1
|
Effects of neutron irradiation on densities and elastic properties of aggregate-forming minerals in concrete. NUCLEAR ENGINEERING AND TECHNOLOGY 2023. [DOI: 10.1016/j.net.2023.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2023]
|
2
|
Investigation of effects of swift heavy ion irradiation on few-layer graphene: A molecular dynamics simulation study. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
3
|
Yadav A, Krishnan NMA. Role of steric repulsions on the precipitation kinetics and the structure of calcium-silicate-hydrate gels. SOFT MATTER 2021; 17:8902-8914. [PMID: 34545899 DOI: 10.1039/d1sm00838b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The microstructure and properties of calcium-silicate-hydrate (C-S-H) gels are largely controlled by the physicochemical environment during their precipitation. However, the role of the steric repulsive environment induced by the pore solution chemistry on the kinetics, structure, and properties of C-S-H gels remains unclear. Here, we develop two potential formalisms, namely sinusoidal and polynomial, to simulate the role of steric repulsions in C-S-H. The results show excellent agreement with experimental observations of precipitation kinetics and elastic properties. We demonstrate that the repulsive interactions result in delayed precipitation and percolation, and an open and branched microstructure. Interestingly, the elastic properties (which are equilibrium properties) are also significantly affected by these second-neighbor interactions. Overall, the present study demonstrates that the kinetics, structure, and equilibrium properties of colloidal gels are controlled by the steric repulsions induced by the chemical environment.
Collapse
Affiliation(s)
- Ashish Yadav
- Department of Civil Engineering, Indian Institute of Technology Delhi, New Delhi, India.
| | - N M Anoop Krishnan
- Department of Civil Engineering, Indian Institute of Technology Delhi, New Delhi, India.
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi, India
| |
Collapse
|
4
|
Tang L, Liu H, Ma G, Du T, Mousseau N, Zhou W, Bauchy M. The energy landscape governs ductility in disordered materials. MATERIALS HORIZONS 2021; 8:1242-1252. [PMID: 34821917 DOI: 10.1039/d0mh00980f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Based on their structure, non-crystalline phases can fail in a brittle or ductile fashion. However, the nature of the link between structure and propensity for ductility in disordered materials has remained elusive. Here, based on molecular dynamics simulations of colloidal gels and silica glasses, we investigate how the degree of structural disorder affects the fracture of disordered materials. As expected, we observe that structural disorder results in an increase in ductility. By applying the activation-relaxation technique (an open-ended saddle point search algorithm), we demonstrate that the propensity for ductility is controlled by the topography of the energy landscape. Interestingly, we observe a power-law relationship between the particle non-affine displacement upon fracture and the average local energy barrier. This reveals that the dynamics of the particles upon fracture is encoded in the static energy landscape, i.e., before any load is applied. This relationship is shown to apply to several classes of non-crystalline materials (oxide and metallic glasses, amorphous solid, and colloidal gels), which suggests that it may be a generic feature of disordered materials.
Collapse
Affiliation(s)
- Longwen Tang
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China.
| | | | | | | | | | | | | |
Collapse
|
5
|
Elucidating the constitutive relationship of calcium-silicate-hydrate gel using high throughput reactive molecular simulations and machine learning. Sci Rep 2020; 10:21336. [PMID: 33288786 PMCID: PMC7721899 DOI: 10.1038/s41598-020-78368-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 11/24/2020] [Indexed: 12/05/2022] Open
Abstract
Prediction of material behavior using machine learning (ML) requires consistent, accurate, and, representative large data for training. However, such consistent and reliable experimental datasets are not always available for materials. To address this challenge, we synergistically integrate ML with high-throughput reactive molecular dynamics (MD) simulations to elucidate the constitutive relationship of calcium–silicate–hydrate (C–S–H) gel—the primary binding phase in concrete formed via the hydration of ordinary portland cement. Specifically, a highly consistent dataset on the nine elastic constants of more than 300 compositions of C–S–H gel is developed using high-throughput reactive simulations. From a comparative analysis of various ML algorithms including neural networks (NN) and Gaussian process (GP), we observe that NN provides excellent predictions. To interpret the predicted results from NN, we employ SHapley Additive exPlanations (SHAP), which reveals that the influence of silicate network on all the elastic constants of C–S–H is significantly higher than that of water and CaO content. Additionally, the water content is found to have a more prominent influence on the shear components than the normal components along the direction of the interlayer spaces within C–S–H. This result suggests that the in-plane elastic response is controlled by water molecules whereas the transverse response is mainly governed by the silicate network. Overall, by seamlessly integrating MD simulations with ML, this paper can be used as a starting point toward accelerated optimization of C–S–H nanostructures to design efficient cementitious binders with targeted properties.
Collapse
|
6
|
Lyngdoh GA, Kumar R, Krishnan NMA, Das S. Dynamics of confined water and its interplay with alkali cations in sodium aluminosilicate hydrate gel: insights from reactive force field molecular dynamics. Phys Chem Chem Phys 2020; 22:23707-23724. [PMID: 33057524 DOI: 10.1039/d0cp04646a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This paper presents the dynamics of confined water and its interplay with alkali cations in disordered sodium aluminosilicate hydrate (N-A-S-H) gel using reactive force field molecular dynamics. N-A-S-H gel is the primary binding phase in geopolymers formed via alkaline activation of fly ash. Despite attractive mechanical properties, geopolymers suffer from durability issues, particularly the alkali leaching problem which has motivated this study. Here, the dynamics of confined water and the mobility of alkali cations in N-A-S-H is evaluated by obtaining the evolution of mean squared displacements and Van Hove correlation function. To evaluate the influence of the composition of N-A-S-H on the water dynamics and diffusion of alkali cations, atomistic structures of N-A-S-H with Si/Al ratio ranging from 1 to 3 are constructed. It is observed that the diffusion of confined water and sodium is significantly influenced by the Si/Al ratio. The confined water molecules in N-A-S-H exhibit a multistage dynamic behavior where they can be classified as mobile and immobile water molecules. While the mobility of water molecules gets progressively restricted with an increase in Si/Al ratio, the diffusion coefficient of sodium also decreases as the Si/Al ratio increases. The diffusion coefficient of water molecules in the N-A-S-H structure exhibits a lower value than those of the calcium-silicate-hydrate (C-S-H) structure. This is mainly due to the random disordered structure of N-A-S-H as compared to the layered C-S-H structure. To further evaluate the influence of water content in N-A-S-H, atomistic structures of N-A-S-H with water contents ranging from 5-20% are constructed. Qn distribution of the structures indicates significant depolymerization of N-A-S-H structure with increasing water content. Increased conversion of Si-O-Na network to Si-O-H and Na-OH components with an increase in water content helps explain the alkali-leaching issue in fly ash-based geopolymers observed macroscopically. Overall, the results in this study can be used as a starting point towards multiscale simulation-based design and development of durable geopolymers.
Collapse
Affiliation(s)
- Gideon A Lyngdoh
- Department of Civil and Environmental Engineering, University of Rhode Island, Kingston, RI, USA.
| | - Rajesh Kumar
- Department of Civil Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| | - N M Anoop Krishnan
- Department of Civil Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India. and Department of Materials Science and Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Sumanta Das
- Department of Civil and Environmental Engineering, University of Rhode Island, Kingston, RI, USA.
| |
Collapse
|
7
|
Barcaro G, Carravetta V, Sementa L, Monti S. Reactive force field simulations of silicon clusters. ADVANCES IN PHYSICS: X 2019. [DOI: 10.1080/23746149.2019.1634487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Affiliation(s)
- Giovanni Barcaro
- CNR-IPCF, Institute of Chemical and Physical Processes, Pisa, Italy
| | | | - Luca Sementa
- CNR-IPCF, Institute of Chemical and Physical Processes, Pisa, Italy
| | - Susanna Monti
- CNR-ICCOM, Institute of Chemistry of Organometallic Compounds, Pisa, Italy
| |
Collapse
|
8
|
Yu Y, Krishnan NMA, Smedskjaer MM, Sant G, Bauchy M. The hydrophilic-to-hydrophobic transition in glassy silica is driven by the atomic topology of its surface. J Chem Phys 2018; 148:074503. [DOI: 10.1063/1.5010934] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Yingtian Yu
- Physics of AmoRphous and Inorganic Solids Laboratory (PARISlab), Department of Civil and Environmental Engineering, University of California, Los Angeles, California 90095, USA
| | - N. M. Anoop Krishnan
- Physics of AmoRphous and Inorganic Solids Laboratory (PARISlab), Department of Civil and Environmental Engineering, University of California, Los Angeles, California 90095, USA
| | - Morten M. Smedskjaer
- Department of Chemistry and Bioscience, Aalborg University, 9220 Aalborg, Denmark
| | - Gaurav Sant
- Laboratory for the Chemistry of Construction Materials (LC2), Department of Civil and Environmental Engineering, University of California, Los Angeles, California 90095, USA
- California Nanosystems Institute (CNSI), University of California, Los Angeles, California 90095, USA
| | - Mathieu Bauchy
- Physics of AmoRphous and Inorganic Solids Laboratory (PARISlab), Department of Civil and Environmental Engineering, University of California, Los Angeles, California 90095, USA
| |
Collapse
|