1
|
Buniyamin I, Asli NA, Akhir RM, Jafar SM, Eswar KA, Mahmood MKA, Idorus MY, Shamsudin MS, Rahman AFMM, Mahmood MR, Khusaimi Z. Biofabricated SnO2 Nanoparticles Derived from Leaves Extract of Morinda citrifolia and Pandanus amaryllifolius for Photocatalytic Degradation. J CLUST SCI 2025; 36:3. [DOI: 10.1007/s10876-024-02738-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 11/12/2024] [Indexed: 01/06/2025]
|
2
|
Farooqi MA, Farooqi HMU, Bhatti T, Siddiqui GU, Kausar F, Kang CU. Functionalization of niobium nitrogen-doped titanium dioxide (TiO 2) nanoparticles with ethanolic extracts of Mentha arvensis. DISCOVER NANO 2024; 19:67. [PMID: 38619645 PMCID: PMC11018591 DOI: 10.1186/s11671-024-04011-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 04/09/2024] [Indexed: 04/16/2024]
Abstract
Titanium dioxide (TiO2) nanoparticles have gained significant attention due to their wide-ranging applications. This research explores an approach to functionalize Niobium Nitrogen Titanium Dioxide nanoparticles (Nb-N-TiO2 NPs) with Mentha arvensis ethanolic leaf extracts. This functionalization allows doped NPs to interact with the bioactive compounds in extracts, synergizing their antioxidant activity. While previous studies have investigated the antioxidant properties of TiO2 NPs synthesized using ethanolic extracts of Mentha arvensis, limited research has focused on evaluating the antioxidant potential of doped nanoparticles functionalized with plant extracts. The characterization analyses are employed by Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and Ultraviolet-visible (UV-Vis) spectroscopy to evaluate these functionalized doped nanoparticles thoroughly. Subsequently, the antioxidant capabilities through the 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ferric-reducing antioxidant power (FRAP) assays have been assessed. Within functionalized Nb-N-TiO2, the FTIR has a distinctive peak at 2350, 2010, 1312, 1212, and 1010 cm-1 with decreased transmittance associated with vibrations linked to the Nb-N bond. SEM revealed a triangular aggregation pattern, 500 nm to 2 µm of functionalized Nb-N-TiO2 NPs. Functionalized doped Nb-N-TiO2 NPs at 500 µg mL-1 exhibited particularly robust antioxidant activity, achieving an impressive 79% efficacy at DPPH assessment; meanwhile, ferric reduction efficiency of functionalized doped Nb-N-TiO2 showed maximum 72.16%. In conclusion, doped Nb-N-TiO2 NPs exhibit significantly enhanced antioxidant properties when functionalized with Mentha arvensis ethanolic extract compared to pure Nb-N-TiO2 manifested that doped Nb-N-TiO2 have broad promising endeavors for various biomedicine applications.
Collapse
Affiliation(s)
- Muhammad Awais Farooqi
- Department of Mechatronics Engineering, Jeju National University, Jeju-si, Republic of Korea
| | | | - Theophilus Bhatti
- Interdisciplinary Department of Advanced Convergence Technology and Science, College of Pharmacy, Jeju National University, Jeju-si, Republic of Korea
| | - Ghayas Uddin Siddiqui
- Department of Chemical and Biological Engineering, Jeju National University, Jeju-si, Republic of Korea
| | - Farzana Kausar
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Chul Ung Kang
- Department of Mechatronics Engineering, Jeju National University, Jeju-si, Republic of Korea.
| |
Collapse
|
3
|
Zhao L, Tang X, Ni X, Zhang J, Ineza Urujeni G, Wang D, He H, Dramou P. Efficient and Selective Adsorption of cis-Diols via the Suzuki-Miyaura Cross-Coupling-Modified Phenylboronic-Acid Functionalized Covalent Organic Framework. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:1884-1891. [PMID: 38190755 DOI: 10.1021/acs.langmuir.3c03249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
In this work, a functional group (boronic acid) was modified onto a covalent organic framework (COF) using the Suzuki-Miyaura cross-coupling reaction to obtain a phenylboronic acid-functionalized covalent organic framework (BrCOF-PBA). This product was used as a selective adsorbent and largely as an efficient solid-phase extractant of flavonoids containing cis-diol structures like quercetin (QUE). Five or six-membered cyclic esters generated from the COF were characterized, and some physicochemical studies were performed, resulting in excellent chemical stability and crystallinity, high specific surface area, stable pore structure, and regular pore size. Unique selectivity of BrCOF-PBA was observed toward QUE and exhibited a huge adsorption capacity (213.96 mg g-1) in a relatively short time (90 min). In contrast, the adsorption properties of morin (MOR) and kaempferol (KAE) with a certain degree of chemical similarity to QUE were only 27.62 and 21.76 mg g-1, respectively. BrCOF-PBA also demonstrated good reusability and robustness, making it an attractive composite material for further analytical applicability.
Collapse
Affiliation(s)
- Linjie Zhao
- Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Xue Tang
- Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Xu Ni
- Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Jingjing Zhang
- Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | | | - Dan Wang
- Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Hua He
- Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
- Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing 211198, China
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 211198, China
| | - Pierre Dramou
- Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
- Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing 211198, China
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
4
|
Wang Y, Zhang Y, Yang Z, Zhang L, Chen X, Yang G, Zhan J, Li S, He F, Fan G. Mesoporous silica-based nanocarriers with dual response to pH and ROS for enhanced anti-inflammation therapy of 5-demethylnobiletin against psoriasis-like lesions. Int J Pharm 2023; 645:123373. [PMID: 37673281 DOI: 10.1016/j.ijpharm.2023.123373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/11/2023] [Accepted: 09/03/2023] [Indexed: 09/08/2023]
Abstract
Psoriasis is an inflammatory skin disease accompanied with chronic papulosquamous lesions and multiple comorbidities that considerably affect patients' quality of life. In order to develop an enhanced therapeutic strategy for psoriasis, 5-demethylnobiletin (5-DN), a kind of polymethoxyflavones (PMFs) with high anti-inflammatory activity, was delivered in vitro and in vivo by the nanocarrier of mesoporous silica nanoparticles (MSNs) both in the human keratinocytes HaCaT cell line and the mouse model with psoriasis-like lesions. The drug-loaded nanocarrier system (MSNs@5-DN) significantly improved the biocompatibility and bioavailability of 5-DN. Investigations at cell biological, histopathological, and molecular levels revealed the pharmacological mechanism of the drug delivery system, including the inhibition of inflammatory responses by downregulating the proinflammatory cytokine levels of tumor necrosis factor α (TNF-α) and interleukin-6 (IL-6). The upregulation of anti‑inflammatory cytokine of transforming growth factor-β1 (TGF-β1) and microRNA-17-5p, a critical regulator of the PTEN/AKT pathway, was also observed. The psoriasis-like lesions were markedly ameliorated in the mouse models treated with MSNs@5-DN. The designed drug-loading system shows an enhanced therapeutic outcome for psoriasis-like lesion compared with free 5-DN. This study revealed the synergistic effect of functionalized MSNs loaded with PMFs on the clinical treatment of human psoriasis.
Collapse
Affiliation(s)
- Yimin Wang
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang 438000, PR China
| | - Yanan Zhang
- College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang 438000, PR China
| | - Zhihui Yang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, PR China
| | - Lei Zhang
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang 438000, PR China
| | - Xiangping Chen
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang 438000, PR China
| | - Guliang Yang
- National Research Center of Rice Deep Process and Byproducts, Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha 410004, Hunan, PR China
| | - Jianfeng Zhan
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang 438000, PR China
| | - Shiming Li
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang 438000, PR China; Department of Food Science, Rutgers University, New Brunswick, NJ 08901, USA
| | - Feng He
- Li Shizhen College of Traditional Chinese Medicine, Huanggang Normal University, Huanggang 438000, PR China.
| | - Guanwei Fan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, PR China.
| |
Collapse
|
5
|
Iravani S. Silica-based nanosystems against antibiotic-resistant bacteria and pathogenic viruses. Crit Rev Microbiol 2023; 49:598-610. [PMID: 35930235 DOI: 10.1080/1040841x.2022.2108309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/19/2022] [Accepted: 07/27/2022] [Indexed: 11/03/2022]
Abstract
Today, with the intensity of antibiotic abuse and self-medication, the need for the use of novel systems with high efficiency and biosafety for targeted drug delivery against antibiotic-resistant bacteria and their infections should be highly considered by researchers. Silica-based nanosystems with unique physicochemical properties such as large surface area, tuneable pore diameter, drug loading capacity, controlled particle size/morphology, and good biocompatibility are attractive candidates against antibiotic-resistant bacteria and pathogenic viruses. They can be loaded with antiviral and antimicrobial drugs or molecules through their exclusive internal porous structures or different surface linkers. In this context, smart nanosystems can be produced via suitable surface functionalization/modification with a variety of functional groups to act against different clinical pathogenic microbes or viruses, offering great opportunities for controlling and treating various infections. However, important criteria such as the ability to degrade, biocompatibility, biodegradability, cytotoxicity, stability, clearance from targeted organs should be systematically analysed to develop nanosystems or nanocarriers with high efficiency and multifunctionality. Herein, recent advancements pertaining to the application of silica-based nanosystems against antibiotic-resistant bacteria and pathogenic viruses are deliberated, focussing on important challenges and future perspectives.
Collapse
Affiliation(s)
- Siavash Iravani
- Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
6
|
Li Y, Zhang J, Zhang C, Dang W, Xue L, Liu H, Cheng H, Yan X. Facile and selective separation of anthraquinones by alizarin-modified iron oxide magnetic nanoparticles. J Chromatogr A 2023; 1702:464088. [PMID: 37230053 DOI: 10.1016/j.chroma.2023.464088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 05/27/2023]
Abstract
Anthraquinones are widely distributed in higher plants and possess broad biological activities. The conventional separation procedures for isolating anthraquinones from the plant crude extracts require multiple extraction, concentration, and column chromatography steps. In this study, we synthesized three alizarin (AZ)-modified Fe3O4 nanoparticles (Fe3O4@AZ, Fe3O4@SiO2-AZ, and Fe3O4@SiO2-PEI-AZ) by thermal solubilization method. Fe3O4@SiO2-PEI-AZ showed strong magnetic responsiveness, high methanol/water dispersion, good recyclability, and high loading capacity for anthraquinones. To evaluate the feasibility of using Fe3O4@SiO2-PEI-AZ for separating various aromatic compounds, we employed molecular dynamics simulations to predict the adsorption/desorption effects of PEI-AZ for various aromatic compounds in different methanol concentrations. The results showed that the anthraquinones could be efficiently separated from the monocyclic and bicyclic aromatic compounds by adjusting the methanol/water ratio. The Fe3O4@SiO2-PEI-AZ nanoparticles were then used to separate the anthraquinones from the rhubarb extract. At 5% methanol, all the anthraquinones were adsorbed by the nanoparticles, thus allowing their separation from other components in the crude extract. Compared with the conventional separation methods, this adsorption method has the advantages of high adsorption specificity, simple operation, and solvent saving. This method sheds light on the future application of functionalized Fe3O4 magnetic nanoparticles to selectively separate desired components from complex plant and microbial crude extracts.
Collapse
Affiliation(s)
- Yuexuan Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jiaxing Zhang
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Chengyu Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Weifan Dang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Lu Xue
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Hongliang Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Huiying Cheng
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiaohui Yan
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
7
|
Frazier EA, Patil RP, Mane CB, Sanaei D, Asiri F, Seo SS, Sharifan H. Environmental exposure and nanotoxicity of titanium dioxide nanoparticles in irrigation water with the flavonoid luteolin. RSC Adv 2023; 13:14110-14118. [PMID: 37179991 PMCID: PMC10170238 DOI: 10.1039/d3ra01712e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Different concentrations of titanium oxide nanoparticles (TiO2NPs) have been frequently reported in treated wastewater used for the irrigation of crops. Luteolin is a susceptive anticancer flavonoid in many crops and rare medicinal plants that can be affected by exposure to TiO2NPs. This study investigates the potential transformation of pure luteolin in exposure to TiO2NP-containing water. In an in vitro system, three replicates of 5 mg L-1 of pure luteolin were exposed to TiO2NPs (0, 25, 50, 100 ppm). After 48 h exposure, the samples were extensively analyzed by Raman spectroscopy, ultraviolet-visible (UV-vis) spectroscopy, and dynamic light scattering (DLS). A positive correlation was found between TiO2NPs concentrations and the structural alteration of luteolin content, where over 20% of luteolin structure was allegedly altered in the presence of 100 ppm TiO2NPs. The increase of NPs diameter (∼70 nm) and dominant peaks in Raman spectra revealed that luteolin was adsorbed onto the TiO2NPs surface. Further, the second-order derivative analysis confirmed the transformation of luteolin upon exposure to TiO2NPs. This study provides fundamental insight into agricultural safety measures when exposed to air or water-borne TiO2NPs.
Collapse
Affiliation(s)
| | - Rajendra P Patil
- Department of Chemistry, M. H. Shinde Mahavidyalaya Tisangi-416206 MH India
| | - Chandrakant B Mane
- Department of Chemistry, Shri Vijaysinha Yadav College of Arts and Science Peth Vadgaon MH India
| | - Daryoush Sanaei
- Center for Water Quality Research, Institute for Environmental Research, Tehran University of Medical Sciences Tehran Iran
| | - Fahad Asiri
- Environment & Life Sciences Research Center, Kuwait Institute for Scientific Research P.O. Box 24885 Safat 13109 Kuwait
| | - Seong S Seo
- Department of Natural Sciences, Albany State University Albany GA USA
| | | |
Collapse
|
8
|
Xiong F, Hao Y, Xu H, Li X, Sun Y, Liu J, Chen X, Wei Z. High‐Affinity Adsorbent with Honeycomb Structure for Efficient Acteoside Separation. MACROMOL CHEM PHYS 2023. [DOI: 10.1002/macp.202200463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Affiliation(s)
- Feng Xiong
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering Shihezi University Shihezi 832003 China
| | - Yanyan Hao
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering Shihezi University Shihezi 832003 China
| | - Helin Xu
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering Shihezi University Shihezi 832003 China
| | - Xueqin Li
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering Shihezi University Shihezi 832003 China
| | - Yu Sun
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering Shihezi University Shihezi 832003 China
| | - Jiaxing Liu
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering Shihezi University Shihezi 832003 China
| | - Xi Chen
- Kashi Product Quality Inspection Institute No. 5, Century Avenue North Road Xinjiang Kashgar 844000 China
| | - Zhong Wei
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering Shihezi University Shihezi 832003 China
| |
Collapse
|
9
|
Philipp Egbers H, Zurhelle C, Boris Koch P, Harder T, Tebben J. Selective purification of catecholate, hydroxamate and α–hydroxycarboxylate siderophores with Titanium Dioxide Affinity Chromatography. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
Selective adsorption of epigallocatechin gallate onto highly reusable gallium doped mesoporous TiO2 nanoparticles adsorbent. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Vyas Y, Gupta S, Punjabi PB, Ameta C. Biogenesis of Quantum Dots: An Update. ChemistrySelect 2022. [DOI: 10.1002/slct.202201099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Yogeshwari Vyas
- Department of Chemistry Microwave Synthesis Laboratory University College of Science Mohanlal Sukhadia University, Udaipur- 313001 Rajasthan India
| | - Sharoni Gupta
- Department of Chemistry Microwave Synthesis Laboratory University College of Science Mohanlal Sukhadia University, Udaipur- 313001 Rajasthan India
- Department of Chemistry Aishwarya Post Graduate College affiliated to Mohanlal Sukhadia University, Udaipur- 313001 Rajasthan India
| | - Pinki B. Punjabi
- Department of Chemistry Microwave Synthesis Laboratory University College of Science Mohanlal Sukhadia University, Udaipur- 313001 Rajasthan India
| | - Chetna Ameta
- Department of Chemistry Microwave Synthesis Laboratory University College of Science Mohanlal Sukhadia University, Udaipur- 313001 Rajasthan India
| |
Collapse
|
12
|
Moura FBRDE, Ferreira BA, Muniz EH, Santos RA, Gomide JAL, Justino AB, Silva ACA, Dantas NO, Ribeiro DL, Araújo FA, Espindola FS, Tomiosso TC. TiO2 Nanocrystals and Annona crassiflora Polyphenols Used Alone or Mixed Impact Differently on Wound Repair. AN ACAD BRAS CIENC 2022; 94:e20210230. [PMID: 35830083 DOI: 10.1590/0001-3765202220210230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 06/15/2021] [Indexed: 11/21/2022] Open
Abstract
Wounds treated with TiO2 nanoparticles (TiO2-NPs) show an improvement in healing time. However, little is known about the parameters that can contribute to this result. On the other hand, the treatment of wounds with polyphenols is widely known. These compounds are found in the peel of Annona crassiflora fruit and have antioxidant, analgesic and anti-inflammatory properties. In this study, we evaluated the healing effect of TiO2 nanocrystals (TiO2-NCs), polyphenolic fractions obtained from ethanolic extract of A. crassiflora fruit peel (PFAC) and mix (PFAC + TiO2-NCs) on the parameters of wound closure, inflammation, collagen deposition, metalloproteinase activity (MMPs) and angiogenesis. TiO2-NCs and PFAC have activity for wound healing, showed anti-inflammatory action and a shorter wound closure time. These treatments also contributed to increased collagen deposition, while only treatment with TiO2-NCs increased MMP-2 activity, parameters essential for the migration of keratinocytes and for complete restoration of the injured tissue. The combination of PFAC + TiO2-NCs reduced the effectiveness of individual treatments by intensifying the inflammatory process, in addition to delaying wound closure. We conclude that the interaction between the hydroxyl groups of PFAC polyphenols with TiO2-NCs may have contributed to difference in the healing activity of skin wounds.
Collapse
Affiliation(s)
- Francyelle B R DE Moura
- Universidade Federal de Uberlândia, Instituto de Ciências Biomédicas, Avenida Pará, 1720, Umuarama, 38400-902 Uberlândia, MG, Brazil.,Universidade Estadual de Campinas, Instituto de Biologia, Rua Monteiro Lobato, 255, Barão Geraldo, 13083-862 Campinas, SP, Brazil
| | - Bruno Antonio Ferreira
- Universidade Federal de Uberlândia, Instituto de Ciências Biomédicas, Avenida Pará, 1720, Umuarama, 38400-902 Uberlândia, MG, Brazil
| | - Elusca Helena Muniz
- Universidade Federal de Uberlândia, Instituto de Ciências Biomédicas, Avenida Pará, 1720, Umuarama, 38400-902 Uberlândia, MG, Brazil
| | - Rinara A Santos
- Universidade Federal de Uberlândia, Instituto de Ciências Biomédicas, Avenida Pará, 1720, Umuarama, 38400-902 Uberlândia, MG, Brazil
| | - José Augusto L Gomide
- Universidade Federal de Uberlândia, Instituto de Biotecnologia, Rua Acre, 1004, Umuarama, 38405-319 Uberlândia, MG, Brazil
| | - Allisson B Justino
- Universidade Federal de Uberlândia, Instituto de Biotecnologia, Rua Acre, 1004, Umuarama, 38405-319 Uberlândia, MG, Brazil
| | - Anielle Christine A Silva
- Universidade Federal de Alagoas, Laboratório de Novos Nanoestruturados e Funcionais, Instituto de Física, Avenida Lourival Melo Mota, s/n, Tabuleiro do Martins, 57072-900 Maceió, AL, Brazil.,Universidade Federal de Alagoas, Programa de Pós-Graduação da Rede Nordeste de Biotecnologia, Avenida Lourival Melo Mota, s/n, Tabuleiro do Martins, 57072-970 Maceió, AL, Brazil
| | - Noelio O Dantas
- Universidade Federal de Alagoas, Laboratório de Novos Nanoestruturados e Funcionais, Instituto de Física, Avenida Lourival Melo Mota, s/n, Tabuleiro do Martins, 57072-900 Maceió, AL, Brazil
| | - Daniele L Ribeiro
- Universidade Federal de Uberlândia, Instituto de Ciências Biomédicas, Avenida Pará, 1720, Umuarama, 38400-902 Uberlândia, MG, Brazil
| | - Fernanda A Araújo
- Universidade Federal de Uberlândia, Instituto de Ciências Biomédicas, Avenida Pará, 1720, Umuarama, 38400-902 Uberlândia, MG, Brazil
| | - Foued S Espindola
- Universidade Federal de Uberlândia, Instituto de Biotecnologia, Rua Acre, 1004, Umuarama, 38405-319 Uberlândia, MG, Brazil
| | - Tatiana Carla Tomiosso
- Universidade Federal de Uberlândia, Instituto de Ciências Biomédicas, Avenida Pará, 1720, Umuarama, 38400-902 Uberlândia, MG, Brazil.,Universidade Estadual de Campinas, Instituto de Biologia, Rua Monteiro Lobato, 255, Barão Geraldo, 13083-862 Campinas, SP, Brazil
| |
Collapse
|
13
|
Kerry RG, Mohapatra P, Jena AB, Panigrahi B, Pradhan KC, Khatua BR, Mahari S, Pal S, Perikala V, Kisan B, Lugos MD, Mondru AK, Sahoo SK, Mandal D, Majhi S, Patra JK. Biosynthesis of Rutin Trihydrate Loaded Silica Nanoparticles and Investigation of Its Antioxidant, Antidiabetic and Cytotoxic Potentials. J Inorg Organomet Polym Mater 2022; 32:2065-2081. [DOI: 10.1007/s10904-022-02269-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 02/20/2022] [Indexed: 12/15/2022]
|
14
|
Wang J, Wang Z, Wang W, Wang Y, Hu X, Liu J, Gong X, Miao W, Ding L, Li X, Tang J. Synthesis, modification and application of titanium dioxide nanoparticles: a review. NANOSCALE 2022; 14:6709-6734. [PMID: 35475489 DOI: 10.1039/d1nr08349j] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Titanium dioxide (TiO2) has been heavily investigated owing to its low cost, benign nature and strong photocatalytic ability. Thus, TiO2 has broad applications including photocatalysts, Li-ion batteries, solar cells, medical research and so on. However, the performance of TiO2 is not satisfactory due to many factors such as the broad band gap (3.01 to 3.2 eV) and fast recombination of electron-hole pairs (10-12 to 10-11 s). Plenty of work has been undertaken to improve the properties, such as structural and dopant modifications, which broaden the applications of TiO2. This review mainly discusses the aspects of TiO2-modified nanoparticles including synthetic methods, modifications and applications.
Collapse
Affiliation(s)
- Jinqi Wang
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation on Hybrid Materials, College of Materials Science and Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China.
| | - Zhiheng Wang
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation on Hybrid Materials, College of Materials Science and Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China.
| | - Wei Wang
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation on Hybrid Materials, College of Materials Science and Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China.
| | - Yao Wang
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation on Hybrid Materials, College of Materials Science and Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China.
| | - Xiaoli Hu
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation on Hybrid Materials, College of Materials Science and Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China.
| | - Jixian Liu
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation on Hybrid Materials, College of Materials Science and Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China.
| | - Xuezhong Gong
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation on Hybrid Materials, College of Materials Science and Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China.
| | - Wenli Miao
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation on Hybrid Materials, College of Materials Science and Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China.
| | - Linliang Ding
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation on Hybrid Materials, College of Materials Science and Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China.
| | - Xinbo Li
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation on Hybrid Materials, College of Materials Science and Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China.
| | - Jianguo Tang
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation on Hybrid Materials, College of Materials Science and Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China.
| |
Collapse
|
15
|
Li X, Wang C, Wang L, Huang R, Li WC, Wang X, Wong SSW, Cai Z, Leung KCF, Jin L. A glutathione-responsive silica-based nanosystem capped with in-situ polymerized cell-penetrating poly(disulfide)s for precisely modulating immuno-inflammatory responses. J Colloid Interface Sci 2022; 614:322-336. [PMID: 35104706 DOI: 10.1016/j.jcis.2022.01.091] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/14/2022] [Accepted: 01/15/2022] [Indexed: 01/02/2023]
Abstract
HYPOTHESIS Precise modulation of immuno-inflammatory response is crucial to control periodontal diseases and related systemic comorbidities. The present nanosystem with the controlled-release and cell-penetrating manner enhances the inflammation modulation effects of baicalein in human gingival epithelial cells (hGECs) for better oral healthcare. EXPERIMENTS We constructed a red-emissive mesoporous silica nanoparticle-based nanosystem with cell-penetrating poly(disulfide) (CPD) capping, through a facile in-situ polymerization approach. It was featured with a glutathione-responsive manner and instant cellular internalization capacity for precisely delivering baicalein intracellularly. Laboratory experiments assessed whether and how the nanosystem per se with the delivered baicalein could modulate immuno-inflammatory responses in hGECs. FINDINGS The in-situ polymerized CPD layer capped the nanoparticles and yet controlled the release of baicalein in a glutathione-responsive manner. The CPD coating could facilitate cellular internalization of the nanosystem via endocytosis and thiol-mediated approaches. Notably, the intracellularly released baicalein effectively downregulated the expression of pro-inflammatory cytokines through inhibiting the NF-κB signaling pathway. The nanosystem per se could modulate immuno-inflammatory responses by passivating the cellular response to interlukin-1β. This study highlights that the as-synthesized nanosystem may serve as a novel multi-functional vehicle to modulate innate host response via targeting the NF-κB pathway for precision healthcare.
Collapse
Affiliation(s)
- Xuan Li
- Faculty of Dentistry, The University of Hong Kong, 34 Hospital Road, Hong Kong Special Administrative Region, China
| | - Chuan Wang
- Faculty of Dentistry, The University of Hong Kong, 34 Hospital Road, Hong Kong Special Administrative Region, China
| | - Leilei Wang
- Faculty of Dentistry, The University of Hong Kong, 34 Hospital Road, Hong Kong Special Administrative Region, China
| | - Regina Huang
- Faculty of Dentistry, The University of Hong Kong, 34 Hospital Road, Hong Kong Special Administrative Region, China
| | - Wai-Chung Li
- Department of Chemistry, State Key Laboratory of Environmental and Biological Analysis, The Hong Kong Baptist University, Hong Kong Special Administrative Region, China
| | - Xinna Wang
- Tissue Engineering Laboratory, Department of Mechanical Engineering, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | | | - Zongwei Cai
- Department of Chemistry, State Key Laboratory of Environmental and Biological Analysis, The Hong Kong Baptist University, Hong Kong Special Administrative Region, China
| | - Ken Cham-Fai Leung
- Department of Chemistry, State Key Laboratory of Environmental and Biological Analysis, The Hong Kong Baptist University, Hong Kong Special Administrative Region, China.
| | - Lijian Jin
- Faculty of Dentistry, The University of Hong Kong, 34 Hospital Road, Hong Kong Special Administrative Region, China.
| |
Collapse
|
16
|
Ndayishimiye J, Kumeria T, Popat A, Falconer JR, Blaskovich MAT. Nanomaterials: The New Antimicrobial Magic Bullet. ACS Infect Dis 2022; 8:693-712. [PMID: 35343231 DOI: 10.1021/acsinfecdis.1c00660] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Bacterial infections are a significant cause of mortality and morbidity worldwide, despite decades of use of numerous existing antibiotics and constant efforts by researchers to discover new antibiotics. The emergence of infections associated with antibiotic-resistant bacterial strains, has amplified the pressure to develop additional bactericidal therapies or new unorthodox approaches that can deal with antimicrobial resistance. Nanomaterial-based strategies, particularly those that do not rely on conventional small-molecule antibiotics, offer promise in part due to their ability to dodge existing mechanisms used by drug-resistant bacteria. Therefore, the use of nanomaterial-based formulations has attracted attention in the field of antibiotic therapy. In this Review, we highlight novel and emerging nanomaterial-based formulations along with details about the mechanisms by which nanoparticles can target bacterial infections and antimicrobial resistance. A detailed discussion about types and the activities of nanoparticles is presented, along with how they can be used as either delivery systems or as inherent antimicrobials, or a combination of both. Lastly, we highlight some toxicological concerns for the use of nanoparticles in antibiotic therapies.
Collapse
Affiliation(s)
- John Ndayishimiye
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Brisbane, Queensland 4102, Australia
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Tushar Kumeria
- School of Materials Science and Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
- Australian Center for NanoMedicine, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Amirali Popat
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Brisbane, Queensland 4102, Australia
- Mater Research Institute, The University of Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba, Queensland 4102, Australia
| | - James Robert Falconer
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Brisbane, Queensland 4102, Australia
| | - Mark A. T. Blaskovich
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| |
Collapse
|
17
|
Li Q, Liu L, Duan M, Chen X, Li J, Zhao T, Fu Y, Julian McClements D, Huang J, Lin H, Shi J. TiO 2 nanoparticles negatively impact the bioavailability and antioxidant activity of tea polyphenols. Food Chem 2022; 371:131045. [PMID: 34600371 DOI: 10.1016/j.foodchem.2021.131045] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 08/26/2021] [Accepted: 08/31/2021] [Indexed: 12/13/2022]
Abstract
This study was to investigate the influence of TiO2 nanoparticles (NPs) on the stability, bioavailability, and antioxidant activity of co-ingested tea polyphenols extract using an in vitro digestion model. The tea polyphenol contents decreased significantly after addition of 0.5 % (w/w) TiO2 NPs. The gallocatechin gallate level decreased the most, changing from 101.9 to 27.2 µg/mL (about 73.3%). The TiO2 NPs also reduced the bioavailability of the tea polyphenols in a dose-dependent manner, which was ascribed to the formation of large polyphenol-TiO2 NP complex aggregates that could not pass through the pores in the dialysis tube used to simulate the gut wall. Additionally, the TiO2 NPs decreased the antioxidant activity of the tea polyphenols within the simulated gastrointestinal tract. In summary, our results show that high levels of TiO2 NPs (but within the current legal limits in many countries) may negatively impact the bioavailability and bioactivity of polyphenols in foods.
Collapse
Affiliation(s)
- Qian Li
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, College of Bioengineering and Food, Hubei University of Technology, Wuhan, Hubei 430068, China.
| | - Lu Liu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, College of Bioengineering and Food, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Mengran Duan
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, College of Bioengineering and Food, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Xiaoqiang Chen
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, College of Bioengineering and Food, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Jing Li
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, College of Bioengineering and Food, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Tiantian Zhao
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, College of Bioengineering and Food, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Yinxin Fu
- Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430032, China.
| | | | - Jialu Huang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, College of Bioengineering and Food, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Hongyi Lin
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, College of Bioengineering and Food, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Jinglan Shi
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, College of Bioengineering and Food, Hubei University of Technology, Wuhan, Hubei 430068, China
| |
Collapse
|
18
|
Strategy for Conjugating Oligopeptides to Mesoporous Silica Nanoparticles Using Diazirine-Based Heterobifunctional Linkers. NANOMATERIALS 2022; 12:nano12040608. [PMID: 35214937 PMCID: PMC8880541 DOI: 10.3390/nano12040608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 02/02/2022] [Accepted: 02/06/2022] [Indexed: 11/17/2022]
Abstract
Successful strategies for the attachment of oligopeptides to mesoporous silica with pores large enough to load biomolecules should utilize the high surface area of pores to provide an accessible, protective environment. A two-step oligopeptide functionalization strategy is examined here using diazirine-based heterobifunctional linkers. Mesoporous silica nanoparticles (MSNPs) with average pore diameter of ~8 nm and surface area of ~730 m2/g were synthesized and amine-functionalized. Tetrapeptides Gly-Gly-Gly-Gly (GGGG) and Arg-Ser-Ser-Val (RSSV), and a peptide comprised of four copies of RSSV (4RSSV), were covalently attached via their N-terminus to the amine groups on the particle surface by a heterobifunctional linker, sulfo-succinimidyl 6-(4,4′-azipentanamido)hexanoate (sulfo-NHS-LC-diazirine, or SNLD). SNLD consists of an amine-reactive NHS ester group and UV-activable diazirine group, providing precise control over the sequence of attachment steps. Attachment efficiency of RSSV was measured using fluorescein isothiocyanate (FITC)-tagged RSSV (RSSV-FITC). TGA analysis shows similar efficiency (0.29, 0.31 and 0.26 mol peptide/mol amine, respectively) for 4G, RSSV and 4RSSV, suggesting a generalizable method of peptide conjugation. The technique developed here for the conjugation of peptides to MSNPs provides for their attachment in pores and can be translated to selective peptide-based separation and concentration of therapeutics from aqueous process and waste streams.
Collapse
|
19
|
Xu H, Li X, Hao Y, Xu X, Zhang Y, Zhang J. Polyethyleneimine modified heterostructure porous polymer microspheres for efficient adsorption of acteoside. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118253] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
20
|
Li Q, Li J, Duan M, Liu L, Fu Y, McClements DJ, Zhao T, Lin H, Shi J, Chen X. Impact of food additive titanium dioxide on the polyphenol content and antioxidant activity of the apple juice. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
21
|
Mesoporous polystyrene-based microspheres with polar functional surface groups synthesized from double emulsion for selective isolation of acetoside. J Chromatogr A 2021; 1662:462720. [PMID: 34902717 DOI: 10.1016/j.chroma.2021.462720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 11/16/2021] [Accepted: 11/26/2021] [Indexed: 02/07/2023]
Abstract
In this study, a series of the functionalized mesoporous polystyrene-based microspheres (FMPMs) with different functional comonomers (acrylamide, AM; ethyleneglycol dimethacrylate, EGDMA; hydroxyethyl methacrylate, HEMA) and ratios of styrene (St) to divinylbenzene (DVB) were designed and synthesized by a double emulsion interface polymerization method. Among them, St and DVB existed in the oil phase, forming the skeleton structure of FMPMs. AM, EGDMA or HEMA in the water phase formed functional layers on the inner and outer surfaces of FMPMs. The experimental results indicated that the optimal functional comonomers and the ratio of St to DVB were AM (provided the hydrophilic -CONH2 groups) and 1:1, respectively. Thus, A-FMPMs-2 exhibited the highest adsorption capacity of 108.95 ± 8.13 mg/g and the selectivity of 5.14 ± 0.17. These results were attributed to the hydrophilic -CONH2 groups on A-FMPMs-2, and these groups were beneficial to ACT molecules diffusion driven by concentration gradient, improving the adsorption performance. Furthermore, hydrophilic -CONH2 groups on the inner and outer surfaces of A-FMPMs-2 acted as hydrophilic sites that had a high-affinity interaction with ACT molecules, thus increasing the adsorption selectivity. In addition, A-FMPMs-2 had the highest specific surface area and largest pore volume, resulting in the highest adsorption capacity and adsorption selectivity. Therefore, the development of adsorbents with adjustable pore structure and a large number of hydrophilic sites will provide a new strategy for selective separation of bioactive components from natural products.
Collapse
|
22
|
Li H, Chen X, Shen D, Wu F, Pleixats R, Pan J. Functionalized silica nanoparticles: classification, synthetic approaches and recent advances in adsorption applications. NANOSCALE 2021; 13:15998-16016. [PMID: 34546275 DOI: 10.1039/d1nr04048k] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Nanotechnology is rapidly sweeping through all the vital fields of science and technology such as electronics, aerospace, defense, medicine, and catalysis. It involves the design, synthesis, characterization, and applications of materials and devices on the nanometer scale. At the nanoscale, physical and chemical properties differ from the properties of the individual atoms and molecules of bulk matter. In particular, the design and development of silica nanomaterials have captivated the attention of several researchers worldwide. The applications of hybrid silicas are still limited by the lack of control on the morphology and particle size. The ability to control both the size and morphology of the materials and to obtain nano-sized silica particles has broadened the spectrum of applications of mesoporous organosilicas and/or has improved their performances. On the other hand, adsorption is a widely used technique for the separation and removal of pollutants (metal ions, dyes, organics,...) from wastewater. Silica nanoparticles have specific advantages over other materials for adsorption applications due to their unique structural characteristics: a stable structure, a high specific surface area, an adjustable pore structure, the presence of silanol groups on the surface which allow easy modification, less environmental harm, simple synthesis, low cost, etc. Silica nanoparticles are potential adsorbents for pollutants. We present herein an overview of the different types of silica nanoparticles going from the definitions to properties, synthetic approaches and the mention of potential applications. We focus mainly on the recent advances in the adsorption of different target substances (metal ions, dyes and other organics).
Collapse
Affiliation(s)
- Hao Li
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China.
- Anhui Laboratory of Molecules-Based Materials, College of Chemistry and Materials Sciences, Anhui Normal University, Wuhu 241002, Anhui, China
| | - Xueping Chen
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China.
| | - Danqing Shen
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China.
| | - Fan Wu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China.
| | - Roser Pleixats
- Department of Chemistry and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Barcelona, Spain.
| | - Jianming Pan
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China.
| |
Collapse
|
23
|
Li Q, Duan M, Liu L, Chen X, Fu Y, Li J, Zhao T, McClements DJ. Impact of Polyphenol Interactions with Titanium Dioxide Nanoparticles on Their Bioavailability and Antioxidant Activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:9661-9670. [PMID: 34376052 DOI: 10.1021/acs.jafc.1c01970] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Titanium dioxide is widely utilized as a pigment in the food industry to enhance the whiteness or brightness of foods and beverages. The powdered forms of titanium dioxide used as food ingredients contain a substantial fraction of nanoparticles (d < 100 nm), which may have adverse effects on human health. This is a model study that investigated the molecular interactions between TiO2 nanoparticles and selected polyphenols, as well as their influence on the in vitro bioavailability and antioxidant activity of the polyphenols. Our results showed that the chemical structure of polyphenols significantly influenced their binding affinity to TiO2 nanoparticle surfaces, with those possessing vicinal trihydroxy groups having the highest binding affinities. The presence of TiO2 nanoparticles was shown to reduce the bioavailability of polyphenols using an in vitro digestion model. This effect was mainly ascribed to the formation of large TiO2 nanoparticle-polyphenol complex agglomerates that could not pass through the pores in the dialysis tube used to simulate the epithelium layer. Additionally, the binding of polyphenols to the surfaces of TiO2 nanoparticles reduced their antioxidant activity. This study provides valuable insights into the impact of inorganic nanoparticles on the bioavailability and bioactivity of polyphenols.
Collapse
Affiliation(s)
- Qian Li
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, College of Bioengineering and Food, Hubei University of Technology, Wuhan, Hubei 430068, People's Republic of China
| | - Mengran Duan
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, College of Bioengineering and Food, Hubei University of Technology, Wuhan, Hubei 430068, People's Republic of China
| | - Lu Liu
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, College of Bioengineering and Food, Hubei University of Technology, Wuhan, Hubei 430068, People's Republic of China
| | - Xiaoqiang Chen
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, College of Bioengineering and Food, Hubei University of Technology, Wuhan, Hubei 430068, People's Republic of China
| | - Yinxin Fu
- Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430032, People's Republic of China
| | - Jing Li
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, College of Bioengineering and Food, Hubei University of Technology, Wuhan, Hubei 430068, People's Republic of China
| | - Tiantian Zhao
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, College of Bioengineering and Food, Hubei University of Technology, Wuhan, Hubei 430068, People's Republic of China
| | - David Julian McClements
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
24
|
Khan MA, Fugate M, Rogers DT, Sambi J, Littleton JM, Rankin SE, Knutson BL. Mechanism of Mesoporous Silica Nanoparticle Interaction with Hairy Root Cultures during Nanoharvesting of Biomolecules. Adv Biol (Weinh) 2021; 5:e2000173. [PMID: 33729698 DOI: 10.1002/adbi.202000173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 01/11/2021] [Indexed: 11/06/2022]
Abstract
Cellular uptake and expulsion mechanisms of engineered mesoporous silica nanoparticles (MSNPs) are important in their design for novel biomolecule isolation and delivery applications such as nanoharvesting, defined as using nanocarriers to transport and isolate valuable therapeutics (secondary metabolites) out of living plant organ cultures (e.g., hairy roots). Here, temperature-dependent MSNP uptake and recovery processes in hairy roots are examined as a function of surface chemistry. MSNP uptake into hairy roots and time-dependent expulsion are quantified using Ti content (present for biomolecule binding) and fluorescence spectroscopy of fluorescently tagged MSNPs, respectively. The results suggest that functionalization and surface charge (regulated by amine group attachment) play the biggest role in the effectiveness of uptake and recovery. Comparison of MSNP interactions with hairy roots at 4 and 23 °C shows that weakly charged MSNPs functionalized only with Ti are taken up and expelled by thermally activated mechanisms, while amine-modified positively charged particles are taken up and expelled mainly by direct penetration of cell walls. Amine-functionalized MSNPs move spontaneously in and out of plant cells by dynamic exchange with a residence time of 20 ± 5 min, suggesting promise as a biomolecule nanoharvesting platform for plant organ cultures.
Collapse
Affiliation(s)
- Md Arif Khan
- Department of Chemical and Materials Engineering, University of Kentucky, 177 F. Paul Anderson Tower, Lexington, KY, 40506, USA
| | - Madeleine Fugate
- Department of Chemical and Materials Engineering, University of Kentucky, 177 F. Paul Anderson Tower, Lexington, KY, 40506, USA
| | | | | | | | - Stephen E Rankin
- Department of Chemical and Materials Engineering, University of Kentucky, 177 F. Paul Anderson Tower, Lexington, KY, 40506, USA
| | - Barbara L Knutson
- Department of Chemical and Materials Engineering, University of Kentucky, 177 F. Paul Anderson Tower, Lexington, KY, 40506, USA
| |
Collapse
|
25
|
Egbers PH, Harder T, Koch BP, Tebben J. Siderophore purification with titanium dioxide nanoparticle solid phase extraction. Analyst 2020; 145:7303-7311. [PMID: 32901634 DOI: 10.1039/d0an00949k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Siderophores are metal chelators produced by microorganisms to facilitate binding and uptake of iron. The isolation and characterization of siderophores are impeded by typically low siderophore yields and the complexity of siderophore-containing extracts generated with traditional purification methods. We investigated titanium dioxide nanoparticle solid-phase extraction (TiO2 NP SPE) as a technique to selectively concentrate and purify siderophores from complex matrices for subsequent LC-MS detection and identification. TiO2 NP SPE showed a high binding capacity (15.7 ± 0.2 μmol mg-1 TiO2) for the model siderophore desferrioxamine B (DFOB) and proved robust to pH changes and the presence of EDTA. These are significant advances in comparison to immobilized metal affinity chromatography (IMAC). The TiO2 NP SPE was highly selective and recovered 77.6 ± 6.2% of DFOB spiked to a compositionally complex bacterial culture supernatant. The simple clean-up procedure removed the majority of contaminants and allowed direct detection of siderophores from the LC-MS base peak chromatogram. The 'untargeted' purification and analysis of an untreated supernatant of iron-deprived bacterial culture allowed for the direct identification of two known and three novel ferrioxamines. Thus, TiO2 NP SPE in combination with LC-MS offers great potential as a discovery platform for the purification and subsequent quantification or identification of novel siderophores of microbial origin.
Collapse
Affiliation(s)
- Philipp H Egbers
- University of Bremen, Faculty of Biology and Chemistry, Leobener Straße 6, 28359 Bremen, Germany
| | | | | | | |
Collapse
|
26
|
Qian J, Kai G. Application of micro/nanomaterials in adsorption and sensing of active ingredients in traditional Chinese medicine. J Pharm Biomed Anal 2020; 190:113548. [PMID: 32861928 DOI: 10.1016/j.jpba.2020.113548] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/01/2020] [Accepted: 08/06/2020] [Indexed: 12/17/2022]
Abstract
Traditional Chinese medicine (TCM) has been widely applied for the prevention and cure of various diseases for centuries. Ingredient with pharmacological activity is the key to the application of TCM. Hence, it is of significance to separate and detect active ingredients in TCM effectively. Micro/nanomaterial is the promising candidate for adsorption and sensing due to its unique physical and chemical properties. For years, many efforts have been made to develop functional micro/nanomaterials to realize the effective adsorption or sensing of bioactive compounds in TCM. In this review, we discussed recent progresses in the application of various functional micro/nanomaterials for adsorption or detection (electrochemical detection, fluorescent detection, and colorimetric detection) of active ingredients. Based on the kind of matrix materials, micro/nano-adsorbents or sensors can be classified into following categories: metal-based micro/nanomaterials, porous materials, carbon-based materials, graphene/graphite-liked micro/nanomaterials and hybrid micro/nanomaterials.
Collapse
Affiliation(s)
- Jun Qian
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 311402, PR China
| | - Guoyin Kai
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 311402, PR China.
| |
Collapse
|
27
|
Khan MA, Kiser MR, Moradipour M, Nadeau EA, Ghanim RW, Webb BA, Rankin SE, Knutson BL. Effect of Confinement in Nanopores on RNA Interactions with Functionalized Mesoporous Silica Nanoparticles. J Phys Chem B 2020; 124:8549-8561. [PMID: 32881500 DOI: 10.1021/acs.jpcb.0c06536] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Amine-functionalized mesoporous silica nanoparticles (MSNPAs) are ideal carriers for oligonucleotides for gene delivery and RNA interference. This investigation examines the thermodynamic driving force of interactions of double-stranded (ds) RNA with MSNPAs as a function of RNA length (84 and 282 base pair) and particle pore diameter (nonporous, 2.7, 4.3, and 8.1 nm) using isothermal titration calorimetry, extending knowledge of solution-based nucleic acid-polycation interactions to RNA confined in nanopores. Adsorption of RNA follows a two-step process: endothermic interactions driven by entropic contribution from counterion (and water) release and an exothermic regime dominated by short-range interactions within the pores. Evidence of hindered pore loading of the longer RNA and pore size-dependent confinement of RNA in the MSPAs is provided from the relative contributions of the endothermic and exothermic regimes. Reduction of endothermic and exothermic enthalpies in both regimes in the presence of salt for both lengths of RNA indicates the significant contribution of short-range electrostatic interactions, whereas ΔH and ΔG values are consistent with conformation changes and desolvation of nucleic acids upon binding with polycations. Knowledge of the interactions between RNA and functionalized porous nanoparticles will aid in porous nanocarrier design suitable for functional RNA delivery.
Collapse
Affiliation(s)
- M Arif Khan
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Maelyn R Kiser
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Mahsa Moradipour
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Emily A Nadeau
- Department of Entomology, University of Kentucky, Lexington, Kentucky 40546, United States
| | - Ramy W Ghanim
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Bruce A Webb
- Department of Entomology, University of Kentucky, Lexington, Kentucky 40546, United States
| | - Stephen E Rankin
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Barbara L Knutson
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506, United States
| |
Collapse
|
28
|
Molavi H, Neshastehgar M, Shojaei A, Ghashghaeinejad H. Ultrafast and simultaneous removal of anionic and cationic dyes by nanodiamond/UiO-66 hybrid nanocomposite. CHEMOSPHERE 2020; 247:125882. [PMID: 32069713 DOI: 10.1016/j.chemosphere.2020.125882] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 01/06/2020] [Accepted: 01/09/2020] [Indexed: 06/10/2023]
Abstract
In this research, UiO-66 and its composite nanoparticles with thermally oxidized nanodiamond (OND) were synthesized via a simple solvothermal method and utilized as solid adsorbent for the removal of anionic methyl red (MR) dye and cationic malachite green (MG) dye from contaminated water. The synthesized adsorbents were analyzed by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), thermogravimetric analysis (TGA), N2 adsorption-desorption, and zeta potential analyzer. The influences of various factors such as initial concentrations of the dyes, adsorption process time, solution pH, solution temperature and ionic strength on adsorption behavior of MR dye onto OND-UiO hybrid nanoparticle were investigated. The adsorption of MR onto OND-UiO hybrid nanoparticle could be well described by Langmuir isotherm model. Meanwhile, pseudo-second order kinetic model was found to be suitable for illustration of adsorption kinetics of MR onto OND-UiO. Thermodynamic investigation suggested that the adsorption process was spontaneous and endothermic, and controlled by an entropy change instead of enthalpy effect. The experimental adsorption results indicated that OND-UiO hybrid nanoparticle could simultaneously adsorb 59% of MR and 43% of MG from the mixture of both dyes in only 2 min showing synergistic effect compared with single UiO-66 and OND nanoparticles in terms of adsorption rate and removal capacity of anionic dyes. The appropriate removal efficiency, rapid adsorption kinetic, high water stability, and good reusability make OND-UiO hybrid nanoparticle attractive candidate for simultaneously removal of both anionic MR and cationic MG dyes from wastewater.
Collapse
Affiliation(s)
- Hossein Molavi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Milad Neshastehgar
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Akbar Shojaei
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran.
| | - Hossein Ghashghaeinejad
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| |
Collapse
|
29
|
Brezoiu AM, Prundeanu M, Berger D, Deaconu M, Matei C, Oprea O, Vasile E, Negreanu-Pîrjol T, Muntean D, Danciu C. Properties of Salvia officinalis L. and Thymus serpyllum L. Extracts Free and Embedded into Mesopores of Silica and Titania Nanomaterials. NANOMATERIALS 2020; 10:nano10050820. [PMID: 32344938 PMCID: PMC7712395 DOI: 10.3390/nano10050820] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 02/06/2023]
Abstract
This study evidenced the nanoconfinement effect on polyphenolic extracts prepared from Salvia officinalis L. and Thymus serpyllum L. into the mesopores of silica and titania nanomaterials on their radical scavenging capacity and antimicrobial potential. The ethanolic and hydroalcoholic extracts obtained either by conventional or microwave-assisted extraction were characterized in terms of total polyphenols, total flavonoids, and chlorophyll content, as well as radical scavenging activity by consecrated spectrometric determinations. The phytochemical fingerprint of extracts was analyzed by high-performance liquid chromatography-photodiode array detector. Salvia officinalis extracts exhibited better radical scavenging capacity and antimicrobial potential than Thymus serpyllum extracts. The mesoporous MCM-41 silica and titania nanomaterials, prepared by the sol-gel method, were characterized by small- and wide-angle powder diffraction, FTIR spectroscopy, nitrogen adsorption-desorption isotherms, scanning electron microscopy and transmission electron microscopy, while the materials containing embedded extracts were analyzed through Fourier-transform infrared spectroscopy, N2 sorption measurements, and thermal analysis. All extracts free and embedded in mesoporous matrix exhibited high radical scavenger properties and good bactericidal activity against several reference strains. It was proved that by embedding the polyphenolic extracts into mesopores of silica or titania nanoparticles, the phytochemicals stability was enhanced as the materials containing extract exhibited higher radical scavenger activity after 3-6 months storage than that of the free extracts. Additionally, the extract-loaded material showed mild improved antimicrobial activity in comparison with the corresponding free extract.
Collapse
Affiliation(s)
- Ana-Maria Brezoiu
- Department of Inorganic Chemistry, Physical-Chemistry & Electrochemistry, Faculty of Applied Chemistry and Materials Science, University “Politehnica” of Bucharest, 1-7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (A.-M.B.); (M.P.); (D.B.); (M.D.); (C.M.); (O.O.)
| | - Mioara Prundeanu
- Department of Inorganic Chemistry, Physical-Chemistry & Electrochemistry, Faculty of Applied Chemistry and Materials Science, University “Politehnica” of Bucharest, 1-7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (A.-M.B.); (M.P.); (D.B.); (M.D.); (C.M.); (O.O.)
| | - Daniela Berger
- Department of Inorganic Chemistry, Physical-Chemistry & Electrochemistry, Faculty of Applied Chemistry and Materials Science, University “Politehnica” of Bucharest, 1-7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (A.-M.B.); (M.P.); (D.B.); (M.D.); (C.M.); (O.O.)
| | - Mihaela Deaconu
- Department of Inorganic Chemistry, Physical-Chemistry & Electrochemistry, Faculty of Applied Chemistry and Materials Science, University “Politehnica” of Bucharest, 1-7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (A.-M.B.); (M.P.); (D.B.); (M.D.); (C.M.); (O.O.)
| | - Cristian Matei
- Department of Inorganic Chemistry, Physical-Chemistry & Electrochemistry, Faculty of Applied Chemistry and Materials Science, University “Politehnica” of Bucharest, 1-7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (A.-M.B.); (M.P.); (D.B.); (M.D.); (C.M.); (O.O.)
| | - Ovidiu Oprea
- Department of Inorganic Chemistry, Physical-Chemistry & Electrochemistry, Faculty of Applied Chemistry and Materials Science, University “Politehnica” of Bucharest, 1-7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (A.-M.B.); (M.P.); (D.B.); (M.D.); (C.M.); (O.O.)
| | - Eugeniu Vasile
- Department of Oxide Materials Science and Engineering, Faculty of Applied Chemistry and Materials Science, University “Politehnica” of Bucharest, 1-7 Gheorghe Polizu Street, 011061 Bucharest, Romania
- Correspondence:
| | - Ticuța Negreanu-Pîrjol
- Faculty of Pharmacy, “Ovidius” University of Constanta, Aleea Universitatii No. 1, 900470 Constanta, Romania;
| | - Delia Muntean
- Department of Microbiology, University of Medicine and Pharmacy “Victor Babes”, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania;
| | - Corina Danciu
- Department of Pharmacognosy, University of Medicine and Pharmacy “Victor Babes”, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania;
| |
Collapse
|
30
|
Moradipour M, Chase EK, Khan MA, Asare SO, Lynn BC, Rankin SE, Knutson BL. Interaction of lignin-derived dimer and eugenol-functionalized silica nanoparticles with supported lipid bilayers. Colloids Surf B Biointerfaces 2020; 191:111028. [PMID: 32305621 DOI: 10.1016/j.colsurfb.2020.111028] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 04/02/2020] [Accepted: 04/06/2020] [Indexed: 01/21/2023]
Abstract
The potential to impart surfaces with specific lignin-like properties (i.e. resistance to microbes) remains relatively unexplored due to the lack of well-defined lignin-derived small molecules and corresponding surface functionalization strategies. Here, allyl-modified guaiacyl β-O-4 eugenol (G-eug) lignin-derived dimer is synthesized and attached to mesoporous silica nanoparticles (MSNPs) via click chemistry. The ability of G-eug lignin-dimer functionalized particles to interact with and disrupt synthetic lipid bilayers is compared to that of eugenol, a known natural antimicrobial. Spherical MSNPs (∼150 nm diameter with 4.5 nm pores) were synthesized using surfactant templating. Post-synthesis thiol (SH) attachment was performed using (3-mercaptopropyl) trimethoxysilane and quantified by Ellman's test. The resultant SH-MSNPs were conjugated with the G-eug dimers or eugenol by a thiol-ene reaction under ultraviolet light in the presence of a photo initiator. From thermogravimetric analysis (TGA), attachment densities of approximately 0.22 mmol eugenol/g particle and 0.13 mmol G-eug dimer/g particle were achieved. The interaction of the functionalized MSNPs with a phospholipid bilayers of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (representing model cell membranes) supported on gold surface was measured using Quartz Crystal Microbalance with Dissipation monitoring (QCM-D). Eugenol-grafted MSNPs in PBS (up to 1 mg/mL) associated with the bilayer and increased the mass adsorbed on the QCM-D sensor. In contrast, MSNPs functionalized with G-eug dimer show qualitatively different behavior, with more uptake and evidence of bilayer disruption at and above a particle concentration of 0.5 mg/mL. These results suggest that bio-inspired materials with conjugated lignin-derived small molecules can serve as a platform for novel antimicrobial coatings and therapeutic carriers.
Collapse
Affiliation(s)
- Mahsa Moradipour
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky, United States
| | - Emily K Chase
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky, United States
| | - M Arif Khan
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky, United States
| | - Shardrack O Asare
- Department of Chemistry, University of Kentucky, Lexington, Kentucky, United States
| | - Bert C Lynn
- Department of Chemistry, University of Kentucky, Lexington, Kentucky, United States
| | - Stephen E Rankin
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky, United States.
| | - Barbara L Knutson
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky, United States.
| |
Collapse
|
31
|
Xiong C, Wang S, Hu P, Huang L, Xue C, Yang Z, Zhou X, Wang Y, Ji H. Efficient Selective Removal of Pb(II) by Using 6-Aminothiouracil-Modified Zr-Based Organic Frameworks: From Experiments to Mechanisms. ACS APPLIED MATERIALS & INTERFACES 2020; 12:7162-7178. [PMID: 31942788 DOI: 10.1021/acsami.9b19516] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
We report an efficient, reusable, and selective 6-aminothiouracil (ATA)-modified Zr(IV)-based adsorbent (defined as UiO-66-ATA(Zr)) for lead ion removal in water. The adsorption equilibrium time and the maximum sorption capacity of UiO-66-ATA(Zr) for Pb(II) are, respectively, 120 min and 386.98 mg/g at pH 4 and 298 K. The Pb(II) removal rate reaches 96% at 60 min and exceeds 99% at the equilibrium state in the pH range of 2.0-5.8. Hill and pseudo-second-order models can well describe the sorption process. Pb(II) adsorbing onto UiO-66-ATA(Zr) is an irreversible, favorable chemisorption process with multimolecule participation and film diffusion control. The calculations of density functional theory, the experimental results, and the characterization analyses suggest that the binding mechanisms are the chelation and ion-exchange/electrostatic interactions between hydroxyl/amino/sulfhydryl groups of UiO-66-ATA(Zr) and Pb(II). Besides, UiO-66-ATA(Zr) has a better affinity to Pb(II) than the coexisting ions in water and an excellent repeatability at eight cycles of adsorption. Moreover, the thermodynamic study shows that UiO-66-ATA(Zr) adsorbing Pb(II) is an endothermic reaction. Thus, UiO-66-ATA(Zr) is a prospective sorbent for Pb(II) removal under the initiative of environmental protection and water purification, and this work may also provide an idea for industrial catalysis.
Collapse
Affiliation(s)
- Chao Xiong
- Fine Chemical Industry Research Institute, School of Chemistry , Sun Yat-Sen University , Guangzhou 510275 , P. R. China
| | - Shixing Wang
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Faculty of Metallurgical and Energy Engineering , Kunming University of Science and Technology , Kunming , Yunnan 650093 , P. R. China
| | - Peng Hu
- Fine Chemical Industry Research Institute, School of Chemistry , Sun Yat-Sen University , Guangzhou 510275 , P. R. China
| | - Liyun Huang
- Fine Chemical Industry Research Institute, School of Chemistry , Sun Yat-Sen University , Guangzhou 510275 , P. R. China
| | - Can Xue
- School of Chemical Engineering and Technology , Sun Yat-Sen University , Zhuhai 519082 , P. R. China
| | - Zujin Yang
- School of Chemical Engineering and Technology , Sun Yat-Sen University , Zhuhai 519082 , P. R. China
| | - Xiantai Zhou
- School of Chemical Engineering and Technology , Sun Yat-Sen University , Zhuhai 519082 , P. R. China
| | - Yongqing Wang
- Fine Chemical Industry Research Institute, School of Chemistry , Sun Yat-Sen University , Guangzhou 510275 , P. R. China
| | - Hongbing Ji
- Fine Chemical Industry Research Institute, School of Chemistry , Sun Yat-Sen University , Guangzhou 510275 , P. R. China
- School of Chemical Engineering and Technology , Sun Yat-Sen University , Zhuhai 519082 , P. R. China
| |
Collapse
|
32
|
Khan MA, Wallace WT, Sambi J, Rogers DT, Littleton JM, Rankin SE, Knutson BL. Nanoharvesting of bioactive materials from living plant cultures using engineered silica nanoparticles. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 106:110190. [PMID: 31753369 PMCID: PMC6935263 DOI: 10.1016/j.msec.2019.110190] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 09/09/2019] [Accepted: 09/10/2019] [Indexed: 12/25/2022]
Abstract
Plant secondary metabolites are valuable therapeutics not readily synthesized by traditional chemistry techniques. Although their enrichment in plant cell cultures is possible following advances in biotechnology, conventional methods of recovery are destructive to the tissues. Nanoharvesting, in which nanoparticles are designed to bind and carry biomolecules out of living cells, offers continuous production of metabolites from plant cultures. Here, nanoharvesting of polyphenolic flavonoids, model plant-derived therapeutics, enriched in Solidago nemoralis hairy root cultures, is performed using engineered mesoporous silica nanoparticles (MSNPs, 165 nm diameter and 950 m2/g surface area) functionalized with both titanium dioxide (TiO2, 425 mg/g particles) for coordination binding sites, and amines (NH2, 145 mg/g particles) to promote cellular internalization. Intracellular uptake and localization of the nanoparticles (in Murashige and Skoog media) in hairy roots were confirmed by tagging the particles with rhodamine B isothiocyanate, incubating the particles with hairy roots, and quenching bulk fluorescence using trypan blue. Nanoharvesting of biologically active flavonoids was demonstrated by observing increased antiradical activity (using 2,2-diphenyl-1-picrylhydrazyl radical scavenging assay) by nanoparticles after exposure to hairy roots (indicating general antioxidant activity), and by the displacement of the radio-ligand [3H]-methyllycaconitine from rat hippocampal nicotinic receptors by solutes recovered from nanoharvested particles (indicating pharmacological activity specific to S. nemoralis flavonoids). Post-nanoharvesting growth suggests that the roots are viable after nanoharvesting, and capable of continued flavonoid synthesis. These observations demonstrate the potential for using engineered nanostructured particles to facilitate continuous isolation of a broad range of biomolecules from living and functioning plant cultures.
Collapse
Affiliation(s)
- M Arif Khan
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA
| | - William T Wallace
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA
| | | | | | | | - Stephen E Rankin
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA.
| | - Barbara L Knutson
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA.
| |
Collapse
|
33
|
Polyphenols extract from grape pomace. Characterization and valorisation through encapsulation into mesoporous silica-type matrices. Food Chem Toxicol 2019; 133:110787. [DOI: 10.1016/j.fct.2019.110787] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 08/19/2019] [Accepted: 08/22/2019] [Indexed: 01/05/2023]
|
34
|
Gómez-Mejía E, Rosales-Conrado N, León-González ME, Madrid Y. Determination of phenolic compounds in residual brewing yeast using matrix solid-phase dispersion extraction assisted by titanium dioxide nanoparticles. J Chromatogr A 2019; 1601:255-265. [DOI: 10.1016/j.chroma.2019.05.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/08/2019] [Accepted: 05/09/2019] [Indexed: 12/22/2022]
|
35
|
Recovery of Polyphenols from Grape Pomace Using Polyethylene Glycol (PEG)-Grafted Silica Particles and PEG-Assisted Cosolvent Elution. Molecules 2019; 24:molecules24122199. [PMID: 31212800 PMCID: PMC6630576 DOI: 10.3390/molecules24122199] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/04/2019] [Accepted: 06/11/2019] [Indexed: 01/07/2023] Open
Abstract
Adsorption on a functionalized surface can be an effective way of purifying polyphenols from complex plant extracts. Polymeric resins that rely on hydrophobic interactions suffer from low selectivity, weak affinity towards polyphenols, and lack tunability therefore making the purification of polyphenols less efficient. In this study, a purification process for the recovery of polyphenols from grape pomace extract was successfully developed using hydrogen bonding affinity ligands grafted on silica particles and PEG-assisted elution solvents. Bare silica (SiO2) and polyethylene glycol (mPEG)-grafted silica microparticles with molecular weights of 2000 and 5000 were tested to determine their polyphenol binding and release characteristics. Functionalizing the surface of bare silica with mPEG ligands increased the adsorption capacity by 7.1- and 11.4-fold for mPEG-2000 and mPEG-5000 compared to bare silica particles, respectively. This was likely due to the introduction of more polyphenol binding sites with mPEG functionalization. Altering the molecular weight (MW) of mPEG grafted on silica surfaces provided tunability in the adsorption capacity. A complete recovery of polyphenols (~99.9%) from mPEG-grafted silica particles was achieved by utilizing PEG–ethanol or PEG–water cosolvent systems. Recovered polyphenols showed up to ~12-fold antioxidant activity compared to grape pomace extract. This study demonstrates that mPEG-grafted silica particles and elution of polyphenols with PEG cosolvents can potentially be used for large-scale purification of polyphenols from complex plant extracts and simplify the use of polyphenols, as PEG facilitates remarkable solvation and is an ideal medium for the final formulation of polyphenols.
Collapse
|
36
|
Selective adsorption of Pb(II) from aqueous solution using nanosilica functionalized with diethanolamine: Equilibrium, kinetic and thermodynamic. Microchem J 2019. [DOI: 10.1016/j.microc.2019.01.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
37
|
Fu L, Wang S, Lin G, Zhang L, Liu Q, Fang J, Wei C, Liu G. Post-functionalization of UiO-66-NH 2 by 2,5-Dimercapto-1,3,4-thiadiazole for the high efficient removal of Hg(II) in water. JOURNAL OF HAZARDOUS MATERIALS 2019; 368:42-51. [PMID: 30665107 DOI: 10.1016/j.jhazmat.2019.01.025] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 01/06/2019] [Accepted: 01/10/2019] [Indexed: 05/25/2023]
Abstract
A new MOFs adsorbent was prepared by post-functionalization of UiO-66-NH2 with 2,5-Dimercapto-1,3,4-thiadiazole and utilized to remove the Hg(II) in water selectively. The UiO-66-types were detected by Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscope (FESEM), Brunauer-Emmett-Teller (BET) and zeta potential instruments. The adsorption properties of the new MOFs adsorbent were investigated by batch experiments. The actual maximum adsorption amount was 670.5 mg/g at the optimal pH of 3. Adsorption kinetic and isotherm models were exceedingly fitted to pseudo-second-order and Langmuir/Dubinin-Radushkevich, respectively. The adsorption process and mode were geared to monolayer and chemisorption, the removal rate was directly proportional to the square of mercury ions concentration. The UiO-66-DMTD adsorbent was easy to be regenerated and the removal rate decreased by only 13.5% after ten consecutive cycles. The results of FTIR, XRD and XPS suggested that the adsorption mechanism lay on the complexation reaction between Hg(II) and thiol/nitrogen-containing groups. Moreover, compared with other competitive metal ions, viz., Zn(II), Co(IV), Ni(II), Cd(II), Mg(II), Fe(III), Ca(II) and Cu(II), the UiO-66-DMTD demonstrated an outstanding selective adsorption for Hg(II). These results manifested that the UiO-66-DMTD was a latent adsorbent for the efficient and selective removal of Hg(II) in wastewater.
Collapse
Affiliation(s)
- Likang Fu
- School of Physics and Technology, Key Laboratory of Ariticial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan, 430072, China
| | - Shixing Wang
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Guo Lin
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Libo Zhang
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Qiming Liu
- School of Physics and Technology, Key Laboratory of Ariticial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan, 430072, China.
| | - Ju Fang
- School of Physics and Technology, Key Laboratory of Ariticial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan, 430072, China
| | - Chenhuinan Wei
- School of Physics and Technology, Key Laboratory of Ariticial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan, 430072, China
| | - Gang Liu
- School of Physics and Technology, Key Laboratory of Ariticial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
38
|
Arriagada F, Günther G, Nos J, Nonell S, Olea-Azar C, Morales J. Antioxidant Nanomaterial Based on Core⁻Shell Silica Nanospheres with Surface-Bound Caffeic Acid: A Promising Vehicle for Oxidation-Sensitive Drugs. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E214. [PMID: 30736331 PMCID: PMC6409729 DOI: 10.3390/nano9020214] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 01/30/2019] [Accepted: 02/01/2019] [Indexed: 01/13/2023]
Abstract
The design of efficient, biocompatible, and easily prepared vehicles for drug delivery is a subject of great interest for medicine and pharmaceutical sciences. To achieve the above goals, surface functionalization is critical. Here, we report a hybrid nanocarrier consisting of core⁻shell silica nanospheres and the antioxidant caffeic acid linked to the surface, to evaluate their in vitro antioxidant capacity, their capability to protect oxidation-sensitive compounds incorporated in nanoparticles, and to study the interaction with bovine serum albumin protein. The results show that the radical-scavenging activity of immobilized caffeic acid is attenuated in the silica nanospheres; however, other antioxidant properties such as Fe2+-chelating activity and singlet oxygen quenching are enhanced. In addition, caffeic acid is protected from binding to proteins by the nanoparticle, suggesting that this nanosystem is more likely to maintain the antioxidant activity of caffeic acid in biological media. Finally, the natural antioxidant barrier on the nanocarrier is able to delay the degradation of a compound incorporated into this nanovehicle. Considering all findings, this work proposes a suitable tool for pharmaceutical and cosmetic industries as an antioxidant nanocarrier for oxidation-sensitive drugs.
Collapse
Affiliation(s)
- Francisco Arriagada
- Departamento de Ciencias y Tecnología Farmacéuticas, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 8380494, Chile.
| | - Germán Günther
- Departamento de Química Orgánica y Fisicoquímica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 8380494, Chile.
| | - Jaume Nos
- Institut Químic de Sarrià (IQS), University Ramon Llull, Via Augusta 390, 08017 Barcelona, Spain.
| | - Santi Nonell
- Institut Químic de Sarrià (IQS), University Ramon Llull, Via Augusta 390, 08017 Barcelona, Spain.
| | - Claudio Olea-Azar
- Departamento de Química Inorgánica y Analítica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 8380494, Chile.
| | - Javier Morales
- Departamento de Ciencias y Tecnología Farmacéuticas, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 8380494, Chile.
| |
Collapse
|
39
|
Xiang RQ, Niu YF, Han J, Lau YL, Wu HH, Zhao XL. A neutral Cu-based MOF for effective quercetin extraction and conversion from natural onion juice. RSC Adv 2019; 9:33716-33721. [PMID: 35528871 PMCID: PMC9073668 DOI: 10.1039/c9ra04551a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 09/28/2019] [Indexed: 11/21/2022] Open
Abstract
A new neutral metal–organic framework can efficiently extract natural product quercetin (QT) from fresh QT-rich onion juice and rapidly convert it into Cu–QT with a relatively high conversion rate.
Collapse
Affiliation(s)
- Rui-Qi Xiang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes
- Department of Chemistry
- East China Normal University
- Shanghai 200062
- P. R. China
| | - Yan-Fei Niu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes
- Department of Chemistry
- East China Normal University
- Shanghai 200062
- P. R. China
| | - Jie Han
- School of Science & Technology
- The Open University of Hong Kong
- Kowloon
- P. R. China
| | - Yat-Long Lau
- School of Science & Technology
- The Open University of Hong Kong
- Kowloon
- P. R. China
| | - Hai-Hong Wu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes
- Department of Chemistry
- East China Normal University
- Shanghai 200062
- P. R. China
| | - Xiao-Li Zhao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes
- Department of Chemistry
- East China Normal University
- Shanghai 200062
- P. R. China
| |
Collapse
|
40
|
Kinetic, Isotherm, and Thermodynamic Studies for Ag(I) Adsorption Using Carboxymethyl Functionalized Poly(glycidyl methacrylate). Polymers (Basel) 2018; 10:polym10101090. [PMID: 30961015 PMCID: PMC6403576 DOI: 10.3390/polym10101090] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 09/28/2018] [Accepted: 09/29/2018] [Indexed: 11/16/2022] Open
Abstract
Industrial wastewater contains large amounts of silver ions. Here, a new adsorbent was synthesized by functionalizing poly(glycidyl methacrylate) with carboxymethyl groups. The adsorbent was used to recover Ag(I) in wastewater. Fourier transform infrared spectroscopy, zeta potential, scanning electron microscopy, and X-ray photoelectron spectroscopy were used to characterize the adsorbent. The experimental parameters affecting the adsorption are solution pH, contact time, and initial silver ion concentration. The optimum pH for adsorption of Ag(I) is pH 4. The maximum adsorption capacity at pH 4 is 157.05 mg/g, and the adsorption reaches equilibrium at 300 min. The kinetics and isotherms of the adsorption process were described by pseudo second-order, Langmuir and D-R models, respectively. The adsorption process was a single layer chemical adsorption, exothermic, feasible, and spontaneous. The adsorption mechanism is electrostatic or chelation. The adsorbent selectively absorbed Ag(I) from coexisting ions (Cu2+, Ni2+, Co2+, Zn2+). Finally, the removal rate of silver ions decreased from 79.29% to 65.01% after four repetitive experiments, which proved that the adsorbent had good reusability. The adsorbent has great potential benefit in removing Ag(I).
Collapse
|
41
|
Gao F, Muhammad T, Bakri M, Pataer P, Chen L. In Situ Liquid-Phase-Adsorption Measurement System Based on Fiber-Optic Sensing with the Aid of Membranes. ACS OMEGA 2018; 3:10891-10897. [PMID: 31459199 PMCID: PMC6645031 DOI: 10.1021/acsomega.8b01059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 08/28/2018] [Indexed: 06/10/2023]
Abstract
At present, liquid phase adsorption (LPA) is still being quantitatively characterized in the way of manual sampling and off-line determination because of the complexity of the system comparing to gas adsorption. This paper describes a novel method for in situ, real-time measurement of LPA in general based on fiber-optic sensing (FOS) with the aid of membranes for the first time. A self-made measurement vessel was assembled from an adsorption bag, thermostatic devices with a stirrer, and a fiber-optic dipping probe. Also, macroporous adsorption resins (MARs) and rutin were chosen as model adsorbent and adsorbate to establish the FOS system. Here, in situ light absorption measurement was achieved by eliminating interference of adsorbent particles via encapsulating them with a membrane into the adsorption bag. In situ LPA measurement of rutin solution on MARs was obtained by detecting light absorption at 353 nm using dipping probe, in the broad concentration range from 0.3 to 60 mg/L with excellent linearity (R 2 = 0.9996). In situ measurements of adsorption and desorption kinetics on five kinds of MARs with different polarities were systematically carried out, showing that the adsorption process obeyed the pseudo-second-model. As well as, the system was proved to be highly accurate and reproducible. More importantly, this method enabled to study the initial stage of the adsorption process, starting from the time of the first second, which is the most important part in the adsorption kinetics, and this is impossible for traditional sampling methods. The successful application of FOS to in situ measurement of LPA not only contributes to fast, automatic, and real-time monitoring of LPA process but also enriches the research connotation of adsorption.
Collapse
Affiliation(s)
- Fei Gao
- Key
Laboratory of Oil and Gas Fine Chemicals, Ministry of Education &
Xinjiang Uygur Autonomous Region, College of Chemistry and Chemical
Engineering, Xinjiang University, Urumqi 830046, China
| | - Turghun Muhammad
- Key
Laboratory of Oil and Gas Fine Chemicals, Ministry of Education &
Xinjiang Uygur Autonomous Region, College of Chemistry and Chemical
Engineering, Xinjiang University, Urumqi 830046, China
| | - Mahinur Bakri
- The
Key Laboratory of Plant Resources and Chemistry of Arid Zone, Xinjiang
Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 8300, China
| | - Parezhati Pataer
- Key
Laboratory of Oil and Gas Fine Chemicals, Ministry of Education &
Xinjiang Uygur Autonomous Region, College of Chemistry and Chemical
Engineering, Xinjiang University, Urumqi 830046, China
| | - Lingxin Chen
- Key
Laboratory of Coastal Environment Processes and Ecological Remediation,
Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| |
Collapse
|
42
|
Marslin G, Siram K, Maqbool Q, Selvakesavan RK, Kruszka D, Kachlicki P, Franklin G. Secondary Metabolites in the Green Synthesis of Metallic Nanoparticles. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E940. [PMID: 29865278 PMCID: PMC6024997 DOI: 10.3390/ma11060940] [Citation(s) in RCA: 195] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 05/25/2018] [Accepted: 05/30/2018] [Indexed: 12/18/2022]
Abstract
The ability of organisms and organic compounds to reduce metal ions and stabilize them into nanoparticles (NPs) forms the basis of green synthesis. To date, synthesis of NPs from various metal ions using a diverse array of plant extracts has been reported. However, a clear understanding of the mechanism of green synthesis of NPs is lacking. Although most studies have neglected to analyze the green-synthesized NPs (GNPs) for the presence of compounds derived from the extract, several studies have demonstrated the conjugation of sugars, secondary metabolites, and proteins in these biogenic NPs. Despite several reports on the bioactivities (antimicrobial, antioxidant, cytotoxic, catalytic, etc.) of GNPs, only a handful of studies have compared these activities with their chemically synthesized counterparts. These comparisons have demonstrated that GNPs possess better bioactivities than NPs synthesized by other methods, which might be attributed to the presence of plant-derived compounds in these NPs. The ability of NPs to bind with organic compounds to form a stable complex has huge potential in the harvesting of precious molecules and for drug discovery, if harnessed meticulously. A thorough understanding of the mechanisms of green synthesis and high-throughput screening of stabilizing/capping agents on the physico-chemical properties of GNPs is warranted to realize the full potential of green nanotechnology.
Collapse
Affiliation(s)
- Gregory Marslin
- Ratnam Institute of Pharmacy and Research, Nellore 524346, India.
| | - Karthik Siram
- Department of Pharmaceutics, PSG College of Pharmacy, Coimbatore 641004, India.
| | - Qaisar Maqbool
- Institute of Plant Genetics of the Polish Academy of Sciences, Poznan 60479, Poland.
| | | | - Dariusz Kruszka
- Institute of Plant Genetics of the Polish Academy of Sciences, Poznan 60479, Poland.
| | - Piotr Kachlicki
- Institute of Plant Genetics of the Polish Academy of Sciences, Poznan 60479, Poland.
| | - Gregory Franklin
- Institute of Plant Genetics of the Polish Academy of Sciences, Poznan 60479, Poland.
| |
Collapse
|
43
|
Mesoporous silica nanoparticles as diagnostic and therapeutic tools: how can they combat bacterial infection? Ther Deliv 2018; 9:241-244. [PMID: 29495945 DOI: 10.4155/tde-2017-0111] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|