1
|
Sakane S, Akimoto K, Konishi K, Takaoka K, Iwatsuki H, Akutsu M, Sugai T, Tanaka H. Catalytic Activity of Nonaggregating Cu Nanoparticles Supported in Pores of Zeolite for Aerobic Oxidation of Benzyl Alcohol. ACS OMEGA 2024; 9:970-976. [PMID: 38222533 PMCID: PMC10785088 DOI: 10.1021/acsomega.3c07156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/13/2023] [Accepted: 12/18/2023] [Indexed: 01/16/2024]
Abstract
Cu nanoparticles (NPs) as catalysts have the good advantage of being more abundant than noble metal NPs. In this study, we synthesized nonaggregating Cu NPs supported in Y-type zeolite by the photoreduction method. In this method, Cu ions in pores of zeolite can be slowly reduced with a small amount of reductant at room temperature. The high-resolution transmission electron microscope, energy dispersive X-ray spectroscopy, X-ray diffraction patterns, and UV-Vis spectra supported that nonaggregating Cu NPs existed in the pores of zeolite. Catalytic activities of Cu NP-zeolite were investigated for the aerobic oxidation of benzyl alcohol. Our Cu NP-zeolite had a large turnover frequency of 17 h-1. The yield of benzaldehyde increased in proportion to the amount of Cu loading at ≤0.5 wt %, indicating that Cu NPs in pores of zeolite work as catalysts for selective aerobic oxidation of benzyl alcohol. The high catalytic activity was brought by nonaggregating Cu NPs in pores of zeolite. The catalytic reaction for other aromatic alcohols with electron-donating groups proceeded, whereas it did not proceed for the aromatic alcohols with electron-withdrawing groups or aliphatic alcohols, indicating that the interaction between zeolite and the benzene ring also contributed to the reaction. This study would be expected to contribute to the development of Cu NP catalysts.
Collapse
Affiliation(s)
- Shunya Sakane
- Department
of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27, Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Kai Akimoto
- Department
of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27, Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Kishin Konishi
- Department
of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27, Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Kenta Takaoka
- Department
of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27, Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Harunobu Iwatsuki
- Department
of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27, Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Mayu Akutsu
- Department
of Chemistry, Faculty of Science, Toho University, 2-2-1, Miyama, Funabashi-shi, Chiba 274-8510, Japan
| | - Toshiki Sugai
- Department
of Chemistry, Faculty of Science, Toho University, 2-2-1, Miyama, Funabashi-shi, Chiba 274-8510, Japan
| | - Hideki Tanaka
- Department
of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27, Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| |
Collapse
|
2
|
Khanam S, Saikia S, Lee S, Park YB, Zaki MEA, Bania KK. Interfacial Effect-Induced Electrocatalytic Activity of Spinel Cobalt Oxide in Methanol Oxidation Reaction. ACS OMEGA 2023; 8:44964-44976. [PMID: 38046355 PMCID: PMC10688207 DOI: 10.1021/acsomega.3c06414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/31/2023] [Accepted: 11/02/2023] [Indexed: 12/05/2023]
Abstract
In this study, spinel cobalt oxide (Co3O4) nanoparticles without combining with any other metal atoms have been decorated through the influence of two hard templating agents, viz., zeolite-Y and carboxy-functionalized multiwalled carbon nanotubes (COOH-MWCNT). The adornment of the Co3O4 nanoparticles, through the combined impact of the aluminosilicate and carbon framework has resulted in quantum interference, causing the reversal of signatory Raman peaks of Co3O4. Apart from the construction of small Co3O4 nanoparticles at the interface of the two matrices, the particles were aligned along the direction of COOH-MWCNT. The catalyst Co3O4-Y-MWCNT exhibited excellent catalytic activity toward the methanol oxidation reaction (MOR) in comparison to Co3O4-Y, Co3O4-MWCNT, and bared Co3O4 with the current density of 0.92 A mg-1 at an onset potential of 1.33 V versus RHE. The material demonstrated persistent electrocatalytic activity up to 300 potential cycles and 20,000 s without substantial current density loss. High surface area of zeolite-Y in combination with the excellent conductivity of the COOH-MWCNT enhanced the electrocatalytic performance of the catalyst. The simplicity of synthesis, scale-up, and remarkable electrocatalytic activity of the catalyst Co3O4-Y-MWCNT provided an effective way toward the development of anode materials for direct methanol fuel cells.
Collapse
Affiliation(s)
- Salma
A. Khanam
- Department
of Chemical Sciences, Tezpur University, Tezpur 784028, Assam, India
| | - Sayanika Saikia
- Department
of Chemical Sciences, Tezpur University, Tezpur 784028, Assam, India
| | - Seonghwan Lee
- Department
of Mechanical Engineering, Ulsan National
Institute of Science and Technology, UNIST-gil 50, Ulju-gun, Ulsan 44919, Republic of Korea
| | - Young-Bin Park
- Department
of Mechanical Engineering, Ulsan National
Institute of Science and Technology, UNIST-gil 50, Ulju-gun, Ulsan 44919, Republic of Korea
| | - Magdi E. A. Zaki
- Department
of Chemistry, Imam Mohammad Ibn Saud Islamic
University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Kusum K. Bania
- Department
of Chemical Sciences, Tezpur University, Tezpur 784028, Assam, India
| |
Collapse
|
3
|
Biswas S, Barman D, Gogoi G, Hoque N, Devi A, Purkayastha SK, Guha AK, Nath JK, Bania KK. Heterogeneous iron catalyst for C(1)-H functionalization of 2-naphthols with primary aromatic alcohols. Org Biomol Chem 2023; 21:1657-1661. [PMID: 36727302 DOI: 10.1039/d3ob00004d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
An iron oxide nanocatalyst supported on a potassium exchanged zeolite-Y (Fe2O3-KY) is an efficient and reusable catalyst that promotes the selective α-H functionalization of 2-naphthols with various aromatic primary alcohols. The reaction occurs at 110 °C in dichloroethane and requires 6 h for completion. The product yields were found to vary with respect to the nature of the substituents. Benzyl alcohols with electron-donating groups gave the highest yields of up to 90%.
Collapse
Affiliation(s)
- Subir Biswas
- Department of Chemical Sciences, Tezpur University, Assam 784028, India.
| | - Dipankar Barman
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Gautam Gogoi
- Department of Chemical Sciences, Tezpur University, Assam 784028, India.
| | - Nazimul Hoque
- Department of Chemical Sciences, Tezpur University, Assam 784028, India.
| | - Arpita Devi
- Department of Chemical Sciences, Tezpur University, Assam 784028, India.
| | | | | | - Jayanta K Nath
- Department of Chemistry, S.B. Deorah College, Ulubari, Guwahati, Assam, India
| | - Kusum K Bania
- Department of Chemical Sciences, Tezpur University, Assam 784028, India.
| |
Collapse
|
4
|
CuxPd1-xO nanoparticle-reduced graphene oxide nanocomposite catalyzed direct ortho-C–H acylation of 2-aryl pyridines. CATAL COMMUN 2023. [DOI: 10.1016/j.catcom.2022.106591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
5
|
Huang D, An Q, Wang L, Li T, Liu M, Wu Y. Multi-active sites in situ formed on Schiff-base Pd(II)/Cu(II) self-assembly monolayer supported on graphene oxide: A simple protocol to enhance the catalytic activity. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2022.112846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
6
|
Oxidation of Alcohols into Carbonyl Compounds Using a CuO@GO Nano Catalyst in Oxygen Atmospheres. Catalysts 2022. [DOI: 10.3390/catal13010055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
In this article, the oxidation of alcohols into carbonyl compounds was studied in oxygen atmospheres using a copper oxide on graphene oxide (CuO@GO) nano composites catalyst, synthesized by the wet chemistry method. CuO@GO nano composites were prepared from GO, and CuO NPs by the sol-gel method. The transformation of aromatic alcohols into corresponding carbonyl compounds in good-to-high yields were observed using the CuO@GO catalyst under an oxygen atmosphere. Synthesized CuO@GO was confirmed by FT-IR, XRD, XPS, TEM, FE-SEM, TEM, and SEM analyses, and revealed intercalation of CuO-NPs on/in GO nano sheets through the chelation of Cu+2 ions with CO, COOH, and OH groups presenting on the GO nano sheets. The catalytic activity of CuO@GO nano composites for the conversion of alcohols into carbonyl compounds were evaluated through TOF (2.56 × 10−3 mol g−1 min−1). The use of CuO@GO has shown catalytic activity and recyclability with a high conversion of alcohols to ketones. We assume that the proposed CuO@GO catalyst can be used for other key organic transformations and will be evaluated in the future.
Collapse
|
7
|
Zhang Y, Ma P, Fu H, Qu X, Zheng S. Effective catalytic hydrodechlorination removal of chloroanisole odorants in water using palladium catalyst confined in zeolite Y. CHEMOSPHERE 2022; 309:136551. [PMID: 36152833 DOI: 10.1016/j.chemosphere.2022.136551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/13/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
Chloroanisoles is a class of odorous pollutants commonly identified in drinking water. In the present study, we confined noble metal palladium (Pd) in the micropores of zeolite Y (ie-Pd@Y) using an ion exchange method, and applied it for the catalytic hydrodechlorination removal of chloroanisoles (represented by 2,4,6-trichloroanisole/TCA) in water. Pd supported on zeolite Y surface (im-Pd/Y, prepared by conventional impregnation method) was used as the benchmarking catalyst. The characterization results revealed that ie-Pd@Y had smaller Pd particle size and higher Pdn+/Pd0 ratio than im-Pd/Y. The catalytic hydrodechlorination of TCA followed a concerted dechlorination pathway and the Langmuir-Hinshelwood model. The ie-Pd@Y catalysts with different Pd loadings exhibit excellent catalytic activities with more than 95% of TCA removed within 30 min, which is far superior to the im-Pd/Y catalysts (27-70%). Moreover, due to the confinement effect of zeolite Y, ie-Pd@Y displayed enhanced catalytic stability as compared with im-Pd/Y. The initial activity of ie-Pd@Y was more than 20 times higher than that of im-Pd/Y after five reaction cycles. Additionally, with the assistance of sieving effect, ie-Pd@Y displayed much stronger capability against the interference from dissolved organic matter than im-Pd/Y. The present results demonstrate that the confined catalysts ie-Pd@Y can be applied in liquid phase catalytic hydrogenation to effectively eliminate halogenated odorants in waters.
Collapse
Affiliation(s)
- Yufan Zhang
- State Key Laboratory of Pollution Control and Resource Reuse/School of the Environment, Nanjing University, Jiangsu, 210046, China.
| | - Pu Ma
- State Key Laboratory of Pollution Control and Resource Reuse/School of the Environment, Nanjing University, Jiangsu, 210046, China
| | - Heyun Fu
- State Key Laboratory of Pollution Control and Resource Reuse/School of the Environment, Nanjing University, Jiangsu, 210046, China.
| | - Xiaolei Qu
- State Key Laboratory of Pollution Control and Resource Reuse/School of the Environment, Nanjing University, Jiangsu, 210046, China
| | - Shourong Zheng
- State Key Laboratory of Pollution Control and Resource Reuse/School of the Environment, Nanjing University, Jiangsu, 210046, China
| |
Collapse
|
8
|
Wu Y, Kong LH, Ge WT, Zhang WJ, Dong ZY, Guo XJ, Yan X, Chen Y, Lang WZ. A porous V/SiO2 sphere composite for the selective oxidation of benzyl alcohol to benzaldehyde in aqueous phase through peroxymonosulfate activation. J Catal 2022. [DOI: 10.1016/j.jcat.2022.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
9
|
Zhu S, Li Z, Ren R, Zhao W, Li T, Liu M, Wu Y. Pd/Cu
2
O/CuO as Active Sites on the Cyclometalated Pd(II)/Cu(II) Nanosheet: Active Centre Formation, Synergistic and Catalytic Mechanism. ChemistrySelect 2022. [DOI: 10.1002/slct.202200340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Shuiqing Zhu
- College of Chemistry Zhengzhou University, Kexuedadao 100 Zhengzhou 450001 P. R. China
| | - Zihan Li
- College of Chemistry Zhengzhou University, Kexuedadao 100 Zhengzhou 450001 P. R. China
| | - Ruirui Ren
- College of Chemistry Zhengzhou University, Kexuedadao 100 Zhengzhou 450001 P. R. China
| | - Wuduo Zhao
- College of Chemistry Zhengzhou University, Kexuedadao 100 Zhengzhou 450001 P. R. China
| | - Tiesheng Li
- College of Chemistry Zhengzhou University, Kexuedadao 100 Zhengzhou 450001 P. R. China
| | - Minghua Liu
- Henan Institute of Advanced Technology Zhengzhou University, Kexuedadao 100 Zhengzhou 450001, Henan Province P.R. China
- Beijing National Laboratory for Molecular Science Institute of Chemistry Chinese Academy of Sciences, Zhongguancun North First Street 2 Beijing 100190 P. R China
| | - Yangjie Wu
- College of Chemistry Zhengzhou University, Kexuedadao 100 Zhengzhou 450001 P. R. China
| |
Collapse
|
10
|
Gogoi G, Baruah MJ, Biswas S, Hoque N, Lee S, Park YB, Saikia L, Bania KK. CuO-Fe(III)-Zeolite-Y as efficient catalyst for oxidative alcohol-amine coupling reactions. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
11
|
Baruah MJ, Bora TJ, Dutta R, Roy S, Guha AK, Bania KK. Fe(III) superoxide radicals in halloysite nanotubes for visible-light-assisted benzyl alcohol oxidation and oxidative C C coupling of 2-naphthol. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111858] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
12
|
Gopalsamy Selvaraj G, Selvarasu U, Manickam D, Karthikeyan P. Selective alcohol oxidation catalysed BY FeCl3 /novel glycine functionalised IONIC liquid. J INDIAN CHEM SOC 2021. [DOI: 10.1016/j.jics.2021.100099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
13
|
Shen Y, Li ZF, Guo SY, Shao YR, Hu TL. Encapsulation of Ultrafine Metal-Organic Framework Nanoparticles within Multichamber Carbon Spheres by a Two-Step Double-Solvent Strategy for High-Performance Catalysts. ACS APPLIED MATERIALS & INTERFACES 2021; 13:12169-12180. [PMID: 33682409 DOI: 10.1021/acsami.1c01451] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Carbon-encapsulated metal-organic framework (MOF) composite is one kind of emerging new catalyst with high efficiency and has gained much attention. However, for this kind of composite catalyst, the key to improving its catalytic activity and durability is to realize the effective dispersion of MOF nanoparticles (NPs) and enhance the interaction between MOF NPs and the carbon matrix, which remain a significant challenge. Herein, ultrafine MOF NPs within multichamber carbon spheres (MOF@MCCS), for the first time, have been rationally synthesized by a two-step double-solvent strategy for high-performance catalysts. The precise loading of guest MOFs can be achieved by adjusting the multichamber structure and calcination extent of the multichamber polymer (MCP), and the particle size of MOFs can be as low as 13.2 nm. Due to the formation of abundant carbon defects in the pyrolysis process of MCPs, the special structure and synergistic effect make the material exhibit higher catalytic activity and durability. More importantly, this method is universal and can be extended to different MOF systems. The two-step double-solvent strategy not only prepares a unique structure of MOF@MCCS-type host-guest-encapsulated catalysts but also provides a new idea for the design of high-efficiency catalysts with better performance and higher durability.
Collapse
Affiliation(s)
- Yan Shen
- Tianjin Key Laboratory of Metal and Molecule-Based Material Chemistry, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China
| | - Zhuo-Fei Li
- Tianjin Key Laboratory of Metal and Molecule-Based Material Chemistry, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China
| | - Si-Yan Guo
- Tianjin Key Laboratory of Metal and Molecule-Based Material Chemistry, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China
| | - Ya-Ru Shao
- Tianjin Key Laboratory of Metal and Molecule-Based Material Chemistry, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China
| | - Tong-Liang Hu
- Tianjin Key Laboratory of Metal and Molecule-Based Material Chemistry, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China
- State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, China
- Tianjin Key Lab for Rare Earth Materials and Applications, Nankai University, Tianjin 300350, China
| |
Collapse
|
14
|
Lawson S, Farsad A, Rezaei F, Ludlow D, Rownaghi AA. Direct Ink Writing of Metal Oxide/H-ZSM-5 Catalysts for n-Hexane Cracking: A New Method of Additive Manufacturing with High Metal Oxide Loading. ACS APPLIED MATERIALS & INTERFACES 2021; 13:781-794. [PMID: 33370112 DOI: 10.1021/acsami.0c20752] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Previously, 3D printing of porous materials and metal oxides was limited to low loading metal loadings, as increasing the nitrate salt concentrations, which are used to generate the oxide component, gave rise to poor rheological properties beyond 10 wt %. In this study, we addressed this problem by directly printing insoluble oxides alongside H-ZSM-5 zeolite, which allowed for increased oxide loadings. Various metal oxides such as V2O5, ZrO2, Cr2O3, and Ga2O3 were doped onto H-ZSM-5 through the additive manufacturing method. Characterization and correlation between the X-ray diffraction, NH3-temperature-programmed desorption, O2-temperature programmed oxidation, temperature-programmed reduction, scanning electron microscopy-energy dispersive spectroscopy, and in situ CO2 DRIFTS experiments revealed that directly 3D printing metal oxides/H-ZSM-5 inks leads to significant modification in the surface properties and oxide bulk dispersion, thereby enhancing the composites' reducibility and giving rise to widely differing product distributions in n-hexane cracking reaction. The obtained metal oxide/zeolite structured materials were used as bifunctional structured catalysts for the selective formation of light olefins from hexane at 550-600 °C and GHSV = 9000 mL/gcatalst·h in a packed-bed reactor. Among the various compositions of metal oxides/H-ZSM-5 examined (i.e., 15 wt % Ga2O3, 15 wt % ZrO2, 15 wt % V2O5, 15 wt % Cr2O3, or 5 wt % Cr/10 wt % ZrO2/10 wt % V2O5/10 wt % Ga2O3 balanced with H-ZSM-5), the 15 wt % Cr/ZSM-5 monolith displayed the best n-hexane cracking performance, as it achieved 80-85% conversion of hexane with a 40% selectivity toward propylene, 30% selectivity toward ethylene, and 10% selectivity toward butene at 550 °C. The sample also showed zero benzene/toluene/xylene selectivity and no deactivation after 6 h. This study represents a proof-of-concept for tailoring customizable heterogeneous structured catalysts by directly 3D printing high loading of metal oxides/porous zeolite and is a breakthrough in material science.
Collapse
Affiliation(s)
- Shane Lawson
- Department of Chemical & Biochemical Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409-1230, United States
| | - Alireza Farsad
- Department of Chemical & Biochemical Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409-1230, United States
| | - Fateme Rezaei
- Department of Chemical & Biochemical Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409-1230, United States
| | - Douglas Ludlow
- Department of Chemical & Biochemical Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409-1230, United States
| | - Ali A Rownaghi
- Department of Chemical & Biochemical Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409-1230, United States
| |
Collapse
|
15
|
Sharma S, Sharma C, Kaur M, Paul S. The in situ fabrication of ZIF-67 on titania-coated magnetic nanoparticles: a new platform for the immobilization of Pd( ii) with enhanced catalytic activity for organic transformations. NEW J CHEM 2021. [DOI: 10.1039/d1nj03738b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The synthesis of a magnetic zeolitic-imidazolate-framework-67-supported Pd catalyst was demonstrated, and its catalytic activity for oxidation, reduction, and the oxidative deprotection of oximes was studied.
Collapse
Affiliation(s)
- Sukanya Sharma
- Department of Chemistry, University of Jammu, Jammu, 180006, India
| | - Chandan Sharma
- Department of Chemistry, University of Jammu, Jammu, 180006, India
| | - Manpreet Kaur
- Department of Chemistry, University of Jammu, Jammu, 180006, India
| | - Satya Paul
- Department of Chemistry, University of Jammu, Jammu, 180006, India
| |
Collapse
|
16
|
Yu X, Li H, Hao X, Zhang Z, Wang Y, Li J, Wang Z, Guo C. The Preparation of Ag/Pd/m-BiVO4 Microsphere Photocatalysts with Different Loading Modes and Their Catalytic Activity for Selective Oxidation of Benzyl Alcohol Under Visible Light Irradiation. Catal Letters 2020. [DOI: 10.1007/s10562-020-03260-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
17
|
Dong Y, Su Y, Hu Y, Li H, Xie W. Ag 2 S-CdS p-n Nanojunction-Enhanced Photocatalytic Oxidation of Alcohols to Aldehydes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2001529. [PMID: 33140581 DOI: 10.1002/smll.202001529] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 09/16/2020] [Indexed: 06/11/2023]
Abstract
Selective oxidation of alcohols to aldehydes under mild conditions is important for the synthesis of high-value-added organic intermediates but still very challenging. For most of the thermal and photocatalytic systems, noble metal catalysts or harsh reaction conditions are required. Herein, the synthesis and use of Ag2 S-CdS p-n nanojunctions as an efficient photocatalyst for selective oxidation of a series of aromatic alcohols to their corresponding aldehydes is reported. High quantum efficiencies (59.6% and 36.9% under 380 and 420 nm, respectively) are achieved in air atmosphere at room temperature. Photoluminescence and photo-electrochemical tests show that the excellent performance is mainly due to the p-n junction-enhanced charge separation and transfer for the activation of both O2 (in air) and substrates. This study demonstrates the potential of p-n junction in photocatalytic synthesis under mild conditions.
Collapse
Affiliation(s)
- Yueyue Dong
- Key Lab of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Weijin Rd. 94, Tianjin, 300071, China
| | - Yanling Su
- Key Lab of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Weijin Rd. 94, Tianjin, 300071, China
| | - Yanfang Hu
- Key Lab of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Weijin Rd. 94, Tianjin, 300071, China
| | - Haixia Li
- Key Lab of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Weijin Rd. 94, Tianjin, 300071, China
| | - Wei Xie
- Key Lab of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Weijin Rd. 94, Tianjin, 300071, China
| |
Collapse
|
18
|
Reduction and Oxidation of Cu Species in Cu-Faujasites Studied by IR Spectroscopy. Molecules 2020; 25:molecules25204765. [PMID: 33081409 PMCID: PMC7587588 DOI: 10.3390/molecules25204765] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/08/2020] [Accepted: 10/13/2020] [Indexed: 11/16/2022] Open
Abstract
The process of reduction (by hydrogen and ethanol) and oxidation (by oxygen and NO) of Cu sites in dealuminated faujasite-type zeolites (of Si/Al = 31) was studied by infrared (IR) spectroscopy with CO (for Cu+) and NO (for Cu2+) as probe molecules. Two zeolites were studied: one of them contained mostly Cu+exch., whereas another one contained mostly Cu2+ and Cu+ox. The susceptibility of various forms of Cu for reduction were investigated. IR experiments of CO sorption evidenced that Cu+ox. was more prone for the reduction than Cu+exch. According to NO sorption studies, Cu2+exch. was reduced in the first order before Cu2+ox. Ethanol reduced mostly Cu2+ and, also, some amounts of Cu+. The treatment with oxygen caused the oxidation of Cu+ (both Cu+exch. and Cu+ox.) to Cu2+. The adsorption of NO at 190K produced Cu+(NO)2 dinitrosyls, but heating to room temperature transformed dinitrosyls to mononitrosyls and increased the Cu2+ content.
Collapse
|
19
|
Li X, Sun Y, Wang S, Jia X. Ru-Pd Thermoresponsive Nanocatalyst Based on a Poly(ionic liquid) for Highly Efficient and Selectively Catalyzed Suzuki Coupling and Asymmetric Transfer Hydrogenation in the Aqueous Phase. ACS APPLIED MATERIALS & INTERFACES 2020; 12:44094-44102. [PMID: 32886476 DOI: 10.1021/acsami.0c07811] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The development of intelligent polymeric materials to precisely control the catalytic sites of heterogeneous catalysts and enable highly efficient catalysis of a cascade reaction is of great significance. Here, the utilization of a polymer ionic liquid (PIL) containing two different anions facilitates the preparation of Ru-Pd catalysts with controllable phase transition temperatures and hydrophilic and hydrophobic surfaces. The combined multifunctionality, synergistic effects, micellar effects, aggregation effects, and temperature responsiveness of the nanocatalyst render it suitable for promoting selectively catalyzed Suzuki coupling and asymmetric transfer hydrogenation in water. Above the lower critical solution temperature (LCST) of the catalyst, it catalyzes only the coupling reaction with a high turnover number (TON) of up to 999.0. Below the LCST, the catalyst catalyzes only the asymmetric transfer hydrogenation with good catalytic activity and enantioselectivity. It is important that the catalyst can be simply and effectively recovered and recycled at least 10 times without significant loss of catalytic activity and enantioselectivity. This study also highlights the superiority of multifunctional heterogeneous catalysts based on PILs, which not only overcome limitations associated with low activity of heterogeneous catalysts but also realize selective reactions according to a temperature change, thereby improving the reactivity and enantioselectivity in multiple organic transformations.
Collapse
Affiliation(s)
- Xinjuan Li
- Henan Key Laboratory of Green Chemistry, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, P. R. China
| | - Yanping Sun
- Henan Key Laboratory of Green Chemistry, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, P. R. China
| | - Shangyue Wang
- Henan Key Laboratory of Green Chemistry, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, P. R. China
| | - Xianbin Jia
- Henan Key Laboratory of Green Chemistry, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, P. R. China
| |
Collapse
|
20
|
Boosting multiple photo-assisted and temperature controlled reactions with a single redox-switchable catalyst: Solvents as internal substrates and reducing agent. J Catal 2020. [DOI: 10.1016/j.jcat.2020.04.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
21
|
Selective Oxidation of Benzyl Alcohol by Ag/Pd/m-BiVO4 Microspheres under Visible Light Irradiation. Catalysts 2020. [DOI: 10.3390/catal10020266] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A series of Ag/Pd/m-BiVO4 (monoclinic) bimetallic photocatalytic materials with different loading amounts and different mass ratios of Ag and Pd were synthesized by a hydrothermal method and an NaBH4 reduction method. The Ag/Pd/m-BiVO4 photocatalyst with a total Ag and Pd loading of 2 wt% and an Ag-to-Pd mass ratio of 2:1 can selectively oxidize benzyl alcohol to benzaldehyde under visible light irradiation, the conversion rate was up to 89.9%, and the selectivity was greater than 99%. The conversion rate on Ag/Pd/m-BiVO4 was higher than those on Ag/m-BiVO4 and Pd/m-BiVO4. The photocatalysts were characterized by X-ray powder diffraction (XRD), ultraviolet-visible diffuse reflection spectroscopy (UV-vis DRS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), photoluminescence (PL) spectroscopy, N2 adsorption-desorption isothermal curves (BET) and other means. The effects of different light wavelengths and light intensities were compared. Then, the effects of different alcohol derivatives on the reactions were explored. The cycle experiments proved that the Ag/Pd/m-BiVO4 photocatalyst had good light stability and thermal stability. In addition, the capturing experiment of active species shows that the selective oxidation of benzyl alcohol is mainly accomplished through the synergistic action of h+, e−, •OH and •O2−.
Collapse
|
22
|
Cheng ML, Qin MN, Sun L, Liu L, Liu Q, Tang XY. Highly efficient Cu(ii)-pyrazoledicarboxylate heterogeneous catalysts for a base-free aerobic oxidation of benzylic alcohol to benzaldehyde with hydrogen peroxide as the oxidant. Dalton Trans 2020; 49:7758-7765. [DOI: 10.1039/c9dt04927d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A Cu(ii)-pyrazoledicarboxylate MOF displayed high activity and selectivity in the base-free oxidation of benzyl alcohol to benzaldehyde combined with H2O2.
Collapse
Affiliation(s)
- Mei-Ling Cheng
- School of Petrochemical Engineering
- and Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology
- Changzhou University
- Changzhou
- P. R. China
| | - Meng-Na Qin
- School of Petrochemical Engineering
- and Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology
- Changzhou University
- Changzhou
- P. R. China
| | - Lin Sun
- School of Petrochemical Engineering
- and Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology
- Changzhou University
- Changzhou
- P. R. China
| | - Lu Liu
- School of Petrochemical Engineering
- and Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology
- Changzhou University
- Changzhou
- P. R. China
| | - Qi Liu
- School of Petrochemical Engineering
- and Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology
- Changzhou University
- Changzhou
- P. R. China
| | - Xiao-Yan Tang
- School of Petrochemical Engineering
- and Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology
- Changzhou University
- Changzhou
- P. R. China
| |
Collapse
|
23
|
Sharma M, Das B, Baruah MJ, Bhattacharyya PK, Saikia L, Bania KK. Pd–NiO-Y/CNT nanofoam: a zeolite-carbon nanotube conjugate exhibiting high durability in methanol oxidation. Chem Commun (Camb) 2020; 56:375-378. [DOI: 10.1039/c9cc07211j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Pd–NiO hybridized with zeolite and multiwalled carbon nanotube appeared as highly effective electrocatalyst in methanol oxidation reaction.
Collapse
Affiliation(s)
- Mukesh Sharma
- Department of Chemical Sciences
- Tezpur University
- India
| | - Biraj Das
- Department of Chemical Sciences
- Tezpur University
- India
| | | | | | - Lakshi Saikia
- Materials Science Division
- CSIR-North East Institute of Science and Technology
- Jorhat 785006
- India
| | - Kusum K Bania
- Department of Chemical Sciences
- Tezpur University
- India
| |
Collapse
|
24
|
Chen Z, Liu Y, Liu C, Zhang J, Chen Y, Hu W, Deng Y. Engineering the Metal/Oxide Interface of Pd Nanowire@CuO x Electrocatalysts for Efficient Alcohol Oxidation Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1904964. [PMID: 31867858 DOI: 10.1002/smll.201904964] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 11/30/2019] [Indexed: 06/10/2023]
Abstract
The development of new type electrocatalysts with promising activity and antipoisoning ability is of great importance for electrocatalysis on alcohol oxidation. In this work, Pd nanowire (PdNW)/CuOx heterogeneous catalysts with different types of PdOCu interfaces (Pd/amorphous or crystalline CuOx ) are prepared via a two-step hydrothermal strategy followed by an air plasma treatment. Their interface-dependent performance on methanol and ethanol oxidation reaction (MOR and EOR) is clearly observed. The as-prepared PdNW/crystalline CuOx catalyst with 17.2 at% of Cu on the PdNW surface exhibits better MOR and EOR activity and stability, compared with that of PdNW/amorphous CuOx and pristine PdNW catalysts. Significantly, both the cycling tests and the chronoamperometric measurements reveal that the PdNW/crystalline CuOx catalyst yields excellent tolerance toward the possible intermediates including formaldehyde, formic acid, potassium carbonate, and carbon monoxide generated during the MOR process. The detailed analysis of their chemical state reveals that the enhanced activity and antipoison ability of the PdNW/crystalline CuOx catalyst originates from the electron-deficient Pdδ+ active sites which gradually turn into Pd5 O4 species during the MOR catalysis. The Pd5 O4 species can likely be stabilized by moderate crystalline CuOx decorated on the surface of PdNW due to the strong PdOCu interaction.
Collapse
Affiliation(s)
- Zelin Chen
- School of Materials Science and Engineering, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300372, P. R. China
| | - Yunwei Liu
- School of Materials Science and Engineering, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300372, P. R. China
| | - Chang Liu
- School of Materials Science and Engineering, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300372, P. R. China
| | - Jinfeng Zhang
- School of Materials Science and Engineering, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300372, P. R. China
| | - Yanan Chen
- School of Materials Science and Engineering, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300372, P. R. China
| | - Wenbin Hu
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, P. R. China
| | - Yida Deng
- School of Materials Science and Engineering, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300372, P. R. China
| |
Collapse
|
25
|
Xu W, Liu C, Xiang D, Luo Q, Shu Y, Lin H, Hu Y, Zhang Z, Ouyang Y. Palladium catalyst immobilized on functionalized microporous organic polymers for C-C coupling reactions. RSC Adv 2019; 9:34595-34600. [PMID: 35530001 PMCID: PMC9073918 DOI: 10.1039/c9ra07303e] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 10/20/2019] [Indexed: 12/29/2022] Open
Abstract
Two microporous organic polymer immobilized palladium (MOP-Pd) catalysts were prepared from benzene and 1,10-phenanthroline by Scholl coupling reaction and Friedel-Crafts reaction, respectively. The structure and composition of the catalyst were characterized by FT-IR, TGA, N2 sorption, SEM, TEM, ICP-AES and XPS. MOP-Pd catalysts were found to possess high specific surface areas, large pore volume and low skeletal bone density. Moreover, the immobilized catalyst also had advantages, such as readily available raw materials, chemical and thermal stability, and low synthetic cost. The Pd catalyst is an effective heterogeneous catalyst for carbon-carbon (C-C) coupling reactions, such as the Heck reaction and Suzuki-Miyaura reaction, affording good to high yields. In these reactions, the catalyst was easily recovered and reused five times without significant activity loss.
Collapse
Affiliation(s)
- Wei Xu
- Hunan Engineering Laboratory for Preparation Technology of Polyvinyl Alcohol (PVA) Fiber Material, Institute of Organic Synthesis, Huaihua University Huaihua 418000 China
| | - Cijie Liu
- Hunan Engineering Laboratory for Preparation Technology of Polyvinyl Alcohol (PVA) Fiber Material, Institute of Organic Synthesis, Huaihua University Huaihua 418000 China
| | - Dexuan Xiang
- Hunan Engineering Laboratory for Preparation Technology of Polyvinyl Alcohol (PVA) Fiber Material, Institute of Organic Synthesis, Huaihua University Huaihua 418000 China
| | - Qionglin Luo
- Hunan Engineering Laboratory for Preparation Technology of Polyvinyl Alcohol (PVA) Fiber Material, Institute of Organic Synthesis, Huaihua University Huaihua 418000 China
| | - You Shu
- Hunan Engineering Laboratory for Preparation Technology of Polyvinyl Alcohol (PVA) Fiber Material, Institute of Organic Synthesis, Huaihua University Huaihua 418000 China
| | - Hongwei Lin
- Hunan Engineering Laboratory for Preparation Technology of Polyvinyl Alcohol (PVA) Fiber Material, Institute of Organic Synthesis, Huaihua University Huaihua 418000 China
| | - Yangjian Hu
- Hunan Engineering Laboratory for Preparation Technology of Polyvinyl Alcohol (PVA) Fiber Material, Institute of Organic Synthesis, Huaihua University Huaihua 418000 China
| | - Zaixing Zhang
- Hunan Engineering Laboratory for Preparation Technology of Polyvinyl Alcohol (PVA) Fiber Material, Institute of Organic Synthesis, Huaihua University Huaihua 418000 China
| | - Yuejun Ouyang
- Hunan Engineering Laboratory for Preparation Technology of Polyvinyl Alcohol (PVA) Fiber Material, Institute of Organic Synthesis, Huaihua University Huaihua 418000 China
| |
Collapse
|
26
|
Oxidized Palladium Supported on Ceria Nanorods for Catalytic Aerobic Oxidation of Benzyl Alcohol to Benzaldehyde in Protic Solvents. Catalysts 2019. [DOI: 10.3390/catal9100847] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
In the present study, the catalytic activity of palladium oxide (PdOx) supported on ceria nanorods (CeO2-NR) for aerobic selective oxidation of benzyl alcohol (BnOH) to benzaldehyde (PhCHO) was evaluated. The CeO2-NR was synthesized hydrothermally and the Pd(NO3)2 was deposited by a wet impregnation method, followed by calcination to acquire PdOx/CeO2-NR. The catalysts were characterized by X-ray diffraction (XRD), temperature programmed reduction (TPR), transmission electron microscopy (TEM), Brunauer–Emmet–Teller (BET) surface area analysis, and X-ray photoelectron spectroscopy (XPS). In addition, the TPR-reduced PdOx/CeO2-NR (PdOx/CeO2-NR-Red) was studied by XRD, BET, and XPS. Characterizations showed the formation of CeO2-NR with (111) exposed plane and relatively high BET surface area. PdOx (x > 1) was detected to be the major oxide species on the PdOx/CeO2-NR. The activities of the catalysts in BnOH oxidation were evaluated using air, as an environmentally friendly oxidant, and various solvents. Effects of temperature, solvent nature and palladium oxidation state were investigated. The PdOx/CeO2-NR showed remarkable activity when protic solvents were utilized. The best result was achieved using PdOx/CeO2-NR and boiling ethanol as solvent, leading to 93% BnOH conversion and 96% selectivity toward PhCHO. A mechanistic hypothesis for BnOH oxidation with PdOx/CeO2-NR in ethanol is presented.
Collapse
|
27
|
Rao X, Abou Hassan A, Guyon C, Martinez Ruiz EO, Tatoulian M, Ognier S. Synthesis of benzaldehyde with high selectivity using immobilized AuNPs and AuNPs@zeolite in a catalytic microfluidic system. LAB ON A CHIP 2019; 19:2866-2873. [PMID: 31309213 DOI: 10.1039/c9lc00386j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In the present work, gold based catalysts were synthesized and immobilized on the surface of cyclic olefin copolymer (COC) microreactors. The microreactors were subsequently applied in a homemade microfluidic system for synthesizing benzaldehyde by oxidation of benzyl alcohol in water medium. The Au nanoparticles (NPs) immobilized on the inner surface of the microchannel showed a very high selectivity (94%) for benzaldehyde, while zeolite NPs exhibited only an adsorption feature to this reaction. Moreover, the results showed that the AuNP catalytic activity was maintained for at least 9 hours. However, the obtained conversion with AuNPs was only 20%, indicating a relatively low productivity. In comparison, AuNPs assembled on the surface of zeolite NPs (AuNPs@zeolite) and immobilized in the microchannel showed the best catalytic performance, as the highest benzaldehyde selectivity (>99%) with a relatively high benzyl alcohol conversion of 42.4% was achieved under the same conditions. To the best of our knowledge, this is the first example demonstrating the use of AuNP or AuNP@zeolite catalysts in a microsystem performing such high selectivity for benzaldehyde in water medium.
Collapse
Affiliation(s)
- Xi Rao
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, P.R. China. and Chimie ParisTech, PSL University, CNRS, Institut de Recherche de Chimie Paris, 75005, Paris, France and School of Materials Science and Engineering and Jiangsu Key Laboratory for Advanced Metallic Materials, Southeast University, Nanjing, 211189, China
| | - Ali Abou Hassan
- Sorbonne Université, Centre National de la Recherche Scientifique CNRS, Physico-chimie des Electrolytes et Nanosystèmes InterfaciauX, PHENIX, F-75005 Paris, France
| | - Cédric Guyon
- Chimie ParisTech, PSL University, CNRS, Institut de Recherche de Chimie Paris, 75005, Paris, France
| | - Erick Osvaldo Martinez Ruiz
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, P.R. China. and Chimie ParisTech, PSL University, CNRS, Institut de Recherche de Chimie Paris, 75005, Paris, France and School of Materials Science and Engineering and Jiangsu Key Laboratory for Advanced Metallic Materials, Southeast University, Nanjing, 211189, China
| | - Michaël Tatoulian
- Chimie ParisTech, PSL University, CNRS, Institut de Recherche de Chimie Paris, 75005, Paris, France
| | - Stephanie Ognier
- Chimie ParisTech, PSL University, CNRS, Institut de Recherche de Chimie Paris, 75005, Paris, France
| |
Collapse
|
28
|
Das B, Sharma M, Hazarika A, Bania KK. Self‐Assembled Monolayer Stabilized Gold‐Vanadate Nanoflute for Water Splitting Reactions. ChemistrySelect 2019. [DOI: 10.1002/slct.201901715] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Biraj Das
- Department of Chemical SciencesTezpur University Assam India 784028
| | - Mukesh Sharma
- Department of Chemical SciencesTezpur University Assam India 784028
| | - Anil Hazarika
- Department of Electronics and Communication EngineeringTezpur University Assam India 784028
| | - Kusum K. Bania
- Department of Chemical SciencesTezpur University Assam India 784028
| |
Collapse
|
29
|
Sharma M, Das B, Baruah MJ, Biswas S, Roy S, Hazarika A, Bhargava SK, Bania KK. Pd–Au–Y as Efficient Catalyst for C–C Coupling Reactions, Benzylic C–H Bond Activation, and Oxidation of Ethanol for Synthesis of Cinnamaldehydes. ACS Catal 2019. [DOI: 10.1021/acscatal.9b01197] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
| | | | | | | | - Subhasish Roy
- Department of Chemistry, Indian Institute of Technology, Guwahati 781039, India
| | | | - Suresh K. Bhargava
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, G.P.O. Box 2476, Melbourne 3001, Australia
| | - Kusum K. Bania
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, G.P.O. Box 2476, Melbourne 3001, Australia
| |
Collapse
|
30
|
Liu J, Li Z, Zhang X, Otake KI, Zhang L, Peters AW, Young MJ, Bedford NM, Letourneau SP, Mandia DJ, Elam JW, Farha OK, Hupp JT. Introducing Nonstructural Ligands to Zirconia-like Metal–Organic Framework Nodes To Tune the Activity of Node-Supported Nickel Catalysts for Ethylene Hydrogenation. ACS Catal 2019. [DOI: 10.1021/acscatal.8b04828] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Jian Liu
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Zhanyong Li
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Xuan Zhang
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Ken-ichi Otake
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Lin Zhang
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Aaron W. Peters
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Matthias J. Young
- Applied Materials Division, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, Illinois 60439, United States
| | - Nicholas M. Bedford
- School of Chemical Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Steven P. Letourneau
- Applied Materials Division, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, Illinois 60439, United States
| | - David J. Mandia
- Applied Materials Division, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, Illinois 60439, United States
| | - Jeffrey W. Elam
- Applied Materials Division, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, Illinois 60439, United States
| | - Omar K. Farha
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Joseph T. Hupp
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
31
|
Shaabani A, Mohammadian R, Farhid H, Karimi Alavijeh M, Amini MM. Iron-Decorated, Guanidine Functionalized Metal-Organic Framework as a Non-heme Iron-Based Enzyme Mimic System for Catalytic Oxidation of Organic Substrates. Catal Letters 2019. [DOI: 10.1007/s10562-019-02691-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
32
|
Cyclometalated Iridium(III) Complexes Containing Benzoxazole Derivatives and Different Ancillary Ligands for Catalytic Oxidation of Toluene. INORGANICS 2018. [DOI: 10.3390/inorganics6040118] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
A series of cyclometalated iridium(III) complexes that have the general formula [(C^N)2Ir(NR)(X)] (C^N = monoanionic bidentate cyclometalating ligands; NR = pyridine derivatives; X = Cl− or I−) are designed, prepared, and applied for the transformation of toluene to benzaldehyde using a clean, highly efficient, and environmentally-friendly process. The activation energies that are needed for the catalytic oxidation of toluene when using these complexes as catalysts are quite low: between 22.9 and 30.8 kcal mol−1. The catalytic frequencies (TOF) are fairly high (up to 7.0 × 102 h−1) with excellent reliability, and the turnover number (TON) can reach 4.2 × 103 after 6 h of processing time. Catalytic tests, X-ray absorption near-edge structure (XANES), and kinetic modeling are used to derive detailed insights into the characteristics of the catalysts and their effects on the reactions that are featured in the catalytic oxidation of toluene.
Collapse
|