physicochemical properties of the Pd-doped CeO2(111) surface and the catalytic methanol to formaldehyde reaction on the surface. Two different configurations were located for the Pd dopant, and the calculated results showed that doping of Pd will make the surface more active with lower oxygen vacancy formation energies than the pristine CeO2(111). Moreover, two different pathways for the dehydrogenation of CH3OH to HCHO on the Pd-doped CeO2(111) were determined, one of which is the conventional two-step process (stepwise pathway) with the O-H bond of CH3OH being broken first followed by the C-H bond cleavage, while the other is a novel one-step process (concerted pathway) involving the two H being dissociated from CH3OH simultaneously even with a lower energy barrier than the stepwise one. With electronic and structural analyses, we showed that the direct reduction of Pd4+ to Pd2+ through the transfer of two electrons can outperform the separated Ce4+ to Ce3+ processes with the help of configurational evolution at the Pd site, which is responsible for the existence of such one-step dehydrogenation process. This novel mechanism may provide an inspiration for constructing ceria-based SAC with unique ODH activities.
Collapse
Affiliation(s)
- Lu Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory for Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China
| | - Xin-Ping Wu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory for Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China
| | - Xue-Qing Gong
- Key Laboratory for Advanced Materials and Joint International Research Laboratory for Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China
| |
Collapse
|
10
|
Wang J, Cheng DG, Chen F, Zhan X. Chlorine-Decorated Ceria Nanocubes for Facilitating Low-Temperature Cyclohexane Oxidative Dehydrogenation: Unveiling the Decisive Role of Surface Species and Acid Properties. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05788] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Jinling Wang
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Dang-guo Cheng
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Institute of Zhejiang University-Quzhou, Quzhou 324000, China
| | - Fengqiu Chen
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Institute of Zhejiang University-Quzhou, Quzhou 324000, China
| | - Xiaoli Zhan
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Institute of Zhejiang University-Quzhou, Quzhou 324000, China
| |
Collapse
|
11
|
Gao H, Liu K, Luo T, Chen Y, Hu J, Fu J, Liu M. CO2 reduction reaction pathways on single-atom Co sites: Impacts of local coordination environment. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63893-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
12
|
Cu/O Frustrated Lewis Pairs on Cu Doped CeO2(111) for Acetylene Hydrogenation: A First-Principles Study. Catalysts 2022. [DOI: 10.3390/catal12010074] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In this work, the H2 dissociation and acetylene hydrogenation on Cu doped CeO2(111) were studied using density functional theory calculations. The results indicated that Cu doping promotes the formation of oxygen vacancy (Ov) which creates Cu/O and Ce/O frustrated Lewis pairs (FLPs). With the help of Cu/O FLP, H2 dissociation can firstly proceed via a heterolytic mechanism to produce Cu-H and O-H by overcoming a barrier of 0.40 eV. The H on Cu can facilely migrate to a nearby oxygen to form another O-H species with a barrier of 0.43 eV. The rate-determining barrier is lower than that for homolytic dissociation of H2 which produces two O-H species. C2H2 hydrogenation can proceed with a rate-determining barrier of 1.00 eV at the presence of Cu-H and O-H species., While C2H2 can be catalyzed by two O-H groups with a rate-determining barrier of 1.06 eV, which is significantly lower than that (2.86 eV) of C2H2 hydrogenated by O-H groups on the bare CeO2(111), showing the high activity of Cu doped CeO2(111) for acetylene hydrogenation. In addition, the rate-determining barrier of C2H4 further hydrogenated by two O-H groups is 1.53 eV, much higher than its desorption energy (0.72 eV), suggesting the high selectivity of Cu doped CeO2(111) for C2H2 partial hydrogenation. This provides new insights to develop effective hydrogenation catalysts based on metal oxide.
Collapse
|
13
|
Xi H, Xu Y, Zou W, Ji J, Cai Y, Wan H, Dong L. Enhanced methanol selectivity of Cu O/TiO2 photocatalytic CO2 reduction: Synergistic mechanism of surface hydroxyl and low-valence copper species. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2021.101825] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
14
|
Nasluzov VA, Ivanova-Shor EA, Shor AM, Laletina SS, Neyman KM. Adsorption and Oxidation of CO on Ceria Nanoparticles Exposing Single-Atom Pd and Ag: A DFT Modelling. MATERIALS (BASEL, SWITZERLAND) 2021; 14:6888. [PMID: 34832290 PMCID: PMC8618484 DOI: 10.3390/ma14226888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/07/2021] [Accepted: 11/09/2021] [Indexed: 11/16/2022]
Abstract
Various COx species formed upon the adsorption and oxidation of CO on palladium and silver single atoms supported on a model ceria nanoparticle (NP) have been studied using density functional calculations. For both metals M, the ceria-supported MCOx moieties are found to be stabilised in the order MCO < MCO2 < MCO3, similar to the trend for COx species adsorbed on M-free ceria NP. Nevertheless, the characteristics of the palladium and silver intermediates are different. Very weak CO adsorption and the small exothermicity of the CO to CO2 transformation are found for O4Pd site of the Pd/Ce21O42 model featuring a square-planar coordination of the Pd2+ cation. The removal of one O atom and formation of the O3Pd site resulted in a notable strengthening of CO adsorption and increased the exothermicity of the CO to CO2 reaction. For the analogous ceria models with atomic Ag instead of atomic Pd, these two energies became twice as small in magnitude and basically independent of the presence of an O vacancy near the Ag atom. CO2-species are strongly bound in palladium carboxylate complexes, whereas the CO2 molecule easily desorbs from oxide-supported AgCO2 moieties. Opposite to metal-free ceria particle, the formation of neither PdCO3 nor AgCO3 carbonate intermediates before CO2 desorption is predicted. Overall, CO oxidation is concluded to be more favourable at Ag centres atomically dispersed on ceria nanostructures than at the corresponding Pd centres. Calculated vibrational fingerprints of surface COx moieties allow us to distinguish between CO adsorption on bare ceria NP (blue frequency shifts) and ceria-supported metal atoms (red frequency shifts). However, discrimination between the CO2 and CO32- species anchored to M-containing and bare ceria particles based solely on vibrational spectroscopy seems problematic. This computational modelling study provides guidance for the knowledge-driven design of more efficient ceria-based single-atom catalysts for the environmentally important CO oxidation reaction.
Collapse
Affiliation(s)
- Vladimir A. Nasluzov
- Institute of Chemistry and Chemical Technology SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 660036 Krasnoyarsk, Russia; (V.A.N.); (A.M.S.); (S.S.L.)
| | - Elena A. Ivanova-Shor
- Institute of Chemistry and Chemical Technology SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 660036 Krasnoyarsk, Russia; (V.A.N.); (A.M.S.); (S.S.L.)
| | - Aleksey M. Shor
- Institute of Chemistry and Chemical Technology SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 660036 Krasnoyarsk, Russia; (V.A.N.); (A.M.S.); (S.S.L.)
| | - Svetlana S. Laletina
- Institute of Chemistry and Chemical Technology SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 660036 Krasnoyarsk, Russia; (V.A.N.); (A.M.S.); (S.S.L.)
| | - Konstantin M. Neyman
- Departament de Ciència de Materials i Química Física and Institut de Quimica Teòrica i Computacional, Universitat de Barcelona, 08028 Barcelona, Spain;
- ICREA (Institució Catalana de Recerca i Estudis Avançats), 08010 Barcelona, Spain
| |
Collapse
|
15
|
Liu Z, Wang Q, Wu J, Zhang H, Liu Y, Zhang T, Tian H, Zeng S. Active Sites and Interfacial Reducibility of Cu xO/CeO 2 Catalysts Induced by Reducing Media and O 2/H 2 Activation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:35804-35817. [PMID: 34313106 DOI: 10.1021/acsami.1c09332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The development of a highly efficient and stable catalyst for preferential oxidation of CO for the commercialization of proton-exchange membrane fuel cells has been a result of continuous effort. The main challenge is the simultaneous control of abundant active sites and interfacial reducibility over the catalyst CuxO/CeO2. Here, we report a strategy to modulate porosity, active sites, and O-vacancy sites (OV) by reducing media and O2/H2 activation. O2-pretreated CeO2-supported Cu catalysts unequivocally demonstrate the low-temperature activity owing to the excess concentrations of Cu+ and Cu2+ as well as the relative population of Ce3+ and O-vacancy sites at the surface. O2 activation improves the Cu2+ diffusion into the CeO2 lattice to generate the synergistic effect and induces the formation of electron-enriched Cu2+-OV-Ce3+ sites, which accelerate the activation and dissociation of CO/O2 and the formation of reactive oxygen species during catalysis. Density function theory (DFT) calculations reveal that CO adsorbs on Cu2O {110} and CuO {111} with relatively optimal adsorption energy and longer C-Cu lengths in contrast to that on Cu {111}, favoring the adsorption and desorption of CO. These are crucial for ongoing CO oxidation, producing CO2 by the Mars-van Krevelen mechanism.
Collapse
Affiliation(s)
- Ze Liu
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China
| | - Qi Wang
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Jinfang Wu
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China
| | - Heng Zhang
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China
| | - Yang Liu
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China
| | - Tiantian Zhang
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China
| | - Haoyuan Tian
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China
| | - Shanghong Zeng
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China
| |
Collapse
|
16
|
Ning S, Guo Z, Wang J, Huang S, Chen S, Kang X. Sn‐doped CeO
2
Nanorods as High‐Performance Electrocatalysts for CO
2
Reduction to Formate. ChemElectroChem 2021. [DOI: 10.1002/celc.202100445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Shunlian Ning
- School of Environment and Energy South China University of Technology Higher Education Mega Center 382 East Waihuan Road Guangzhou 510006 China
| | - Zhiwei Guo
- School of Environment and Energy South China University of Technology Higher Education Mega Center 382 East Waihuan Road Guangzhou 510006 China
| | - Jigang Wang
- School of Environment and Energy South China University of Technology Higher Education Mega Center 382 East Waihuan Road Guangzhou 510006 China
| | - Shaobin Huang
- School of Environment and Energy South China University of Technology Higher Education Mega Center 382 East Waihuan Road Guangzhou 510006 China
| | - Shaowei Chen
- Department of Chemistry and Biochemistry University of California 1156 High Street Santa Cruz CA 95064 USA
| | - Xiongwu Kang
- School of Environment and Energy South China University of Technology Higher Education Mega Center 382 East Waihuan Road Guangzhou 510006 China
| |
Collapse
|
17
|
Cao S, Wei S, Wei X, Zhou S, Chen H, Hu Y, Wang Z, Liu S, Guo W, Lu X. Can N, S Cocoordination Promote Single Atom Catalyst Performance in CO 2 RR? Fe-N 2 S 2 Porphyrin versus Fe-N 4 Porphyrin. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100949. [PMID: 34145743 DOI: 10.1002/smll.202100949] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/01/2021] [Indexed: 06/12/2023]
Abstract
Single atom catalysts (SACs) are promising electrocatalysts for CO2 reduction reaction (CO2 RR), in which the coordination environment plays a crucial role in intrinsic catalytic activity. Taking the regular Fe porphyrin (Fe-N4 porphyrin) as a probe, the study reveals that the introduction of opposable S atoms into N coordination (Fe-N2 S2 porphyrin) allows for an appropriate electronic structural optimization on active sites. Owing to the additional orbitals around the Fermi level and the abundant Fe dz2 orbital occupation after S substitution, N, S cocoordination can effectively tune SACs and thus facilitating protonation of intermediates during CO2 RR. CO2 RR mechanisms lead to possible C1 products via two-, six-, and eight-electron pathways are systematically elucidated on Fe-N4 porphyrin and Fe-N2 S2 porphyrin. Fe-N4 porphyrin yields the most favorable product of HCOOH with a limiting potential of -0.70 V. Fe-N2 S2 porphyrin exhibits low limiting potentials of -0.38 and -0.40 V for HCOOH and CH3 OH, respectively, surpassing those of most Cu-based catalysts and SACs. Hence, the N, S cocoordination might provide better catalytic environment than regular N coordination for SACs in CO2 RR. This work demonstrates Fe-N2 S2 porphyrin as a high-performance CO2 RR catalyst, and highlights N, S cocoordination regulation as an effective approach to fine tune high atomically dispersed electrocatalysts.
Collapse
Affiliation(s)
- Shoufu Cao
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, Shandong, 266580, P. R. China
| | - Shuxian Wei
- College of Science, China University of Petroleum, Qingdao, Shandong, 266580, P. R. China
| | - Xiaofei Wei
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, Shandong, 266580, P. R. China
| | - Sainan Zhou
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, Shandong, 266580, P. R. China
| | - Hongyu Chen
- College of Science, China University of Petroleum, Qingdao, Shandong, 266580, P. R. China
| | - Yuying Hu
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, Shandong, 266580, P. R. China
| | - Zhaojie Wang
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, Shandong, 266580, P. R. China
| | - Siyuan Liu
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, Shandong, 266580, P. R. China
| | - Wenyue Guo
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, Shandong, 266580, P. R. China
| | - Xiaoqing Lu
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, Shandong, 266580, P. R. China
| |
Collapse
|
18
|
Choi PG, Liu Z, Hara N, Masuda Y. Surface Molecular Separator for Selective Gas Sensing. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c03395] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Pil Gyu Choi
- National Institute of Advanced Industrial Science and Technology (AIST), 2266-98 Anagahora, Shimoshidami, Moriyama, Nagoya 463-8560, Japan
| | - Zheng Liu
- National Institute of Advanced Industrial Science and Technology (AIST), 2266-98 Anagahora, Shimoshidami, Moriyama, Nagoya 463-8560, Japan
| | - Nobuo Hara
- Research Institute for Chemical Process Technology, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba 305-8565, Japan
| | - Yoshitake Masuda
- National Institute of Advanced Industrial Science and Technology (AIST), 2266-98 Anagahora, Shimoshidami, Moriyama, Nagoya 463-8560, Japan
| |
Collapse
|
19
|
Shah Bacha RU, Li L, Guo YR, Jing L, Pan QJ. Actinyl-Modified g-C 3N 4 as CO 2 Activation Materials for Chemical Conversion and Environmental Remedy via an Artificial Photosynthetic Route. Inorg Chem 2020; 59:8369-8379. [PMID: 32468810 DOI: 10.1021/acs.inorgchem.0c00791] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
With the reported CO2 activation for the oxidation of benzene to phenol (-ENE → -OL) by the graphitic carbon nitride g-C3N4 (CN) via an artificial photosynthetic route as inspiration, high-valent actinyls (AnmO2)n+ (An = U, Np, Pu; m = VI, V; n = 2, 1) have been introduced for its further modification. Our calculations indicate thermodynamic spontaneity in the feasibility of g-C3N4-(AnmO2)n+ (CN-Anm) formation. The magnificent structural and electronic properties of CN-Anm are utilized for CO2 activation in terms of the rarely studied -ENE → -OL conversion. The calculated free energies show that most steps of the catalytic cycle are favored by CN-Anm complexes. The first step (carbamate formation) is slightly endothermic in all cases, where CN-U is 0.51 eV higher than CN and CN-Pu is -0.01 eV lower. All benzene addition reactions release energy, with that for CN-U being the lowest. The phenolate formation is favored by some actinyl complexes over CN, and CN-U is only 0.23 eV higher. The phenol release (resulting in formamide complexes) and CO desorption are exothermic for all CN-Anm. The overall process suggests the improved catalytic performance of actinyl-modified CN materials, and the slightly depleted uranyl-carbon nitride could be one of the promising catalysts.
Collapse
Affiliation(s)
- Raza Ullah Shah Bacha
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education), School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China
| | - Li Li
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education), School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China
| | - Yuan-Ru Guo
- Key Laboratory of Bio-based Material Science & Technology (Ministry of Education), College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, People's Republic of China
| | - Liqiang Jing
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education), School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China
| | - Qing-Jiang Pan
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education), School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China
| |
Collapse
|
20
|
Bian Z, Chan YM, Yu Y, Kawi S. Morphology dependence of catalytic properties of Ni/CeO2 for CO2 methanation: A kinetic and mechanism study. Catal Today 2020. [DOI: 10.1016/j.cattod.2018.04.067] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
21
|
Konsolakis M, Lykaki M, Stefa S, Carabineiro SAC, Varvoutis G, Papista E, Marnellos GE. CO 2 Hydrogenation over Nanoceria-Supported Transition Metal Catalysts: Role of Ceria Morphology (Nanorods versus Nanocubes) and Active Phase Nature (Co versus Cu). NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1739. [PMID: 31817667 PMCID: PMC6955880 DOI: 10.3390/nano9121739] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 11/28/2019] [Accepted: 12/02/2019] [Indexed: 11/28/2022]
Abstract
In this work we report on the combined impact of active phase nature (M: Co or Cu) and ceria nanoparticles support morphology (nanorods (NR) or nanocubes (NC)) on the physicochemical characteristics and CO2 hydrogenation performance of M/CeO2 composites at atmospheric pressure. It was found that CO2 conversion followed the order: Co/CeO2 > Cu/CeO2 > CeO2, independently of the support morphology. Co/CeO2 catalysts demonstrated the highest CO2 conversion (92% at 450 °C), accompanied by 93% CH4 selectivity. On the other hand, Cu/CeO2 samples were very selective for CO production, exhibiting 52% CO2 conversion and 95% CO selectivity at 380 °C. The results obtained in a wide range of H2:CO2 ratios (1-9) and temperatures (200-500 °C) are reaching in both cases the corresponding thermodynamic equilibrium conversions, revealing the superiority of Co- and Cu-based samples in methanation and reverse water-gas shift (rWGS) reactions, respectively. Moreover, samples supported on ceria nanocubes exhibited higher specific activity (µmol CO2·m-2·s-1) compared to samples of rod-like shape, disclosing the significant role of support morphology, besides that of metal nature (Co or Cu). Results are interpreted on the basis of different textural and redox properties of as-prepared samples in conjunction to the different impact of metal entity (Co or Cu) on CO2 hydrogenation process.
Collapse
Affiliation(s)
- Michalis Konsolakis
- School of Production Engineering and Management, Technical University of Crete, GR-73100 Chania, Greece; (M.L.); (S.S.)
| | - Maria Lykaki
- School of Production Engineering and Management, Technical University of Crete, GR-73100 Chania, Greece; (M.L.); (S.S.)
| | - Sofia Stefa
- School of Production Engineering and Management, Technical University of Crete, GR-73100 Chania, Greece; (M.L.); (S.S.)
| | - Sόnia A. C. Carabineiro
- Laboratório de Catálise e Materiais (LCM), Laboratório Associado LSRE-LCM, Faculdade de Engenharia, Universidade do Porto, 4200-465 Porto, Portugal
| | - Georgios Varvoutis
- Department of Mechanical Engineering, University of Western Macedonia, GR-50100 Kozani, Greece; (G.V.); (E.P.); (G.E.M.)
- Chemical Process & Energy Resources Institute, Centre for Research & Technology Hellas, GR-57001 Thermi, Thessaloniki, Greece
| | - Eleni Papista
- Department of Mechanical Engineering, University of Western Macedonia, GR-50100 Kozani, Greece; (G.V.); (E.P.); (G.E.M.)
| | - Georgios E. Marnellos
- Department of Mechanical Engineering, University of Western Macedonia, GR-50100 Kozani, Greece; (G.V.); (E.P.); (G.E.M.)
- Chemical Process & Energy Resources Institute, Centre for Research & Technology Hellas, GR-57001 Thermi, Thessaloniki, Greece
| |
Collapse
|
22
|
Guo C, Zhang T, Deng X, Liang X, Guo W, Lu X, Wu CML. Electrochemical CO 2 Reduction to C 1 Products on Single Nickel/Cobalt/Iron-Doped Graphitic Carbon Nitride: A DFT Study. CHEMSUSCHEM 2019; 12:5126-5132. [PMID: 31600404 DOI: 10.1002/cssc.201902483] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/10/2019] [Indexed: 06/10/2023]
Abstract
Electrocatalytic CO2 reduction reaction (CRR) is one of the most promising strategies to convert greenhouse gases to energy sources. Herein, the CRR was applied towards making C1 products (CO, HCOOH, CH3 OH, and CH4 ) on g-C3 N4 frameworks with single Ni, Co, and Fe introduction; this process was investigated by density functional theory. The structures of the electrocatalysts, CO2 adsorption configurations, and CO2 reduction mechanisms were systematically studied. Results showed that the single Ni, Co, and Fe located from the corner of the g-C3 N4 cavity to the center. Analyses of the adsorption configurations and electronic structures suggested that CO2 could be chemically adsorbed on Co-C3 N4 and Fe-C3 N4 , but physically adsorbed on Ni-C3 N4 . The H2 evolution reaction (HER), as a suppression of CRR, was investigated, and results showed that Ni-C3 N4 , Co-C3 N4 , and Fe-C3 N4 exhibited more CRR selectivity than HER. CRR proceeded via COOH and OCHO as initial protonation intermediates on Ni-C3 N4 and Co/Fe-C3 N4 , respectively, which resulted in different C1 products along quite different reaction pathways. Compared with Ni-C3 N4 and Fe-C3 N4 , Co-C3 N4 had more favorable CRR activity and selectivity for CH3 OH production with unique rate-limiting steps and lower limiting potential.
Collapse
Affiliation(s)
- Chen Guo
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Tian Zhang
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, Shandong, P.R. China
| | - Xiangxuan Deng
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Xiongyi Liang
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Wenyue Guo
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, Shandong, P.R. China
| | - Xiaoqing Lu
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, Shandong, P.R. China
| | - Chi-Man Lawrence Wu
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| |
Collapse
|
23
|
Affiliation(s)
- Kuan Chang
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Haochen Zhang
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Mu-jeng Cheng
- Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan
| | - Qi Lu
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
24
|
Precise fabrication of porous one-dimensional gC3N4 nanotubes doped with Pd and Cu atoms for efficient CO oxidation and CO2 reduction. INORG CHEM COMMUN 2019. [DOI: 10.1016/j.inoche.2019.107460] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
25
|
Wang M, Shen M, Jin X, Tian J, Li M, Zhou Y, Zhang L, Li Y, Shi J. Oxygen Vacancy Generation and Stabilization in CeO2–x by Cu Introduction with Improved CO2 Photocatalytic Reduction Activity. ACS Catal 2019. [DOI: 10.1021/acscatal.8b03975] [Citation(s) in RCA: 204] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Min Wang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Ding-xi Road, Shanghai 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, P. R. China
- School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Meng Shen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Ding-xi Road, Shanghai 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, P. R. China
| | - Xixiong Jin
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Ding-xi Road, Shanghai 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, P. R. China
| | - Jianjian Tian
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Ding-xi Road, Shanghai 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, P. R. China
| | - Mengli Li
- School of Biology and Chemical Engineering, Jiaxing University, No. 56 South Yuexiu Road, Jiaxing, Zhejiang 314001, P. R. China
| | - Yajun Zhou
- School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Lingxia Zhang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Ding-xi Road, Shanghai 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, P. R. China
| | - Yongsheng Li
- School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Jianlin Shi
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Ding-xi Road, Shanghai 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, P. R. China
| |
Collapse
|
26
|
Kim HJ, Lee G, Jang MG, Noh K, Han JW. Rational Design of Transition Metal Co‐Doped Ceria Catalysts for Low‐Temperature CO Oxidation. ChemCatChem 2019. [DOI: 10.1002/cctc.201900178] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Hyung Jun Kim
- Department of Chemical EngineeringPohang University of Science and Technology (POSTECH) Pohang Gyeongbuk 37673 Republic of Korea
| | - Geonhee Lee
- Department of Chemical EngineeringUniversity of Seoul Seoul 02504 Republic of Korea
| | - Myeong Gon Jang
- Department of Chemical EngineeringUniversity of Seoul Seoul 02504 Republic of Korea
| | - Kyung‐Jong Noh
- Department of Chemical EngineeringPohang University of Science and Technology (POSTECH) Pohang Gyeongbuk 37673 Republic of Korea
| | - Jeong Woo Han
- Department of Chemical EngineeringPohang University of Science and Technology (POSTECH) Pohang Gyeongbuk 37673 Republic of Korea
| |
Collapse
|
27
|
Guo C, Zhang T, Niu M, Cao S, Wei S, Wang Z, Guo W, Lu X, Wu CML. Impact of diverse active sites on MoS2 catalyst: Competition on active site formation and selectivity of thiophene hydrodesulfurization reaction. MOLECULAR CATALYSIS 2019. [DOI: 10.1016/j.mcat.2018.11.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
28
|
Han M, Fu X, Cao A, Guo C, Chu W, Xiao J. Toward Computational Design of Catalysts for CO2
Selective Reduction via Reaction Phase Diagram Analysis. ADVANCED THEORY AND SIMULATIONS 2019. [DOI: 10.1002/adts.201800200] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Mengru Han
- Department of Chemical Engineering; Sichuan University; Chengdu 610065 China
- Institute of Natural Sciences; Westlake Institute for Advanced Study; School of Science; Westlake University; Hangzhou 310024 China
| | - Xiaoyan Fu
- Institute of Natural Sciences; Westlake Institute for Advanced Study; School of Science; Westlake University; Hangzhou 310024 China
| | - Ang Cao
- Institute of Natural Sciences; Westlake Institute for Advanced Study; School of Science; Westlake University; Hangzhou 310024 China
| | - Chenxi Guo
- Institute of Natural Sciences; Westlake Institute for Advanced Study; School of Science; Westlake University; Hangzhou 310024 China
| | - Wei Chu
- Department of Chemical Engineering; Sichuan University; Chengdu 610065 China
| | - Jianping Xiao
- State Key Laboratory of Catalysis; Dalian Institute of Chemical Physics; Chinese Academy of Sciences; Dalian 116023 China
- Institute of Natural Sciences; Westlake Institute for Advanced Study; School of Science; Westlake University; Hangzhou 310024 China
| |
Collapse
|
29
|
Yang SC, Pang SH, Sulmonetti TP, Su WN, Lee JF, Hwang BJ, Jones CW. Synergy between Ceria Oxygen Vacancies and Cu Nanoparticles Facilitates the Catalytic Conversion of CO2 to CO under Mild Conditions. ACS Catal 2018. [DOI: 10.1021/acscatal.8b04219] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sheng-Chiang Yang
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive, Atlanta, Georgia 30332, United States
- Department of Chemical Engineering, National Taiwan University of Science and Technology, 43 Keelung Rd. Sec. 4, Taipei 10617, Taiwan, R.O.C
| | - Simon H. Pang
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive, Atlanta, Georgia 30332, United States
| | - Taylor P. Sulmonetti
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive, Atlanta, Georgia 30332, United States
| | - Wei-Nien Su
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, 43 Keelung Rd. Sec. 4, Taipei 10617, Taiwan, R.O.C
| | - Jyh-Fu Lee
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu Science
Park, Hsinchu 30076, Taiwan, R.O.C
| | - Bing-Joe Hwang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, 43 Keelung Rd. Sec. 4, Taipei 10617, Taiwan, R.O.C
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu Science
Park, Hsinchu 30076, Taiwan, R.O.C
| | - Christopher W. Jones
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive, Atlanta, Georgia 30332, United States
| |
Collapse
|
30
|
Zhang G, Li Y, Hou Z, Xv J, Wang Q, Zhang Y. Research on the synergistic doped effects and the catalysis properties of Cu 2+ and Zn 2+ co-doped CeO 2 solid solutions. J SOLID STATE CHEM 2018. [DOI: 10.1016/j.jssc.2018.05.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
31
|
Su YQ, Filot IAW, Liu JX, Hensen EJM. Stable Pd-Doped Ceria Structures for CH 4 Activation and CO Oxidation. ACS Catal 2018; 8:75-80. [PMID: 29333329 PMCID: PMC5762167 DOI: 10.1021/acscatal.7b03295] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 10/24/2017] [Indexed: 11/29/2022]
Abstract
Doping CeO2 with Pd atoms has been associated with catalytic CO oxidation, but current surface models do not allow CO adsorption. Here, we report a new structure of Pd-doped CeO2(111), in which Pd adopts a square planar configuration instead of the previously assumed octahedral configuration. Oxygen removal from this doped structure is favorable. The resulting defective Pd-doped CeO2 surface is active for CO oxidation and is also able to cleave the first C-H bond in methane. We show how the moderate CO adsorption energy and dynamic features of the Pd atom upon CO adsorption and CO oxidation contribute to a low-barrier catalytic cycle for CO oxidation. These structures, which are also observed for Ni and Pt, can lead to a more open coordination environment around the doped-transition-metal center. These thermally stable structures are relevant to the development of single-atom catalysts.
Collapse
Affiliation(s)
| | | | - Jin-Xun Liu
- Laboratory of Inorganic Materials
Chemistry, Schuit Institute of Catalysis, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Emiel J. M. Hensen
- Laboratory of Inorganic Materials
Chemistry, Schuit Institute of Catalysis, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
32
|
Wang R, Wei J, Wei H, Yang Y. Crystal plane dependent dopant migration that boosts catalytic oxidation. Catal Sci Technol 2018. [DOI: 10.1039/c8cy01535j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
CeO2 rods with {110} facets and cubes with {100} facets were utilized as catalyst supports to probe the effect of crystallographic facets on the iron species and the structure-dependent catalytic performance.
Collapse
Affiliation(s)
- Ruixue Wang
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan City
- P. R. China
| | - Jingjing Wei
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan City
- P. R. China
| | - Huiying Wei
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan City
- P. R. China
| | - Yanzhao Yang
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan City
- P. R. China
| |
Collapse
|