1
|
Xiao Z, Zhou L, Sun P, Li Z, Kang Y, Guo M, Niu Y, Zhao D. Regulation of mechanical properties of microcapsules and their applications. J Control Release 2024; 375:90-104. [PMID: 39233280 DOI: 10.1016/j.jconrel.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/29/2024] [Accepted: 09/01/2024] [Indexed: 09/06/2024]
Abstract
Microcapsules encapsulating payloads are one of the most promising delivery methods. The mechanical properties of microcapsules often determine their application scenarios. For example, microcapsules with low mechanical strength are more widely used in biomedical applications due to their superior biocompatibility, softness, and deformability. In contrast, microcapsules with high mechanical strength are often mixed into the matrix to enhance the material. Therefore, characterizing and regulating the mechanical properties of microcapsules is essential for their design optimization. This paper first outlines four methods for the mechanical characterization of microcapsules: nanoindentation technology, parallel plate compression technology, microcapillary technology, and deformation in flow. Subsequently, the mechanisms of regulating the mechanical properties of microcapsules and the progress of applying microcapsules with different degrees of softness and hardness in food, textile, and pharmaceutical formulations are discussed. These regulation mechanisms primarily include altering size and morphology, introducing sacrificial bonds, and construction of hybrid shells. Finally, we envision the future applications and research directions for microcapsules with tunable mechanical properties.
Collapse
Affiliation(s)
- Zuobing Xiao
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China; School of Agriculture and Biology, Shanghai Jiaotong University, No. 800 Dongchuan Road, Shanghai 200240, China
| | - Liyuan Zhou
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China
| | - Pingli Sun
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China
| | - Zhibin Li
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China
| | - Yanxiang Kang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China
| | - Mengxue Guo
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China
| | - Yunwei Niu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China
| | - Di Zhao
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China.
| |
Collapse
|
2
|
Tan X, Sheng R, Liu Z, Li W, Yuan R, Tao Y, Yang N, Ge L. Assembly of Metal-Phenolic Networks onto Microbubbles for One-Step Generation of Functional Microcapsules. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305325. [PMID: 37641191 DOI: 10.1002/smll.202305325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/11/2023] [Indexed: 08/31/2023]
Abstract
The one-step assembly of metal-phenolic networks (MPNs) onto particle templates can enable the facile, rapid, and robust construction of hollow microcapsules. However, the required template removal step may affect the refilling of functional species in the hollow interior space or the in situ encapsulation of guest molecules during the formation of the shells. Herein, a simple strategy for the one-step generation of functional MPNs microcapsules is proposed. This method uses bovine serum albumin microbubbles (BSA MBs) as soft templates and carriers, enabling the efficient pre-encapsulation of guest species by leveraging the coordination assembly of tannic acid (TA) and FeIII ions. The addition of TA and FeIII induces a change in the protein conformation of BSA MBs and produces semipermeable capsule shells, which allow gas to escape from the MBs without template removal. The MBs-templated strategy can produce highly biocompatible capsules with controllable structure and size, and it is applicable to produce other MPNs systems like BSA-TA-CuII and BSA-TA-NiII . Finally, those MBs-templated MPNs capsules can be further functionalized or modified for the loading of magnetic nanoparticles and the pre-encapsulation of model molecules through covalence or physical adsorption, exhibiting great promise in biomedical applications.
Collapse
Affiliation(s)
- Xin Tan
- State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
| | - Renwang Sheng
- School of Medicine, Southeast University, Nanjing, 210009, P. R. China
| | - Zonghao Liu
- State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
| | - Weikun Li
- State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
| | - Renqiang Yuan
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing, 210009, P. R. China
| | - Yinghua Tao
- State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
| | - Ning Yang
- State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
| | - Liqin Ge
- State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
| |
Collapse
|
3
|
Zhao X, Jiao H, Du B, Zhao K. Polyurethane Acrylate Oligomer (PUA) Microspheres Prepared Using the Pickering Method for Reinforcing the Mechanical and Thermal Properties of 3D Printing Resin. Polymers (Basel) 2023; 15:4320. [PMID: 37960000 PMCID: PMC10649341 DOI: 10.3390/polym15214320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/27/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023] Open
Abstract
Some photosensitive resins have poor mechanical properties after 3D printing. To overcome these limitations, a polyurethane acrylate oligomer (PUA) microsphere was prepared using the Pickering emulsion template method and ultraviolet (UV) curing technology in this paper. The prepared PUA microspheres were added to PUA-1,6-hexanediol diacrylate (HDDA) photosensitive resin system for digital light processing (DLP) 3D printing technology. The preparation process of PUA microspheres was discussed based on micromorphology, and it was found that the oil-water ratio of the Pickering emulsion and the emulsification speed had a certain effect on the microsphere size. As the oil-water ratio and the emulsification speed increased, the microsphere particle size decreased to a certain extent. Adding a suitable proportion of PUA microspheres to the photosensitive resin can improve the mechanical properties and thermal stability. When the modified photosensitive resin microsphere content was 0.5%, the tensile strength, elongation at break, bending strength, and initial thermal decomposition temperature were increased by 79.14%, 47.26%, 26.69%, and 10.65%, respectively, compared with the unmodified photosensitive resin. This study provides a new way to improve the mechanical properties of photosensitive resin 3D printing. The resin materials studied in this work have potential application value in the fields of ceramic 3D printing and dental temporary replacement materials.
Collapse
Affiliation(s)
- Xiaoliang Zhao
- School of Materials Science and Engineering, Xi’an University of Technology, Xi’an 710048, China;
- School of Materials Science and Engineering, Xi’an Polytechnic University, Xi’an 710048, China;
| | - Hua Jiao
- School of Materials Science and Engineering, Xi’an University of Technology, Xi’an 710048, China;
- Shaanxi Province Key Laboratory of Corrosion and Protection, Xi’an University of Technology, Xi’an 710048, China
| | - Bin Du
- School of Materials Science and Engineering, Xi’an Polytechnic University, Xi’an 710048, China;
| | - Kang Zhao
- School of Materials Science and Engineering, Xi’an University of Technology, Xi’an 710048, China;
- Shaanxi Province Key Laboratory of Corrosion and Protection, Xi’an University of Technology, Xi’an 710048, China
| |
Collapse
|
4
|
Patel M, Alvarez-Fernandez A, Fornerod MJ, Radhakrishnan ANP, Taylor A, Ten Chua S, Vignolini S, Schmidt-Hansberg B, Iles A, Guldin S. Liquid Crystal-Templated Porous Microparticles via Photopolymerization of Temperature-Induced Droplets in a Binary Liquid Mixture. ACS OMEGA 2023; 8:20404-20411. [PMID: 37323413 PMCID: PMC10268013 DOI: 10.1021/acsomega.3c00490] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 05/12/2023] [Indexed: 06/17/2023]
Abstract
Porous polymeric microspheres are an emerging class of materials, offering stimuli-responsive cargo uptake and release. Herein, we describe a new approach to fabricate porous microspheres based on temperature-induced droplet formation and light-induced polymerization. Microparticles were prepared by exploiting the partial miscibility of a thermotropic liquid crystal (LC) mixture composed of 4-cyano-4'-pentylbiphenyl (5CB, unreactive mesogens) with 2-methyl-1,4-phenylene bis4-[3-(acryloyloxy)propoxy] benzoate (RM257, reactive mesogens) in methanol (MeOH). Isotropic 5CB/RM257-rich droplets were generated by cooling below the binodal curve (20 °C), and the isotropic-to-nematic transition occurred after cooling below 0 °C. The resulting 5CB/RM257-rich droplets with radial configuration were subsequently polymerized under UV light, resulting in nematic microparticles. Upon heating the mixture, the 5CB mesogens underwent a nematic-isotropic transition and eventually became homogeneous with MeOH, while the polymerized RM257 preserved its radial configuration. Repeated cycles of cooling and heating resulted in swelling and shrinking of the porous microparticles. The use of a reversible materials templating approach to obtain porous microparticles provides new insights into binary liquid manipulation and potential for microparticle production.
Collapse
Affiliation(s)
- Mehzabin Patel
- Department
of Chemical Engineering, University College
London, London, WC1E 7JE, United
Kingdom
| | | | | | | | - Alaric Taylor
- Department
of Chemical Engineering, University College
London, London, WC1E 7JE, United
Kingdom
| | - Singg Ten Chua
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Cambridge, CB2 1EW, United
Kingdom
| | - Silvia Vignolini
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Cambridge, CB2 1EW, United
Kingdom
| | - Benjamin Schmidt-Hansberg
- Chemical
& Process Engineering, Coating & Film Processing, BASF SE, 67056 Ludwigshafen am Rhein, Germany
| | - Alexander Iles
- Lab-on-a-Chip
Research Group, Department of Chemistry and Biochemistry, University of Hull, Hull, HU6 7RX, United Kingdom
| | - Stefan Guldin
- Department
of Chemical Engineering, University College
London, London, WC1E 7JE, United
Kingdom
| |
Collapse
|
5
|
Preparation and properties of thermo-expandable microcapsules with anionic/nonionic waterborne polyurethane as the shell. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04539-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
6
|
Hamonangan WM, Lee S, Choi YH, Li W, Tai M, Kim SH. Osmosis-Mediated Microfluidic Production of Submillimeter-Sized Capsules with an Ultrathin Shell for Cosmetic Applications. ACS APPLIED MATERIALS & INTERFACES 2022; 14:18159-18169. [PMID: 35426298 DOI: 10.1021/acsami.2c01319] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
There is a demand for submillimeter-sized capsules with an ultrathin shell with high visibility and no tactile sensation after release for cosmetic applications. However, neither bulk emulsification nor droplet microfluidics can directly produce such capsules in a controlled manner. Herein, we report the microfluidic production of submillimeter-sized capsules with a spacious lumen and ultrathin biodegradable shell through osmotic inflation of water-in-oil-in-water (W/O/W) double-emulsion drops. Monodisperse double-emulsion drops are produced with a capillary microfluidic device to have an organic solution of poly(lactic-co-glycolic acid) (PLGA) in the middle oil layer. Hypotonic conditions inflate the drops, leading to core volume expansion and oil-layer thickness reduction. Afterward, the oil layer is consolidated to the PLGA shell through solvent evaporation. The degree of inflation is controllable with the osmotic pressure. With a strong hypotonic condition, the capsule radius increases up to 330 μm and the shell thickness decreases to 1 μm so that the ratio of the thickness to radius is as small as 0.006. The large capsules with an ultrathin shell readily release their encapsulant under an external force by shell rupture. In the mechanical test of single capsules, the threshold strain for shell rupture is reduced from 75 to 12%, and the threshold stress is decreased by two orders for highly inflated capsules in comparison with noninflated ones. During the shell rupture, the tactile sensation of capsules gradually disappears as the capsules lose volume and the residual shells are ultrathin.
Collapse
Affiliation(s)
- Wahyu Martumpal Hamonangan
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Sangmin Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Ye Hun Choi
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Wanzhao Li
- Infinitus R&D Center, Guangzhou 510623, China
| | - Meiling Tai
- Infinitus R&D Center, Guangzhou 510623, China
| | - Shin-Hyun Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
7
|
Costa M, Pinho I, Loureiro MV, Marques AC, Simões CL, Simoes R. Optimization of a microfluidic process to encapsulate isocyanate for autoreactive and ecological adhesives. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-021-03690-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
8
|
Koolivand A, Dimitrakopoulos P. Motion of an Elastic Capsule in a Trapezoidal Microchannel Under Stokes Flow Conditions. Polymers (Basel) 2020; 12:E1144. [PMID: 32429526 PMCID: PMC7284694 DOI: 10.3390/polym12051144] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/14/2020] [Accepted: 05/14/2020] [Indexed: 12/29/2022] Open
Abstract
Even though the research interest in the last decades has been mainly focused on the capsule dynamics in cylindrical or rectangular ducts, channels with asymmetric cross-sections may also be desirable especially for capsule migration and sorting. Therefore, in the present study we investigate computationally the motion of an elastic spherical capsule in an isosceles trapezoidal microchannel at low and moderate flow rates under the Stokes regime. The steady-state capsule location is quite close to the location where the single-phase velocity of the surrounding fluid is maximized. Owing to the asymmetry of the trapezoidal channel, the capsule's steady-state shape is asymmetric while its membrane slowly tank-treads. In addition, our investigation reveals that tall trapezoidal channels with low base ratios produce significant off-center migration for large capsules compared to that for smaller capsules for a given channel length. Thus, we propose a microdevice for the sorting of artificial and physiological capsules based on their size, by utilizing tall trapezoidal microchannels with low base ratios. The proposed sorting microdevice can be readily produced via glass fabrication or as a microfluidic device via micromilling, while the required flow conditions do not cause membrane rupture.
Collapse
Affiliation(s)
- Abdollah Koolivand
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD 20742, USA
| | - Panagiotis Dimitrakopoulos
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
9
|
Zhang D, Zhang X, Jing T, Cao H, Li B, Liu F. Tunable thermal, mechanical, and controlled-release properties of epoxy phenolic novolac resin microcapsules mediated by diamine crosslinkers. RSC Adv 2019; 9:9820-9827. [PMID: 35520710 PMCID: PMC9062307 DOI: 10.1039/c9ra00069k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 03/13/2019] [Indexed: 11/21/2022] Open
Abstract
Diverse shell structures can endow microcapsules (MCs) with a variety of properties.
Collapse
Affiliation(s)
- Daxia Zhang
- Key Laboratory of Pesticide Toxicology and Application Technique
- College of Plant Protection
- Shandong Agricultural University
- Tai'an
- P. R. China
| | - Xianpeng Zhang
- Laboratory of Medicinal Biophysical Chemistry
- Huazhong Agricultural University
- Wuhan
- P. R. China
| | - Tongfang Jing
- Key Laboratory of Pesticide Toxicology and Application Technique
- College of Plant Protection
- Shandong Agricultural University
- Tai'an
- P. R. China
| | - Haichao Cao
- Key Laboratory of Pesticide Toxicology and Application Technique
- College of Plant Protection
- Shandong Agricultural University
- Tai'an
- P. R. China
| | - Beixing Li
- Key Laboratory of Pesticide Toxicology and Application Technique
- College of Plant Protection
- Shandong Agricultural University
- Tai'an
- P. R. China
| | - Feng Liu
- Key Laboratory of Pesticide Toxicology and Application Technique
- College of Plant Protection
- Shandong Agricultural University
- Tai'an
- P. R. China
| |
Collapse
|