1
|
Juvencio Keijok W, Contreras Alvarez LA, Gomes AMDS, Vasconcelos Campos F, Oliveira JPD, Guimarães MCC. Optimized Synthesis and Stabilization of Superparamagnetic Iron Oxide Nanoparticles for Enhanced Biomolecule Adsorption. ACS OMEGA 2025; 10:1976-1987. [PMID: 39866618 PMCID: PMC11755185 DOI: 10.1021/acsomega.4c07371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/20/2024] [Accepted: 12/30/2024] [Indexed: 01/28/2025]
Abstract
Monodisperse and colloidally stable magnetic iron oxide nanoparticles have been developed for diverse biotechnology applications. Although promising for the adsorption of organic molecules, the low density of adsorption sites in these nanoparticles has been a significant challenge. In this study, an optimized factorial design with response surface methodology (RSM) was employed to produce small Superparamagnetic Iron Oxide Nanoparticles (SPIONs) stabilized with tetraethoxysilane (TEOS). Bovine Serum Albumin (BSA) was selected for immobilization on the surface of SPIONs to test adsorption capacity. The model was validated by correlating significant factors with experimental responses, enabling the prediction of the smallest nanoparticle size. We obtained superparamagnetic SPIONs (75.12 emu/g) with high surface area and an average diameter of 11.06 ± 0.84 nm, with stability improved by the adsorption of TEOS (-46.24 mV) and suitable for pH values from 2 to 10 and salt concentrations up to 1 M. The maximum adsorption capacity of the nanoparticles was 87.8 ± 1.79 mg of BSA per gram of nanoparticles. The nanomaterial synthesized here presents a favorable platform for anchoring protein molecules via silanol groups on its electrostatically charged surface. This study introduces an effective strategy for the synthesis and stabilization of SPIONs with potential biotechnology applications.
Collapse
Affiliation(s)
| | | | - Angelo Marcio de Souza Gomes
- Physics
Institute, Federal University of Rio de
Janeiro, Rio de Janeiro, Cidade Universitária, Rio de Janeiro 21941 972, Brazil
| | | | - Jairo Pinto de Oliveira
- Federal
University of Espírito Santo, Av Marechal Campos 1468, Vitória, ES 29.040 090, Brazil
| | | |
Collapse
|
2
|
Peng D, Sun S, Zhao M, Zhan L, Wang X. Current Advances in Nanomaterials Affecting Functions and Morphology of Platelets. J Funct Biomater 2024; 15:188. [PMID: 39057309 PMCID: PMC11278457 DOI: 10.3390/jfb15070188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/28/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
Nanomaterials have been extensively used in the biomedical field due to their unique physical and chemical properties. They promise wide applications in the diagnosis, prevention, and treatment of diseases. Nanodrugs are generally transported to target tissues or organs by coupling targeting molecules or enhanced permeability and retention effect (EPR) passively. As intravenous injection is the most common means of administration of nanomedicine, the transport process inevitably involves the interactions between nanoparticles (NPs) and blood cells. Platelets are known to not only play a critical role in normal coagulation by performing adhesion, aggregation, release, and contraction functions, but also be associated with pathological thrombosis, tumor metastasis, inflammation, and immune reactions, making it necessary to investigate the effects of NPs on platelet function during transport, particularly the way in which their physical and chemical properties determine their interaction with platelets and the underlying mechanisms by which they activate and induce platelet aggregation. However, such data are lacking. This review is intended to summarize the effects of NPs on platelet activation, aggregation, release, and apoptosis, as well as their effects on membrane proteins and morphology in order to shed light on such key issues as how to reduce their adverse reactions in the blood system, which should be taken into consideration in NP engineering.
Collapse
Affiliation(s)
| | | | | | - Linsheng Zhan
- Institute of Health Service and Transfusion Medicine, Beijing 100850, China; (D.P.); (S.S.); (M.Z.)
| | - Xiaohui Wang
- Institute of Health Service and Transfusion Medicine, Beijing 100850, China; (D.P.); (S.S.); (M.Z.)
| |
Collapse
|
3
|
Asaad Y, Nemcovsky‐Amar D, Sznitman J, Mangin PH, Korin N. A double-edged sword: The complex interplay between engineered nanoparticles and platelets. Bioeng Transl Med 2024; 9:e10669. [PMID: 39036095 PMCID: PMC11256164 DOI: 10.1002/btm2.10669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 03/15/2024] [Accepted: 03/27/2024] [Indexed: 07/23/2024] Open
Abstract
Nanoparticles (NP) play a crucial role in nanomedicine, serving as carriers for localized therapeutics to allow for precise drug delivery to specific disease sites and conditions. When injected systemically, NP can directly interact with various blood cell types, most critically with circulating platelets. Hence, the potential activation/inhibition of platelets following NP exposure must be evaluated a priori due to possible debilitating outcomes. In recent years, various studies have helped resolve the physicochemical parameters that influence platelet-NP interactions, and either emphasize nanoparticles' therapeutic role such as to augment hemostasis or to inhibit thrombus formation, or conversely map their potential undesired side effects upon injection. In the present review, we discuss some of the main effects of several key NP types including polymeric, ceramic, silica, dendrimers and metallic NPs on platelets, with a focus on the physicochemical parameters that can dictate these effects and modulate the therapeutic potential of the NP. Despite the scientific and clinical significance of understanding Platelet-NP interactions, there is a significant knowledge gap in the field and a critical need for further investigation. Moreover, improved guidelines and research methodologies need to be developed and implemented. Our outlook includes the use of biomimetic in vitro models to investigate these complex interactions under both healthy physiological and disease conditions.
Collapse
Affiliation(s)
- Yathreb Asaad
- Department of Biomedical EngineeringTechnion‐Israel Institute of TechnologyHaifaIsrael
| | | | - Josué Sznitman
- Department of Biomedical EngineeringTechnion‐Israel Institute of TechnologyHaifaIsrael
| | - Pierre H. Mangin
- University of Strasbourg, INSERM, EFS Grand‐Est, BPPS UMR‐S1255, FMTSStrasbourgFrance
| | - Netanel Korin
- Department of Biomedical EngineeringTechnion‐Israel Institute of TechnologyHaifaIsrael
| |
Collapse
|
4
|
von Behren JM, Wesche J, Greinacher A, Aurich K. Indocyanine Green-Labeled Platelets for Survival and Recovery Studies. Transfus Med Hemother 2024; 51:66-75. [PMID: 38584698 PMCID: PMC10996059 DOI: 10.1159/000533623] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 08/13/2023] [Indexed: 04/09/2024] Open
Abstract
Introduction Before being implemented in daily clinical routine, new production strategies for platelet concentrates (PCs) must be validated for their efficacy. Besides in vitro testing, the establishment of new methods requires the labeling of platelets for in vivo studies of platelets' survival and recovery. Indocyanine green (ICG) is a Food and Drug Administration-approved near-infrared (NIR) fluorescent dye for diagnostic use in vivo, suitable for non-radioactive direct cell labeling of platelets. Methods Platelets from PCs in storage solutions with different plasma concentrations were labeled with ICG up to concentrations of 200 μm. Whole blood (WB) was used as an ex vivo matrix to monitor the labeling stability of ICG-labeled platelets. The impact of labeling processes was assessed by the quantification of CD62P expression and PAC-1 binding as platelet function markers. Platelet aggregation was analyzed by light transmission aggregometry. ICG-labeling efficiency and stability of platelets were determined by flow cytometry. Results Platelets from PCs could be successfully labeled with 10 μm ICG after 1 and 4 days of storage. The best labeling efficiency of 99.8% ± 0.1% (immediately after labeling) and 81% ± 6.2% (after 24 h incubation with WB) was achieved by plasma replacement by 100% platelet additive solution for the labeling process. Since the washing process slightly impaired platelet function, ICG labeling itself did not affect platelets. Immediately after the ICG-labeling process, plasma was re-added, resulting in a recovered platelet function. Conclusion We developed a Good Manufacturing Practice compatible protocol for ICG fluorescent platelet labeling suitable for survival and recovery studies in vivo as a non-radioactive labeling alternative.
Collapse
Affiliation(s)
| | - Jan Wesche
- Universitätsmedizin Greifswald, Institut für Transfusionsmedizin, Greifswald, Germany
| | - Andreas Greinacher
- Universitätsmedizin Greifswald, Institut für Transfusionsmedizin, Greifswald, Germany
| | - Konstanze Aurich
- Universitätsmedizin Greifswald, Institut für Transfusionsmedizin, Greifswald, Germany
| |
Collapse
|
5
|
Gerogianni A, Bal M, Mohlin C, Woodruff TM, Lambris JD, Mollnes TE, Sjöström DJ, Nilsson PH. In vitro evaluation of iron oxide nanoparticle-induced thromboinflammatory response using a combined human whole blood and endothelial cell model. Front Immunol 2023; 14:1101387. [PMID: 37081885 PMCID: PMC10111002 DOI: 10.3389/fimmu.2023.1101387] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 03/22/2023] [Indexed: 04/07/2023] Open
Abstract
Iron oxide nanoparticles (IONPs) are widely used in diagnostic and therapeutic settings. Upon systemic administration, however, they are rapidly recognized by components of innate immunity, which limit their therapeutic capacity and can potentially lead to adverse side effects. IONPs were previously found to induce the inflammatory response in human whole blood, including activation of the complement system and increased secretion of cytokines. Here, we investigated the thromboinflammatory response of 10-30 nm IONPs in lepirudin anticoagulated whole blood in interplay with endothelial cells and evaluated the therapeutic effect of applying complement inhibitors to limit adverse effects related to thromboinflammation. We found that IONPs induced complement activation, primarily at the C3-level, in whole blood incubated for up to four hours at 37°C with and without human microvascular endothelial cells. Furthermore, IONPs mediated a strong thromboinflammatory response, as seen by the significantly increased release of 21 of the 27 analyzed cytokines (p<0.05). IONPs also significantly increased cell-activation markers of endothelial cells [ICAM-1 (p<0.0001), P/E-selectin (p<0.05)], monocytes, and granulocytes [CD11b (p<0.001)], and platelets [CD62P (p<0.05), CD63 (p<0.05), NAP-2 (p<0.01), PF4 (p<0.05)], and showed cytotoxic effects, as seen by increased LDH (p<0.001) and heme (p<0.0001) levels. We found that inflammation and endothelial cell activation were partly complement-dependent and inhibition of complement at the level of C3 by compstatin Cp40 significantly attenuated expression of ICAM-1 (p<0.01) and selectins (p<0.05). We show that complement activation plays an important role in the IONPs-induced thromboinflammatory response and that complement inhibition is promising in improving IONPs biocompatibility.
Collapse
Affiliation(s)
- Alexandra Gerogianni
- Linnaeus Centre for Biomaterials Chemistry, Linnaeus University, Kalmar, Sweden
- Department of Chemistry and Biomedicine, Linnaeus University, Kalmar, Sweden
| | - Melissa Bal
- Linnaeus Centre for Biomaterials Chemistry, Linnaeus University, Kalmar, Sweden
- Department of Chemistry and Biomedicine, Linnaeus University, Kalmar, Sweden
| | - Camilla Mohlin
- Linnaeus Centre for Biomaterials Chemistry, Linnaeus University, Kalmar, Sweden
- Department of Chemistry and Biomedicine, Linnaeus University, Kalmar, Sweden
| | - Trent M. Woodruff
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - John D. Lambris
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Tom E. Mollnes
- Department of Immunology, Oslo University Hospital and University of Oslo, Oslo, Norway
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Research Laboratory, Nordland Hospital, Bodo, Norway
| | - Dick J. Sjöström
- Linnaeus Centre for Biomaterials Chemistry, Linnaeus University, Kalmar, Sweden
- Department of Chemistry and Biomedicine, Linnaeus University, Kalmar, Sweden
| | - Per H. Nilsson
- Linnaeus Centre for Biomaterials Chemistry, Linnaeus University, Kalmar, Sweden
- Department of Chemistry and Biomedicine, Linnaeus University, Kalmar, Sweden
- Department of Immunology, Oslo University Hospital and University of Oslo, Oslo, Norway
- *Correspondence: Per H. Nilsson,
| |
Collapse
|
6
|
Gao Y, Chen X, Wang B, Wang S, Wang J, Ren L, Jin WK, Han H, Wang L. Engineering Platelets with PDL1 Antibodies and Iron Oxide Nanoparticles for Postsurgical Cancer Immunotherapy. ACS APPLIED BIO MATERIALS 2023; 6:257-266. [PMID: 36502393 DOI: 10.1021/acsabm.2c00869] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Recently, immune checkpoint blockade (ICB) therapy has achieved great success in inhibition of the recurrence and metastasis of tumor. However, this therapy is challenged by the poor delivery efficiency of ICB agents and the insufficient activation of antitumor immunity by ICB only. Here, we describe a strategy using platelets as carriers for co-delivery of ICB agents (anti-PDL1 antibodies, aPDL1) and photothermal agents (iron oxide nanoparticles, IONPs) to the postsurgical tumor site, which simultaneously provides photothermal therapy for ablation of residual tumor cells and ICB therapy for blocking the immunoinhibitory signals in the tumor microenvironment. We engineered platelets by chemical conjugation of aPDL1 and physical adsorption of IONPs on the surfaces of the platelets. Once they were adhered to the subendothelium of the surgical site, engineered platelets (P-P-IO) were activated and released aPDL1 and IONPs to the surrounding tissue. Upon laser irradiation, mild photothermal therapy (PTT) induces necrosis of residual tumor cells, producing tumor-associated antigens to generate innate immune responses. The co-delivered aPDL1 leads to efficient antitumor immunity, as evidenced by the reduced recurrence of the residual tumor and improved infiltration of both CD4+ and CD8+ T cells in a postsurgical breast tumor xenograft mouse model. We believe our strategy holds great promise in the clinic for combating postsurgical cancer recurrence.
Collapse
Affiliation(s)
- Yu Gao
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Xinmeng Chen
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Bo Wang
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Siyu Wang
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Jiahui Wang
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Lili Ren
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Wei-Kui Jin
- Department of Ultrasound, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Hao Han
- Department of Ultrasound, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Lianhui Wang
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| |
Collapse
|
7
|
Mayorova OA, Gusliakova OI, Prikhozhdenko ES, Verkhovskii RA, Bratashov DN. Magnetic Platelets as a Platform for Drug Delivery and Cell Trapping. Pharmaceutics 2023; 15:pharmaceutics15010214. [PMID: 36678843 PMCID: PMC9866132 DOI: 10.3390/pharmaceutics15010214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/23/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
The possibility of using magnetically labeled blood cells as carriers is a novel approach in targeted drug-delivery systems, potentially allowing for improved bloodstream delivery strategies. Blood cells already meet the requirements of biocompatibility, safety from clotting and blockage of small vessels. It would solve the important problem of the patient's immune response to embedded foreign carriers. The high efficiency of platelet loading makes them promising research objects for the development of personalized drug-delivery systems. We are developing a new approach to use platelets decorated with magnetic nanoparticles as a targeted drug-delivery system, with a focus on bloodstream delivery. Platelets are non-nuclear blood cells and are of great importance in the pathogenesis of blood-clotting disorders. In addition, platelets are able to attach to circulating tumor cells. In this article, we studied the effect of platelets labeled with BSA-modified magnetic nanoparticles on healthy and cancer cells. This opens up broad prospects for future research based on the delivery of specific active substances by this method.
Collapse
Affiliation(s)
- Oksana A. Mayorova
- Science Medical Center, Saratov State University, 83 Astrakhanskaya Str., 410012 Saratov, Russia
- Department of General Educations, Saratov State Vavilov Agrarian University, 1 Theater Square, 410012 Saratov, Russia
- Correspondence: (O.A.M.); (D.N.B.)
| | - Olga I. Gusliakova
- Science Medical Center, Saratov State University, 83 Astrakhanskaya Str., 410012 Saratov, Russia
| | | | - Roman A. Verkhovskii
- Science Medical Center, Saratov State University, 83 Astrakhanskaya Str., 410012 Saratov, Russia
| | - Daniil N. Bratashov
- Science Medical Center, Saratov State University, 83 Astrakhanskaya Str., 410012 Saratov, Russia
- Correspondence: (O.A.M.); (D.N.B.)
| |
Collapse
|
8
|
Bychkova AV, Yakunina MN, Lopukhova MV, Degtyarev YN, Motyakin MV, Pokrovsky VS, Kovarski AL, Gorobets MG, Retivov VM, Khachatryan DS. Albumin-Functionalized Iron Oxide Nanoparticles for Theranostics: Engineering and Long-Term In Situ Imaging. Pharmaceutics 2022; 14:2771. [PMID: 36559265 PMCID: PMC9782891 DOI: 10.3390/pharmaceutics14122771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Magnetic nanosystems (MNSs) consisting of magnetic iron oxide nanoparticles (IONPs) coated by human serum albumin (HSA), commonly used as a component of hybrid nanosystems for theranostics, were engineered and characterized. The HSA coating was obtained by means of adsorption and free radical modification of the protein molecules on the surface of IONPs exhibiting peroxidase-like activity. The generation of hydroxyl radicals in the reaction of IONPs with hydrogen peroxide was proven by the spin trap technique. The methods of dynamic light scattering (DLS) and electron magnetic resonance (EMR) were applied to confirm the stability of the coatings formed on the surface of the IONPs. The synthesized MNSs (d ~35 nm by DLS) were intraarterially administered in tumors implanted to rats in the dose range from 20 to 60 μg per animal and studied in vivo as a contrasting agent for computed tomography. The long-term (within 14 days of the experiment) presence of the MNSs in the tumor vascular bed was detected without immediate or delayed adverse reactions and significant systemic toxic effects during the observation period. The peroxidase-like activity of MNSs was proven by the colorimetric test with o-phenylenediamine (OPD) as a substrate. The potential of the synthesized MNSs to be used for theranostics, particularly, in oncology, was discussed.
Collapse
Affiliation(s)
- Anna V. Bychkova
- Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 4, Kosygina Str., Moscow 119334, Russia
| | - Marina N. Yakunina
- N.N. Blokhin National Medical Research Center of Oncology, 24, Kashirskoye Sh., Moscow 115478, Russia
| | - Mariia V. Lopukhova
- Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 4, Kosygina Str., Moscow 119334, Russia
| | - Yevgeniy N. Degtyarev
- Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 4, Kosygina Str., Moscow 119334, Russia
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 4, Kosygina Str., Moscow 119991, Russia
| | - Mikhail V. Motyakin
- Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 4, Kosygina Str., Moscow 119334, Russia
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 4, Kosygina Str., Moscow 119991, Russia
| | - Vadim S. Pokrovsky
- Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 4, Kosygina Str., Moscow 119334, Russia
- N.N. Blokhin National Medical Research Center of Oncology, 24, Kashirskoye Sh., Moscow 115478, Russia
- Laboratory of Experimental Oncology, Research Institute of Molecular and Cellular Medicine, RUDN University, 6, Miklukho-Maklaya Str., Moscow 117198, Russia
- Department of Biotechnology, Sirius University of Science and Technology, 1, Olympic Pr., Federal Territory Sirius, Krasnodarsky Kray, Sochi 354340, Russia
| | - Alexander L. Kovarski
- Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 4, Kosygina Str., Moscow 119334, Russia
| | - Maria G. Gorobets
- Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 4, Kosygina Str., Moscow 119334, Russia
| | - Vasily M. Retivov
- The Federal State Unitary Enterprise, Institute of Chemical Reagents and High Purity Chemical Substances of National Research Center “Kurchatov Institute”, 3, Bogorodsky Val, Moscow 107076, Russia
- National Research Center “Kurchatov Institute”, 1, Akademika Kurchatova pl., Moscow 123182, Russia
| | - Derenik S. Khachatryan
- The Federal State Unitary Enterprise, Institute of Chemical Reagents and High Purity Chemical Substances of National Research Center “Kurchatov Institute”, 3, Bogorodsky Val, Moscow 107076, Russia
- National Research Center “Kurchatov Institute”, 1, Akademika Kurchatova pl., Moscow 123182, Russia
| |
Collapse
|
9
|
Schemberg J, Abbassi AE, Lindenbauer A, Chen LY, Grodrian A, Nakos X, Apte G, Khan N, Kraupner A, Nguyen TH, Gastrock G. Synthesis of Biocompatible Superparamagnetic Iron Oxide Nanoparticles (SPION) under Different Microfluidic Regimes. ACS APPLIED MATERIALS & INTERFACES 2022; 14:48011-48028. [PMID: 36223272 PMCID: PMC9615998 DOI: 10.1021/acsami.2c13156] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Superparamagnetic iron oxide nanoparticles (SPION) have a great potential in both diagnostic and therapeutic applications as they provide contrast in magnetic resonance imaging techniques and allow magnetic hyperthermia and drug delivery. Though various types of SPION are commercially available, efforts to improve the quality of SPION are highly in demand. Here, we describe a strategy for optimization of SPION synthesis under microfluidics using the coprecipitation approach. Synthesis parameters such as temperature, pH, iron salt concentration, and coating materials were investigated in continuous and segmented flows. Continuous flow allowed synthesizing particles of a smaller size and higher stability than segmented flow, while both conditions improved the quality of particles compared to batch synthesis. The most stable particles were obtained at a synthesis condition of 6.5 M NH4OH base, iron salt (Fe2+/Fe3+) concentration ratio of 4.3/8.6, carboxymethyl dextran coating of 20 mg/mL, and temperature of 70 °C. The synthesized SPION exhibited a good efficiency in labeling of human platelets and did not impair cells. Our study under flow conditions provides an optimal protocol for the synthesis of better and biocompatible SPION that contributes to the development of nanoparticles for medical applications.
Collapse
Affiliation(s)
- Jörg Schemberg
- Institute
for Bioprocessing and Analytical Measurement Techniques (iba), 37308Heiligenstadt, Germany
| | - Abdelouahad El Abbassi
- Institute
for Bioprocessing and Analytical Measurement Techniques (iba), 37308Heiligenstadt, Germany
| | - Annerose Lindenbauer
- Institute
for Bioprocessing and Analytical Measurement Techniques (iba), 37308Heiligenstadt, Germany
| | - Li-Yu Chen
- Institute
for Bioprocessing and Analytical Measurement Techniques (iba), 37308Heiligenstadt, Germany
- Department
of Infection Biology, Leibniz Institute
for Natural Product Research and Infection Biology, 07745Jena, Germany
| | - Andreas Grodrian
- Institute
for Bioprocessing and Analytical Measurement Techniques (iba), 37308Heiligenstadt, Germany
| | - Xenia Nakos
- Institute
for Bioprocessing and Analytical Measurement Techniques (iba), 37308Heiligenstadt, Germany
| | - Gurunath Apte
- Institute
for Bioprocessing and Analytical Measurement Techniques (iba), 37308Heiligenstadt, Germany
- Institute
of Nanotechnology (INT) and Karlsruhe Nano Micro Facility, Karlsruhe Institute of Technology, 76131Karlsruhe, Germany
| | - Nida Khan
- Institute
for Bioprocessing and Analytical Measurement Techniques (iba), 37308Heiligenstadt, Germany
- Institute
for Chemistry and Biotechnology, Faculty of Mathematics and Natural
Sciences, Technische Universität
Ilmenau, 98694Ilmenau, Germany
| | | | - Thi-Huong Nguyen
- Institute
for Bioprocessing and Analytical Measurement Techniques (iba), 37308Heiligenstadt, Germany
- Institute
for Chemistry and Biotechnology, Faculty of Mathematics and Natural
Sciences, Technische Universität
Ilmenau, 98694Ilmenau, Germany
| | - Gunter Gastrock
- Institute
for Bioprocessing and Analytical Measurement Techniques (iba), 37308Heiligenstadt, Germany
| |
Collapse
|
10
|
Awaad A, Elkady EF, El-Mahdy SM. Time-dependent biodistribution profiles and reaction of polyethylene glycol-coated iron oxide nanoclusters in the spleen after intravenous injection in the mice. Acta Histochem 2022; 124:151907. [PMID: 35633602 DOI: 10.1016/j.acthis.2022.151907] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 12/31/2022]
Abstract
Polyethylene glycol (PEG) is widely used polymer in the field of pharmaceutics, particularly in which related to drug delivery systems (DDS). Surface coating of the nanoparticles (NPs) with PEG (i.e. pegylation) adds novel characteristics that make their use in vivo more effective with lower cytotoxicity. The biodistribution profiles, reaction, and fate of PEG-coated NPs in vivo still unclear and need more detailed studies. Here in this study, we prepared PEG-coated iron oxide nanoclusters (PEG-coated IONCs) to investigate their biodistribution profiles and reactions in spleen after intravenous injection time-dependently. Using Prussian blue staining method as specific histochemical reaction for iron detection in the tissues, the PEG-coated IONCs were observed in a higher ratio in spleen red pulp after 1 day of injection but decreased time-dependently after 10 days and 20 days. Interestingly, PEG-coated IONCs moved from red pulp into the white pulp specially after 20 days of injection. After long time exposure (20 days), higher amount of PEG-coated IONCs was observed in the center of spleen white pulp follicle. Using histological staining, the reaction of PEG-coated IONCs with splenocytes or immune cells induced cellular abnormalities such as, nucleic acid damages, induction of megakaryocytes number, and sever vacuolation in the white pulp area specially after 20 days of injection. Histochemically, the localization of PEG-coated IONCs in the splenic parenchyma induced the level of the collagen fibers particularly after 1 day and 10 days of injection. Interestingly, cellular abnormalities in the splenic red pulp as well as collagen levels decreased after 20 days of injection due to the clearance of PEG-coated IONCs from this area. This data indicated that cytotoxicity produced by the reaction of PEG-coated IONCs in the spleen are reversible specially after 20 days of in the intravenous injection. Understanding the detailed mechanism of the fate and reaction of the coated nanomaterials after intravenous injection is important to design effective and safe DDS based NPs.
Collapse
|
11
|
Hu J, Sun Y, Geng X, Wang J, Guo Y, Qu L, Zhang K, Li Z. High-fidelity carbon dots polarity probes: revealing the heterogeneity of lipids in oncology. LIGHT, SCIENCE & APPLICATIONS 2022; 11:185. [PMID: 35718791 PMCID: PMC9207028 DOI: 10.1038/s41377-022-00873-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 05/10/2022] [Accepted: 06/03/2022] [Indexed: 05/07/2023]
Abstract
Polarity is an integral microenvironment parameter in biological systems closely associated with a multitude of cellular processes. Abnormal polarity variations accompany the initiation and development of pathophysiological processes. Thus, monitoring the abnormal polarity is of scientific and practical importance. Current state-of-the-art monitoring techniques are primarily based on fluorescence imaging which relies on a single emission intensity and may cause inaccurate detection due to heterogeneous accumulation of the probes. Herein, we report carbon dots (CDs) with ultra-sensitive responses to polarity. The CDs exhibit two linear relationships: one between fluorescence intensity and polarity and the other between polarity and the maximum emission wavelength. The emission spectrum is an intrinsic property of the probes, independent of the excitation intensity or probe concentration. These features enable two-color imaging/quantitation of polarity changes in lipid droplets (LDs) and in the cytoplasm via in situ emission spectroscopy. The probes reveal the polarity heterogeneity in LDs which can be applied to make a distinction between cancer and normal cells, and reveal the polarity homogeneity in cytoplasm.
Collapse
Affiliation(s)
- Jingyu Hu
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, 450001, Zhengzhou, China
| | - Yuanqiang Sun
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, 450001, Zhengzhou, China
| | - Xin Geng
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, 450001, Zhengzhou, China
| | - Junli Wang
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, 450001, Zhengzhou, China
| | - Yifei Guo
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, 450001, Zhengzhou, China
| | - Lingbo Qu
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, 450001, Zhengzhou, China
- Institute of Chemical Biology and Clinical Application at the First Affiliate Hospital, Zhengzhou University, 450001, Zhengzhou, China
| | - Ke Zhang
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, 02115, USA
| | - Zhaohui Li
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, 450001, Zhengzhou, China.
- Institute of Chemical Biology and Clinical Application at the First Affiliate Hospital, Zhengzhou University, 450001, Zhengzhou, China.
| |
Collapse
|
12
|
Guo Y, Li W, Liu S, Jing D, Wang Y, Feng Q, Zhang K, Xu J. Construction of nanocarriers based on endogenous cell membrane and its application in nanomedicine. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202100946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yingshu Guo
- Shandong Provincial Key Laboratory of Molecular Engineering School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 China
| | - Wenxin Li
- School of Chemistry and Chemical Engineering Linyi University Linyi 276005 China
| | - Shiwei Liu
- Shandong Provincial Key Laboratory of Molecular Engineering School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 China
| | - Dan Jing
- Shandong Provincial Key Laboratory of Molecular Engineering School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 China
| | - Yifan Wang
- Shandong Provincial Key Laboratory of Molecular Engineering School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 China
| | - Qingfang Feng
- Shandong Provincial Key Laboratory of Molecular Engineering School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 China
| | - Kaixiang Zhang
- School of Pharmaceutical Sciences Zhengzhou University Zhengzhou 450001 China
| | - Jing‐Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Centre of Chemistry for Life Sciences Nanjing University, 163 Xianlin Road Nanjing 210023 China
| |
Collapse
|
13
|
Jo JI, Emi T, Tabata Y. Design of a Platelet-Mediated Delivery System for Drug-Incorporated Nanospheres to Enhance Anti-Tumor Therapeutic Effect. Pharmaceutics 2021; 13:pharmaceutics13101724. [PMID: 34684017 PMCID: PMC8540062 DOI: 10.3390/pharmaceutics13101724] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/11/2021] [Accepted: 10/14/2021] [Indexed: 01/25/2023] Open
Abstract
The objective of this study is to construct a platelet-mediated delivery system for drug-incorporated nanospheres. Nanospheres of poly(lactic-co-glycolic acid) (PLGA-NS) with different sizes and surface properties were prepared by changing the preparation parameters, such as the type of polymer surfactant, the concentration of polymer surfactant and PLGA, and the stirring rate. When incubated with platelets, PLGA-NS prepared with poly(vinyl alcohol) suppressed the platelet activation. Scanning electron microscopic and flow cytometry examinations revealed that platelets associated with PLGA-NS (platelet hybrids, PH) had a similar appearance and biological properties to those of the original platelets. In addition, the PH with PLGA-NS specifically adhered onto the substrate pre-coated with fibrin to a significantly great extent compared with PLGA-NS alone. When applied in an in vitro model of tumor tissue which was composed of an upper chamber pre-coated with fibrin and a lower chamber culturing tumor cells, the PH with PLGA-NS incorporating an anti-tumor drug were delivered to the tumor cells through the specific adhesion onto the upper chamber and, consequently, drug release from the upper chamber took place, resulting in the growth suppression of tumor cells. It is concluded that the drug delivery system based on PH is promising for tumor treatment.
Collapse
|
14
|
Abstract
The supply of platelets for transfusion is a logistical challenge due to the physiology of platelets and current measures of transfusion performance dictating storage at 22°C and a short product shelf-life (<7 days). Demand for platelets has increased in recent years and changes in the demographics of the population may enhance this further. Many studies have been conducted to understand what the optimal dose and trigger for transfusion should be, mainly in hematology patients who are the largest cohort that receive platelets, mostly to prevent bleeding. Emerging data suggests that for bleeding patients, where immediate hemostasis is a key consideration, the current standard product may not be optimal. Alternative platelet preparation methods/storage options that may improve the hemostatic properties of platelets are under active development. In parallel with research into alternative platelet products that might enhance hemostasis, better measures for assessing bleeding risk and platelet efficacy are needed.
Collapse
|
15
|
Gelderman MP, Cheng C, Xu F, Skripchenko A, Ryan J, Li Y, Whitley P, Wagner SJ, Vostal JG. Validation of a SCID mouse model for transfusion by concurrent comparison of circulation kinetics of human platelets, stored under various temperature conditions, between human volunteers and mice. Transfusion 2020; 60:2379-2388. [PMID: 32762155 DOI: 10.1111/trf.15953] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 03/05/2020] [Accepted: 05/31/2020] [Indexed: 12/26/2022]
Abstract
BACKGROUND Initial evaluation of new platelet (PLT) products for transfusion includes a clinical study to determine in vivo recovery and survival of autologous radiolabeled PLTs in healthy volunteers. These studies are expensive and do not always produce the desired results. A validated animal model of human PLTs in vivo survival and recovery used pre-clinically could reduce the risk of failing to advance product development. STUDY DESIGN AND METHODS An immunodeficient (SCID) mouse model to evaluate recovery of human PLTs was compared to a radiolabeling study in human volunteers. Autologous apheresis PLTs stored for 7 days at room temperature (RT), thermo-cycled (TC), and cold temperature (CT) were radiolabeled and infused into healthy humans (n = 16). The same PLTs, non-radiolabeled, were also infused into mice (n = 160) on the same day. Blood samples from humans and mice were collected to generate clearance curves of PLTs in circulation. Flow cytometry was used to detect human PLTs in mouse blood. RESULTS Human and mouse PLTs were cleared with one phase exponential clearance. Relative differences for initial recovery and AUC, expressed as ratio of test and control PLTs, were similar in humans and mice. The initial recovery ratio of TC/RT was 0.73 ± 0.07 in humans and 0.67 ± 0.14 in mice. The ratio for CT/TC was 0.53 ± 0.06 in humans and 0.75 ± 0.18 in mice. CONCLUSION The SCID mouse model can provide information on relative differences of initial in vivo recovery and AUC between control and alternatively stored/processed human PLTs that is predictive of performance in healthy human volunteers.
Collapse
Affiliation(s)
- Monique P Gelderman
- Laboratory of Cellular Hematology, Division of Blood Components and Devices, Office of Blood Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Chunrong Cheng
- Office of Biostatistics and Epidemiology, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Fei Xu
- Laboratory of Cellular Hematology, Division of Blood Components and Devices, Office of Blood Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Andrey Skripchenko
- Laboratory of Cellular Hematology, Division of Blood Components and Devices, Office of Blood Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Johannah Ryan
- Laboratory of Cellular Hematology, Division of Blood Components and Devices, Office of Blood Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Ying Li
- Laboratory of Cellular Hematology, Division of Blood Components and Devices, Office of Blood Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Pamela Whitley
- Mid-Atlantic Research Facility, American Red Cross, Norfolk, Virginia, USA
| | | | - Jaroslav G Vostal
- Laboratory of Cellular Hematology, Division of Blood Components and Devices, Office of Blood Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| |
Collapse
|
16
|
Aurich K, Fregin B, Palankar R, Wesche J, Hartwich O, Biedenweg D, Nguyen TH, Greinacher A, Otto O. Label-free on chip quality assessment of cellular blood products using real-time deformability cytometry. LAB ON A CHIP 2020; 20:2306-2316. [PMID: 32458864 DOI: 10.1039/d0lc00258e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Without cellular blood products such as platelet concentrates (PC), red blood cell concentrates (RCC), and hematopoietic stem cells (HPSC) modern treatments in medicine would not be possible. An unresolved challenge is the assessment of their quality with minimal cell manipulation. Minor changes in production, storage conditions, or blood bag composition may impact cell function, which can have important consequences on product integrity. This is especially relevant for personalized medicine, such as autologous T-cell therapy. Today a robust methodology that globally determines cell status directly before transfusion or transplantation is lacking. We demonstrate that measuring viscoelastic characteristics of peripheral blood cells using real-time deformability cytometry (RT-DC) provides comprehensive information on product quality, which is not accessible using conventional quality control tests. In addition, RT-DC requires few cells, a minimal sample volume and has a rapid turnaround time. We compared RT-DC to standard in vitro quality assays assessing: i) PC after storage at 4 °C and room temperature; ii) magnetic nanoparticle labeled platelets; iii) RCC stored in blood bags with different plasticizers; iv) RCC after gamma irradiation; and v) HPSC after cryopreservation with 5% or 10% dimethyl sulfoxide, respectively. Additionally, we evaluated the engraftment time of patients' platelets and leukocytes after transplantation of HPSC products. Our results demonstrate that label-free mechano-phenotyping can be used as a potential biomarker for quality assessment of cell-based pharmaceutical products.
Collapse
Affiliation(s)
- Konstanze Aurich
- Transfusionsmedizin, Universitätsmedizin Greifswald, 17475 Greifswald, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Paul DS, Bergmeier W. Novel Mouse Model for Studying Hemostatic Function of Human Platelets. Arterioscler Thromb Vasc Biol 2020; 40:1891-1904. [PMID: 32493172 DOI: 10.1161/atvbaha.120.314304] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Platelets are critical to the formation of a hemostatic plug and the pathogenesis of atherothrombosis. Preclinical animal models, especially the mouse, provide an important platform to assess the efficacy and safety of antiplatelet drugs. However, these studies are limited by inherent differences between human and mouse platelets and the species-selectivity of many drugs. To circumvent these limitations, we developed a new protocol for the adoptive transfer of human platelets into thrombocytopenic nonobese diabetic/severe combined immune deficiency mice, that is, a model where all endogenous platelets are replaced by human platelets in mice accepting xenogeneic tissues. Approach and Results: To demonstrate the power of this new model, we visualized and quantified hemostatic plug formation and stability by intravital spinning disk confocal microscopy following laser ablation injury to the saphenous vein. Integrin αIIbβ3-dependent hemostatic platelet plug formation was achieved within ≈30 seconds after laser ablation injury in humanized platelet mice. Pretreatment of mice with standard dual antiplatelet therapy (Aspirin+Ticagrelor) or PAR1 inhibitor, L-003959712 (an analog of vorapaxar), mildly prolonged the bleeding time and significantly reduced platelet adhesion to the site of injury. Consistent with findings from clinical trials, inhibition of PAR1 in combination with dual antiplatelet therapy markedly prolonged bleeding time in humanized platelet mice. CONCLUSIONS We propose that this novel mouse model will provide a robust platform to test and predict the safety and efficacy of experimental antiplatelet drugs and to characterize the hemostatic function of synthetic, stored and patient platelets.
Collapse
Affiliation(s)
- David S Paul
- From the Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill (D.S.P., W.B.).,UNC Blood Research Center, University of North Carolina, Chapel Hill (D.S.P., W.B.)
| | - Wolfgang Bergmeier
- From the Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill (D.S.P., W.B.).,UNC Blood Research Center, University of North Carolina, Chapel Hill (D.S.P., W.B.)
| |
Collapse
|
18
|
Hante NK, Medina C, Santos-Martinez MJ. Effect on Platelet Function of Metal-Based Nanoparticles Developed for Medical Applications. Front Cardiovasc Med 2019; 6:139. [PMID: 31620449 PMCID: PMC6759469 DOI: 10.3389/fcvm.2019.00139] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 09/03/2019] [Indexed: 12/12/2022] Open
Abstract
Nanomaterials have been recently introduced as potential diagnostic and therapeutic tools in the medical field. One of the main concerns in relation to the use of nanomaterials in humans is their potential toxicity profile and blood compatibility. In fact, and due to their small size, NPs can translocate into the systemic circulation even after dermal contact, inhalation, or oral ingestion. Once in the blood stream, nanoparticles become in contact with the different components of the blood and can potentially interfere with normal platelet function leading to bleeding or thrombosis. Metallic NPs have been already used for diagnosis and treatment purposes due to their unique characteristics. However, the potential interactions between metallic NPs and platelets has not been widely studied and reported. This review focuses on the factors that can affect platelet activation and aggregation by metal NPs and the nature of such interactions, providing a summary of the effect of various metal NPs on platelet function available in the literature.
Collapse
Affiliation(s)
- Nadhim Kamil Hante
- The School of Pharmacy and Pharmaceutical Sciences, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, Dublin, Ireland
- College of Pharmacy, University of Kufa, Najaf, Iraq
| | - Carlos Medina
- The School of Pharmacy and Pharmaceutical Sciences, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, Dublin, Ireland
| | - Maria Jose Santos-Martinez
- The School of Pharmacy and Pharmaceutical Sciences, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, Dublin, Ireland
- School of Medicine, Trinity College Dublin, The University of Dublin, Dublin, Ireland
| |
Collapse
|
19
|
Liu T, Li M, Tang J, Li J, Zhou Y, Liu Y, Yang F, Gu N. An acoustic strategy for gold nanoparticle loading in platelets as biomimetic multifunctional carriers. J Mater Chem B 2019; 7:2138-2144. [PMID: 32073572 DOI: 10.1039/c9tb00227h] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In recent years, a wide variety of bioinspired colloidal particles with novel cell mimetic functions have been the subject of extensive research in materials science, chemistry, biology, physics, and engineering. However, most of the approaches are derived from natural cell membrane coatings, which are still too primitive compared with living cells. In this study, we have chosen gold nanoparticles (GNPs) to explore the bioactivity response of living platelets and nanoparticle loading efficiency under different ultrasonic intensity and frequency treatment conditions. The results show that GNPs with no surface modification could be easily loaded into intra-platelets by both incubation (30 min) and ultrasonic exposure (1 min) methods. The amount of GNP loading was (4.4 ± 0.9) × 10-3 and (5.8 ± 2.4) × 10-3 pg per platelet upon incubation and acoustic triggering (1 MHz, 0.25 W cm-2), respectively. Although the other US treatment intensities (0.75, 1.50 and 2.25 W cm-2) also promoted higher amounts of GNPs in the platelets, the higher US intensity might bring about partial damage of the platelet membrane. Compared with 1 MHz ultrasonic exposure, the change of the GNP loading amount was not significantly higher upon ultrasonic frequency treatment of 45, 80 or 100 kHz. Therefore, it has been found that an US intensity of 0.25 W cm-2 could facilitate the intra-platelet delivery efficacy of the GNPs without damaging the biological activity. Furthermore, two possible pathways of GNPs entering into platelets upon US treatment are presented: one is the endocytosis/open canalicular system (OCS), and the other is cell membrane permeability enhancement, which is proved by the SEM and TEM results. Finally, the GNP-loaded platelets have been demonstrated as useful probes for photoacoustic imaging (PAI) and dark-field microscopy (DFM)-based imaging, which might allow a wide range of potential applications in diagnostics and therapy of platelet-related diseases.
Collapse
Affiliation(s)
- Taotao Liu
- State key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, 210096, China.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Zhao H, Li L, Zhang J, Zheng C, Ding K, Xiao H, Wang L, Zhang Z. C-C Chemokine Ligand 2 (CCL2) Recruits Macrophage-Membrane-Camouflaged Hollow Bismuth Selenide Nanoparticles To Facilitate Photothermal Sensitivity and Inhibit Lung Metastasis of Breast Cancer. ACS APPLIED MATERIALS & INTERFACES 2018; 10:31124-31135. [PMID: 30141614 DOI: 10.1021/acsami.8b11645] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Poor tumor accumulation, rapid clearance from blood circulation, and high risk of invasive and metastasis are the major barriers that encumber the conventional nanodrug-based tumor therapy. In this work, macrophage membrane (M)-camouflaged quercetin (QE)-loaded hollow bismuth selenide nanoparticles (abbreviated as M@BS-QE NPs) are fabricated for combination therapy of breast cancer. The resulting M@BS-QE NPs are comprehensively characterized, possessing prolonged circulation life, as well as accelerated and enhanced tumoritropic accumulation, compared with those of bare BS NPs because of the immune evading capacity, C-C chemokine ligand 2 (CCL2)-mediated recruitment properties, and active targeting ability. The subsequent QE release under near-infrared (NIR) laser irradiation can selectively sensitize cancer cells to photothermal therapy (PTT) by depleting heat shock protein 70 (HSP70, one malignancy-specific-overexpressed thermoresistance-related chaperone) to realize such a cascaded synergistic effect. At the same time, M@BS-QE NPs down-regulated p-Akt and matrix metalloproteinase-9 (MMP-9, which degrades the extracellular matrix to promote invasion and metastasis of tumors) signal axis to suppress breast cancer lung metastasis. Thus, our results provide a biomimetic strategy, using the characteristics of breast cancer and biological properties of macrophages, that hold great promise to enhance the therapeutic efficacy and improve the accuracy of treatment with minimal side effects on both primary and lung metastasis of breast cancer.
Collapse
Affiliation(s)
- Hongjuan Zhao
- School of Pharmaceutical Sciences , Zhengzhou University , Zhengzhou 450001 , People's Republic of China
- Collaborative Innovation Center of New Drug Research and Safety Evaluation , Henan Province , Zhengzhou 450001 , People's Republic of China
| | - Li Li
- School of Pharmaceutical Sciences , Zhengzhou University , Zhengzhou 450001 , People's Republic of China
| | - Junli Zhang
- School of Pharmaceutical Sciences , Zhengzhou University , Zhengzhou 450001 , People's Republic of China
| | - Cuixia Zheng
- School of Pharmaceutical Sciences , Zhengzhou University , Zhengzhou 450001 , People's Republic of China
| | - Kaili Ding
- School of Pharmaceutical Sciences , Zhengzhou University , Zhengzhou 450001 , People's Republic of China
| | - Huifang Xiao
- School of Pharmaceutical Sciences , Zhengzhou University , Zhengzhou 450001 , People's Republic of China
| | - Lei Wang
- Collaborative Innovation Center of New Drug Research and Safety Evaluation , Henan Province , Zhengzhou 450001 , People's Republic of China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases , Henan Province , Zhengzhou 450001 , People's Republic of China
| | - Zhenzhong Zhang
- Collaborative Innovation Center of New Drug Research and Safety Evaluation , Henan Province , Zhengzhou 450001 , People's Republic of China
| |
Collapse
|
21
|
Nguyen TH, Schuster N, Greinacher A, Aurich K. Uptake Pathways of Protein-Coated Magnetic Nanoparticles in Platelets. ACS APPLIED MATERIALS & INTERFACES 2018; 10:28314-28321. [PMID: 30067021 DOI: 10.1021/acsami.8b07588] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Magnetic nanoparticles have recently shown great potential in nonradioactive labeling of platelets. Platelet labeling efficiency is enhanced when particles are conjugated with proteins like human serum albumin (HSA). However, the optimal HSA density coated on particles and the uptake mechanism of single particles in platelets remain unclear. Here, we utilized single-molecule force spectroscopy (SMFS) and other complementary methods to characterize the interaction of particles when interacting with platelets and to determine the optimal HSA amount required to coat particles. An HSA concentration of 0.5-1.0 mg/mL for coating particles is most efficient for platelet labeling. Binding pathways could be elucidated by linking a single HSA particle to SMFS tips via polyethylene glycol (PEG) linkers of different lengths and allowing them to interact with immobilized platelets on the substrate. Depending on the PEG length (i.e., short ∼2 nm, medium ∼30 nm, and long ∼100 nm), particles interact differently with platelets as shown by one, two, or three force distributions, which correspond up to three different binding pathways, respectively. We propose a model that the short PEG linker allows the particle to interact only with the platelet membrane, whereas the medium and long PEG linkers promote the particle to transfer from open canalicular system to another target inside platelets. Our study optimizes magnetic platelet labeling and provides details of particle pathways in platelets.
Collapse
Affiliation(s)
- Thi-Huong Nguyen
- Institute for Immunology and Transfusion Medicine , University Medicine Greifswald , 17475 Greifswald , Germany
- ZIK HIKE-Center for Innovation Competence, Humoral Immune Reactions in Cardiovascular Diseases , University of Greifswald , 17489 Greifswald , Germany
| | - Nicola Schuster
- ZIK HIKE-Center for Innovation Competence, Humoral Immune Reactions in Cardiovascular Diseases , University of Greifswald , 17489 Greifswald , Germany
| | - Andreas Greinacher
- Institute for Immunology and Transfusion Medicine , University Medicine Greifswald , 17475 Greifswald , Germany
| | - Konstanze Aurich
- Institute for Immunology and Transfusion Medicine , University Medicine Greifswald , 17475 Greifswald , Germany
| |
Collapse
|