1
|
Guo L, Fu Z, Li H, Wei R, Guo J, Wang H, Qi J. Smart hydrogel: A new platform for cancer therapy. Adv Colloid Interface Sci 2025; 340:103470. [PMID: 40086017 DOI: 10.1016/j.cis.2025.103470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 01/17/2025] [Accepted: 03/03/2025] [Indexed: 03/16/2025]
Abstract
Cancer is a significant contributor to mortality worldwide, posing a significant threat to human life and health. The unique bioactivity, ability to precisely control drug release, and minimally invasive properties of hydrogels are indispensable attributes that facilitate optimal performance in cancer therapy. However, conventional hydrogels lack the ability to dynamically respond to changes in the surrounding environment, withstand drastic changes in the microenvironment, and trigger drug release on demand. Therefore, this review focuses on smart-responsive hydrogels that are capable of adapting and responding to external stimuli. We comprehensively summarize the raw materials, preparation, and cross-linking mechanisms of smart hydrogels derived from natural and synthetic materials, elucidate the response principles of various smart-responsive hydrogels according to different stimulation sources. Further, we systematically illustrate the important role played by hydrogels in modern cancer therapies within the context of therapeutic principles. Meanwhile, the smart hydrogel that uses machine learning to design precise drug delivery has shown great prospects in cancer therapy. Finally, we present the outlook on future developments and make suggestions for future related work. It is anticipated that this review will promote the practical application of smart hydrogels in cancer therapy and contribute to the advancement of medical treatment.
Collapse
Affiliation(s)
- Li Guo
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
| | - Ziming Fu
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
| | - Haoran Li
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
| | - Ruibo Wei
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
| | - Jing Guo
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China.
| | - Haiwang Wang
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China.
| | - Jian Qi
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
2
|
Kumar KP, Madhusoodanan M, Pangath M, Menon D. Innovative landscapes in intraperitoneal therapy of ovarian cancer. Drug Deliv Transl Res 2025; 15:1877-1906. [PMID: 39888579 DOI: 10.1007/s13346-024-01765-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2024] [Indexed: 02/01/2025]
Abstract
Epithelial ovarian cancer is the most prevalent gynecological malignancy, characterized by high mortality rates due to its late-stage diagnosis and frequent recurrence. The current standard of care for ovarian cancer is a combination of debulking surgery followed by the conventional mode of chemotherapy. Despite significant advances in therapeutic modalities, the overall survival rate of EOC continues to be poor, mainly because low concentrations of the chemotherapeutics reach the peritoneum, which is the primary site of ovarian cancer, leading to disease relapse. Here, intraperitoneal chemotherapy gains advantage due to its ability to deliver the drug molecules directly to the peritoneal cavity and provide localized and sustained effects. This is facilitated by the use of diverse kinds of nano or micron sized delivery systems, which help in transporting drugs, vaccines, antibodies and genes appropriately to the peritoneum for its desired function. This review article delves on how intraperitoneal delivery impacts the therapy of epithelial ovarian cancer spanning the conventional therapeutic modes to the recent nanoinnovations in chemotherapy, immunotherapy and gene therapy.
Collapse
Affiliation(s)
- Krishna Pradeep Kumar
- Amrita School of Nanosciences & Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - Maneesha Madhusoodanan
- Amrita School of Nanosciences & Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - Meghna Pangath
- Amrita School of Nanosciences & Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - Deepthy Menon
- Amrita School of Nanosciences & Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India.
| |
Collapse
|
3
|
Pouso MR, Melo BL, Gonçalves JJ, Louro RO, Mendonça AG, Correia IJ, de Melo-Diogo D. Injectable and implantable hydrogels for localized delivery of drugs and nanomaterials for cancer chemotherapy: A review. Int J Pharm 2025:125640. [PMID: 40287071 DOI: 10.1016/j.ijpharm.2025.125640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 04/01/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
Multiple chemotherapeutic strategies have been developed to tackle the complexity of cancer. Still, the outcome of chemotherapeutic regimens remains impaired by the drugs' weak solubility, unspecific biodistribution and poor tumor accumulation after systemic administration. Such constraints triggered the development of nanomaterials to encapsulate and deliver anticancer drugs. In fact, the loading of drugs into nanoparticles can overcome most of the solubility concerns. However, the ability of systemically administered drug-loaded nanomaterials to reach the tumor site has been vastly overestimated, limiting their clinical translation. The drugs' and drug-loaded nanomaterials' systemic administration issues have propelled the development of hydrogels capable of performing their direct/local delivery into the tumor site. The use of these macroscale systems to mediate a tumor-confined delivery of the drugs/drugs-loaded nanomaterials grants an improved therapeutic efficacy and, simultaneously, a reduction of the side effects. The manufacture of these hydrogels requires the careful selection and tailoring of specific polymers/materials as well as the choice of appropriate physical and/or chemical crosslinking interactions. Depending on their administration route and assembling process, these matrices can be classified as injectable in situ forming hydrogels, injectable shear-thinning/self-healing hydrogels, and implantable hydrogels, each type bringing a plethora of advantages for the intended biomedical application. This review provides the reader with an insight into the application of injectable and implantable hydrogels for performing the tumor-confined delivery of drugs and drug-loaded nanomaterials.
Collapse
Affiliation(s)
- Manuel R Pouso
- RISE-Health, Departamento de Ciências Médicas, Faculdade de Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Bruna L Melo
- RISE-Health, Departamento de Ciências Médicas, Faculdade de Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; AEROG-LAETA, Aerospace Sciences Department, Universidade da Beira Interior, Covilhã, Portugal
| | - Joaquim J Gonçalves
- RISE-Health, Departamento de Ciências Médicas, Faculdade de Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; AEROG-LAETA, Aerospace Sciences Department, Universidade da Beira Interior, Covilhã, Portugal
| | - Ricardo O Louro
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
| | - António G Mendonça
- RISE-Health, Departamento de Química, Faculdade de Ciências, Universidade da Beira Interior, Rua Marquês D'Ávila e Bolama, 6201-001 Covilhã, Portugal
| | - Ilídio J Correia
- RISE-Health, Departamento de Ciências Médicas, Faculdade de Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; AEROG-LAETA, Aerospace Sciences Department, Universidade da Beira Interior, Covilhã, Portugal; University of Coimbra, CERES, Department of Chemical Engineering, 3030-790 Coimbra, Portugal.
| | - Duarte de Melo-Diogo
- RISE-Health, Departamento de Ciências Médicas, Faculdade de Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal.
| |
Collapse
|
4
|
Han X, Zhang X, Kang L, Feng S, Li Y, Zhao G. Peptide-modified nanoparticles for doxorubicin delivery: Strategies to overcome chemoresistance and perspectives on carbohydrate polymers. Int J Biol Macromol 2025; 299:140143. [PMID: 39855525 DOI: 10.1016/j.ijbiomac.2025.140143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/07/2025] [Accepted: 01/20/2025] [Indexed: 01/27/2025]
Abstract
Chemotherapy serves as the primary treatment for cancers, facing challenges due to the emergence of drug resistance. Combination therapy has been developed to combat cancer drug resistance, yet it still suffers from lack of specific targeting of cancer cells and poor accumulation at the tumor site. Consequently, targeted administration of chemotherapy medications has been employed in cancer treatment. Doxorubicin (DOX) is one of the most frequently used chemotherapeutics, functioning by inhibiting topoisomerase activity. Enhancing the anti-cancer effects of DOX and overcoming drug resistance can be accomplished via delivery by nanoparticles. This review will focus on the development of peptide-DOX conjugates, the functionalization of nanoparticles with peptides, the co-delivery of DOX and peptides, as well as the theranostic use of peptide-modified nanoparticles in cancer treatment. The peptide-DOX conjugates have been designed to enhance the targeted delivery to cancer cells by interacting with receptors that are overexpressed on tumor surfaces. Moreover, nanoparticles can be modified with peptides to improve their uptake in tumor cells via endocytosis. Nanoparticles have the ability to co-deliver DOX along with therapeutic peptides for enhanced cancer treatment. Finally, nanoparticles modified with peptides can offer theranostic capabilities by facilitating both imaging and the delivery of DOX (chemotherapy).
Collapse
Affiliation(s)
- Xu Han
- Department of Traditional Chinese medicine, The First Hospital of China Medical University, Shenyang, China
| | - Xue Zhang
- Department of Gynecology, The First Hospital of China Medical University, Shenyang, China
| | - Longdan Kang
- Department of Ophthalmology, The First Hospital of China Medical University, Shenyang, China
| | - Shuai Feng
- Department of Otolaryngology, The First Hospital of China Medical University, Shenyang, China.
| | - Yinyan Li
- Department of Ultrasonic Diagnosis, The First Hospital of China Medical University, Shenyang, China.
| | - Ge Zhao
- Department of Obstetrics, The First Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
5
|
Chen B, Liu J. Advancements in Hydrogel-Based Therapies for Ovarian Cancer: A Review. Cell Biochem Biophys 2025; 83:87-108. [PMID: 39190214 DOI: 10.1007/s12013-024-01483-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2024] [Indexed: 08/28/2024]
Abstract
Ovarian cancer, the most deadly gynecologic malignancy, is often resistant to conventional antitumor therapy due to various factors such as severe side effects, unexpected recurrence, and significant tissue damage. The limitations of current treatments and the resistance of invasive tumor cells contribute to these challenges. Hydrogel therapy has recently emerged as a potential treatment option for ovarian cancer, offering advantages such as controllability, biocompatibility, high drug loading capacity, prolonged drug release, and responsiveness to specific stimuli. Hence, the utilization of biodegradable hydrogels as carriers for chemotherapeutic agents has emerged as a significant concern in the field. Injectable hydrogel-based drug delivery systems, in particular, have demonstrated superior efficacy compared to traditional systemic chemotherapy for cancer treatment. The pliability of hydrogel therapy allows for access to anatomical regions that may be challenging for surgical intervention. This review article examines recent advancements in the application of hydrogels for diagnosing and treating ovarian cancer, while also proposing a novel direction for the use of hydrogel technology in this context. The objective of this article is to offer a novel point of reference and serve as a source of inspiration for the advancement of more precise and individualized cancer therapies.
Collapse
Affiliation(s)
- Biqing Chen
- Harbin Medical University, Harbin, Heilongjiang, China.
| | - Jiaqi Liu
- Jilin University, Changchun, Jilin, China
| |
Collapse
|
6
|
Patra P, Upadhyay TK, Alshammari N, Saeed M, Kesari KK. Alginate-Chitosan Biodegradable and Biocompatible Based Hydrogel for Breast Cancer Immunotherapy and Diagnosis: A Comprehensive Review. ACS APPLIED BIO MATERIALS 2024; 7:3515-3534. [PMID: 38787337 PMCID: PMC11190989 DOI: 10.1021/acsabm.3c00984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/21/2023] [Accepted: 12/21/2023] [Indexed: 05/25/2024]
Abstract
Breast cancer is the most common type of cancer and the second leading cause of cancer-related mortality in females. There are many side effects due to chemotherapy and traditional surgery, like fatigue, loss of appetite, skin irritation, and drug resistance to cancer cells. Immunotherapy has become a hopeful approach toward cancer treatment, generating long-lasting immune responses in malignant tumor patients. Recently, hydrogel has received more attention toward cancer therapy due to its specific characteristics, such as decreased toxicity, fewer side effects, and better biocompatibility drug delivery to the particular tumor location. Researchers globally reported various investigations on hydrogel research for tumor diagnosis. The hydrogel-based multilayer platform with controlled nanostructure has received more attention for its antitumor effect. Chitosan and alginate play a leading role in the formation of the cross-link in a hydrogel. Also, they help in the stability of the hydrogel. This review discusses the properties, preparation, biocompatibility, and bioavailability of various research and clinical approaches of the multipolymer hydrogel made of alginate and chitosan for breast cancer treatment. With a focus on cases of breast cancer and the recovery rate, there is a need to find out the role of hydrogel in drug delivery for breast cancer treatment.
Collapse
Affiliation(s)
- Pratikshya Patra
- Department
of Biotechnology, Parul Institute of Applied Sciences and Animal Cell
Culture and Immunobiochemistry Lab, Research and Development Cell, Parul University, Vadodara, Gujarat 391760, India
| | - Tarun Kumar Upadhyay
- Department
of Biotechnology, Parul Institute of Applied Sciences and Animal Cell
Culture and Immunobiochemistry Lab, Research and Development Cell, Parul University, Vadodara, Gujarat 391760, India
| | - Nawaf Alshammari
- Department
of Biology, College of Science, University
of Hail, Hail 53962, Saudi Arabia
| | - Mohd Saeed
- Department
of Biology, College of Science, University
of Hail, Hail 53962, Saudi Arabia
| | - Kavindra Kumar Kesari
- Department
of Applied Physics, School of Science, Aalto
University, Espoo FI-00076, Finland
- Centre
of Research Impact and Outcome, Chitkara
University, Rajpura 140417, Punjab, India
| |
Collapse
|
7
|
Wang T, Ding J, Chen Z, Zhang Z, Rong Y, Li G, He C, Chen X. Injectable, Adhesive Albumin Nanoparticle-Incorporated Hydrogel for Sustained Localized Drug Delivery and Efficient Tumor Treatment. ACS APPLIED MATERIALS & INTERFACES 2024; 16:9868-9879. [PMID: 38349713 DOI: 10.1021/acsami.3c18306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2024]
Abstract
Injectable hydrogels are receiving increasing attention as local depots for sustained anticancer drug delivery. However, most current hydrogel-based carriers lack tissue-adhesive ability, a property that is important for the immobilization of drug-loaded systems at tumor sites to increase local drug concentration. In this study, we developed a paclitaxel (PTX)-loaded injectable hydrogel with firm tissue adhesion for localized tumor therapy. PTX-loaded bovine serum albumin (BSA) nanoparticles (PTX@BN) were prepared, and the drug-loaded hydrogel was then fabricated by cross-linking PTX@BN with o-phthalaldehyde (OPA)-terminated 4-armed poly(ethylene glycol) (4aPEG-OPA) via a condensation reaction between OPA and the amines in BSA. The hydrogel showed firm adhesion to various organs and tumor tissues ex vivo due to the condensation reaction of unreacted OPA groups and amines in the tissues. The PTX-loaded nanocomposite hydrogels sustained PTX release over 30 days following the Korsmeyer-Peppas model and exhibited notable inhibition activities against mouse C26 colon and 4T1 breast cancer cells in vitro. Following peritumoral injection into mice with C26 or 4T1 tumors, the PTX@BN-loaded hydrogel significantly enhanced the antitumor efficacy and prolonged animal survival time compared to free PTX solutions with low systemic toxicity. Therefore, the adhesive, PTX-loaded nanocomposite hydrogels have the potential for efficient localized tumor therapy.
Collapse
Affiliation(s)
- Tianran Wang
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Junfeng Ding
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Zhixiong Chen
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Zhen Zhang
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Yan Rong
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Gao Li
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Chaoliang He
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Xuesi Chen
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
8
|
Yao J, Song S, Zhao H, Yuan Y. Platinum-based drugs and hydrogel: a promising anti-tumor combination. Drug Deliv 2023; 30:2287966. [PMID: 38083803 PMCID: PMC10987050 DOI: 10.1080/10717544.2023.2287966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 10/04/2023] [Indexed: 12/18/2023] Open
Abstract
Platinum-based drugs are widely used as first-line anti-tumor chemotherapy agents. However, they also have nonnegligible side effects due to the free drugs in circulation. Therefore, it is necessary to develop efficient and safe delivery systems for better tumor cell targeting. Hydrogel is a promising anti-tumor drug carrier that can form a platinum/hydrogel combination system for drug release, which has shown better anti-tumor effects in some studies. However, there is a lack of systematic summary in this field. This review aims to provide a comprehensive overview of the platinum/hydrogel combination system with the following sections: firstly, an introduction of platinum-based drugs; secondly, an analysis of the platinum/hydrogel combination system; and thirdly, a discussion of the advantages of the hydrogel-based delivery system. We hope this review can offer some insights for the development of the platinum/hydrogel combination system for better cancer therapy.
Collapse
Affiliation(s)
- Jiamin Yao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Shaojuan Song
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Hang Zhao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yao Yuan
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
9
|
Braet H, Fransen PP, Mariën R, Lollo G, Ceelen W, Vervaet C, Balcaen L, Vanhaecke F, Vanhove C, van der Vegte S, Gasthuys E, Vermeulen A, Dankers PYW, De Smedt SC, Remaut K. CO 2-Driven Nebulization of pH-Sensitive Supramolecular Polymers for Intraperitoneal Hydrogel Formation and the Treatment of Peritoneal Metastasis. ACS APPLIED MATERIALS & INTERFACES 2023; 15:49022-49034. [PMID: 37819736 DOI: 10.1021/acsami.3c11274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Because peritoneal metastasis (PM) from ovarian cancer is characterized by non-specific symptoms, it is often diagnosed at advanced stages. Pressurized intraperitoneal aerosol chemotherapy (PIPAC) can be considered a promising drug delivery method for unresectable PM. Currently, the efficacy of intraperitoneal (IP) drug delivery is limited by the off-label use of IV chemotherapeutic solutions, which are rapidly cleared from the IP cavity. Hence, this research aimed to improve PM treatment by evaluating a nanoparticle-loaded, pH-switchable supramolecular polymer hydrogel as a controlled release drug delivery system that can be IP nebulized. Moreover, a multidirectional nozzle was developed to allow nebulization of viscous materials such as hydrogels and to reach an even IP gel deposition. We demonstrated that acidification of the nebulized hydrogelator solution by carbon dioxide, used to inflate the IP cavity during laparoscopic surgery, stimulated the in situ gelation, which prolonged the IP hydrogel retention. In vitro experiments indicated that paclitaxel nanocrystals were gradually released from the hydrogel depot formed, which sustained the cytotoxicity of the formulation for 10 days. Finally, after aerosolization of this material in a xenograft model of PM, tumor progression could successfully be delayed, while the overall survival time was significantly increased compared to non-treated animals.
Collapse
Affiliation(s)
- Helena Braet
- Department of Pharmaceutics, Ghent University, Ghent 9000, Belgium
- CRIG - Cancer Research Institute Ghent, Ghent 9000, Belgium
| | | | - Remco Mariën
- Department of Pharmaceutics, Ghent University, Ghent 9000, Belgium
| | - Giovanna Lollo
- Laboratoire d'Automatique, de Génie des Procédés et de Génie Pharmaceutique (LAGEPP), Université Claude Bernard Lyon 1, Lyon 69622, France
| | - Wim Ceelen
- CRIG - Cancer Research Institute Ghent, Ghent 9000, Belgium
- Department of Human Structure and Repair, Ghent University, Ghent 9000, Belgium
| | - Chris Vervaet
- Department of Pharmaceutics, Ghent University, Ghent 9000, Belgium
| | - Lieve Balcaen
- Department of Chemistry, Ghent University, Ghent 9000, Belgium
| | - Frank Vanhaecke
- CRIG - Cancer Research Institute Ghent, Ghent 9000, Belgium
- Department of Chemistry, Ghent University, Ghent 9000, Belgium
| | - Christian Vanhove
- CRIG - Cancer Research Institute Ghent, Ghent 9000, Belgium
- Department of Electronics and Information Systems, Ghent University, Ghent 9000, Belgium
| | | | - Elke Gasthuys
- Department of Bioanalysis, Ghent University, Ghent 9000, Belgium
| | - An Vermeulen
- Department of Bioanalysis, Ghent University, Ghent 9000, Belgium
| | - Patricia Y W Dankers
- Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands
| | - Stefaan C De Smedt
- Department of Pharmaceutics, Ghent University, Ghent 9000, Belgium
- CRIG - Cancer Research Institute Ghent, Ghent 9000, Belgium
| | - Katrien Remaut
- Department of Pharmaceutics, Ghent University, Ghent 9000, Belgium
- CRIG - Cancer Research Institute Ghent, Ghent 9000, Belgium
| |
Collapse
|
10
|
Liu J, Guo C, Li C, Jia Q, Xie Z, Wang Z, Tian H, Li Z, Hao L. Redox/pH-responsive hollow manganese dioxide nanoparticles for thyroid cancer treatment. Front Chem 2023; 11:1249472. [PMID: 37780983 PMCID: PMC10540626 DOI: 10.3389/fchem.2023.1249472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/04/2023] [Indexed: 10/03/2023] Open
Abstract
The nano drug delivery system MnO2/CDDP@PDA-Cy5.5 was synthesized in this study to increase the efficacy of Cisplatin (CDDP) on thyroid cancer and alleviate the damage to normal tissue, with the aim of enhancing the anti-cancer efficacy, increasing the drug load, optimizing the control of drug release, and alleviating the systemic toxicity arising from drug off-target. On that basis, high efficacy and low toxicity win-win can be obtained. In this study, hollow manganese dioxide nanoparticles (MnO2 NPs) were prepared based on the template method. CDDP was loaded into the hollow cavity and then modified with polydopamine (PDA) and Cy5.5, with the aim of obtaining the nano-drug loading system MnO2/CDDP@PDA-Cy5.5 NPs. The NPs precisely delivered drugs by intelligently responding to the tumor microenvironment (TME). As indicated by the release curves, the NPs release CDDP rapidly by inducing the decomposition of PDA and MnO2 under acidic or redox conditions, and Magnetic resonance imaging (MRI) contrast agent Mn2+ was generated. The results of the in vivo MRI studies suggested that T1 contrast at the tumor site was notably enhanced under the Enhanced permeability and retention (EPR) effect. After the intravenous administration, the effective tumor accumulation exhibited by the NPs was confirmed by magnetic resonance imaging as a function of time. Compared with free CDDP, the in vivo therapeutic effect was remarkably increased. As indicated by the above-described results, MnO2/CDDP@PDA-Cy5.5 NPs is a drug delivery system exhibiting diagnostic and therapeutic functions.
Collapse
Affiliation(s)
- Jinren Liu
- Department of Molecular Imaging, School of Medical Technology, Qiqihar Medical University, Qiqihar, China
| | - Changzhi Guo
- Department of Molecular Imaging, School of Medical Technology, Qiqihar Medical University, Qiqihar, China
| | - Chunxiang Li
- Department of Molecular Imaging, The First Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Qiushi Jia
- Department of Molecular Imaging, School of Medical Technology, Qiqihar Medical University, Qiqihar, China
| | | | - Ziyue Wang
- Department of Molecular Imaging, School of Medical Technology, Qiqihar Medical University, Qiqihar, China
| | - Hongda Tian
- Department of Molecular Imaging, School of Medical Technology, Qiqihar Medical University, Qiqihar, China
| | - Zhongyuan Li
- Department of Molecular Imaging, The First Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Liguo Hao
- Department of Molecular Imaging, School of Medical Technology, Qiqihar Medical University, Qiqihar, China
| |
Collapse
|
11
|
Shamsabadipour A, Pourmadadi M, Davodabadi F, Rahdar A, Romanholo Ferreira LF. Applying thermodynamics as an applicable approach to cancer diagnosis, evaluation, and therapy: A review. J Drug Deliv Sci Technol 2023; 86:104681. [DOI: 10.1016/j.jddst.2023.104681] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
12
|
Zheng S, Li G, Shi J, Liu X, Li M, He Z, Tian C, Kamei KI. Emerging platinum(IV) prodrug nanotherapeutics: A new epoch for platinum-based cancer therapy. J Control Release 2023; 361:819-846. [PMID: 37597809 DOI: 10.1016/j.jconrel.2023.08.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/14/2023] [Accepted: 08/16/2023] [Indexed: 08/21/2023]
Abstract
Owing to the unique DNA damaging cytotoxicity, platinum (Pt)-based chemotherapy has long been the first-line choice for clinical oncology. Unfortunately, Pt drugs are restricted by the severe dose-dependent toxicity and drug resistance. Correspondingly, Pt(IV) prodrugs are developed with the aim to improve the antitumor performance of Pt drugs. However, as "free" molecules, Pt(IV) prodrugs are still subject to unsatisfactory in vivo destiny and antitumor efficacy. Recently, Pt(IV) prodrug nanotherapeutics, inheriting both the merits of Pt(IV) prodrugs and nanotherapeutics, have emerged and demonstrated the promise to address the underexploited dilemma of Pt-based cancer therapy. Herein, we summarize the latest fronts of emerging Pt(IV) prodrug nanotherapeutics. First, the basic outlines of Pt(IV) prodrug nanotherapeutics are overviewed. Afterwards, how versatile Pt(IV) prodrug nanotherapeutics overcome the multiple biological barriers of antitumor drug delivery is introduced in detail. Moreover, advanced combination therapies based on multimodal Pt(IV) prodrug nanotherapeutics are discussed with special emphasis on the synergistic mechanisms. Finally, prospects and challenges of Pt(IV) prodrug nanotherapeutics for future clinical translation are spotlighted.
Collapse
Affiliation(s)
- Shunzhe Zheng
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Guanting Li
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jianbin Shi
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xinying Liu
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Meng Li
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zhonggui He
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Chutong Tian
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China; Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, Hangzhou 310058, China.
| | - Ken-Ichiro Kamei
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China; Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8501, Japan.
| |
Collapse
|
13
|
Ogundipe OD, Olajubutu O, Adesina SK. Targeted drug conjugate systems for ovarian cancer chemotherapy. Biomed Pharmacother 2023; 165:115151. [PMID: 37473683 DOI: 10.1016/j.biopha.2023.115151] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/30/2023] [Accepted: 07/07/2023] [Indexed: 07/22/2023] Open
Abstract
Ovarian cancer is a highly lethal disease that affects women. Early diagnosis and treatment of women with early-stage disease improve the probability of survival. Unfortunately, the majority of women with ovarian cancer are diagnosed at advanced stages 3 and 4 which makes treatment challenging. While the majority of the patients respond to first-line treatment, i.e. cytoreductive surgery integrated with platinum-based chemotherapy, the rate of disease recurrence is very high and the available treatment options for recurrent disease are not curative. Thus, there is a need for more effective treatment options for ovarian cancer. Targeted drug conjugate systems have emerged as a promising therapeutic strategy for the treatment of ovarian cancer. These systems provide the opportunity to selectively deliver highly potent chemotherapeutic drugs to ovarian cancer, sparing healthy normal cells. Thus, the effectiveness of the drugs is improved and systemic toxicity is greatly reduced. In this review, different targeted drug conjugate systems that have been or are being developed for the treatment of ovarian cancer will be discussed.
Collapse
Affiliation(s)
- Omotola D Ogundipe
- Department of Pharmaceutical Sciences, Howard University, Washington, DC, USA
| | | | - Simeon K Adesina
- Department of Pharmaceutical Sciences, Howard University, Washington, DC, USA.
| |
Collapse
|
14
|
Sepahi S, Kiaei L, Kiaei M, Ghorani-Azam A. A systematic review of emerging technologies to enhance the treatment of ovarian cancer. Pharm Dev Technol 2023; 28:660-677. [PMID: 37417773 DOI: 10.1080/10837450.2023.2233588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/28/2023] [Accepted: 07/03/2023] [Indexed: 07/08/2023]
Abstract
The efficacy and safety of chemotherapy are two major challenges when it comes to treating ovarian cancer. The associated undesirable side effects of chemotherapy agents jeopardize the clinical intent and the efficiency of the therapy. Multiple studies have been published describing new developments and novel strategies utilizing the latest therapeutic and drug delivery technologies to address the efficacy and safety of chemotherapeutics in ovarian cancers. We have identified five novel technologies that are available and, if used, have the potential to mitigate the above-mentioned challenges. Nanocarriers in different forms (Nano-gel, Aptamer, peptide medicated formulations, Antibody-drug conjugation, surface charge, and nanovesicle technologies) are developed and available to be employed to target the cancerous tissue. These strategies are promising to improve clinical efficacy and reduce side effects. We have systematically searched and analyzed published data, as well as the authors intent for the described technology on each publication. We narrowed to 81 key articles and extracted their data to be discussed in this review. In summary, the selected articles investigated the pharmacokinetic properties of drugs combined with nanocarriers and found significant improvement in efficacy and safety by reducing the IC50 values and drug doses. These key papers described promising novel technologies in anti-cancer therapeutic approaches to enable sustained drug release and achieve prolonged drug performance near the tumor site or target tissue.
Collapse
Affiliation(s)
- Samaneh Sepahi
- Food and Beverages Safety Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Lily Kiaei
- RockGen Therapeutics, LLC, Little Rock, AR, USA
- University of California Los Angeles, Los Angeles, CA, USA
| | - Mahmoud Kiaei
- RockGen Therapeutics, LLC, Little Rock, AR, USA
- Department of Pharmacology and Toxicology, Department of Neurology, Department of Geriatrics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Adel Ghorani-Azam
- Department of Forensic Medicine and Toxicology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
15
|
Senevirathna K, Jayawickrama SM, Jayasinghe YA, Prabani KIP, Akshala K, Pradeep RGGR, Damayanthi HDWT, Hettiarachchi K, Dorji T, Lucero‐Prisno DE, Rajapakse RMG, Kanmodi KK, Jayasinghe RD. Nanoplatforms: The future of oral cancer treatment. Health Sci Rep 2023; 6:e1471. [PMID: 37547360 PMCID: PMC10397482 DOI: 10.1002/hsr2.1471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/16/2023] [Accepted: 07/20/2023] [Indexed: 08/08/2023] Open
Abstract
Background and Aims Cytotoxicity is a key disadvantage of using chemotherapeutic drugs to treat cancer. This can be overcome by encapsulating chemotherapeutic drugs in suitable carriers for targeted delivery, allowing them to be released only at the cancerous sites. Herein, we aim to review the recent scientific developments in the utilization of nanotechnology-based drug delivery systems for treating oral malignancies that can lead to further improvements in clinical practice. Methods A comprehensive literature search was conducted on PubMed, Google Scholar, ScienceDirect, and other notable databases to identify recent peer-reviewed clinical trials, reviews, and research articles related to nanoplatforms and their applications in oral cancer treatment. Results Nanoplatforms offer a revolutionary strategy to overcome the challenges associated with conventional oral cancer treatments, such as poor drug solubility, non-specific targeting, and systemic toxicity. These nanoscale drug delivery systems encompass various formulations, including liposomes, polymeric nanoparticles, dendrimers, and hydrogels, which facilitate controlled release and targeted delivery of therapeutic agents to oral cancer sites. By exploiting the enhanced permeability and retention effect, Nanoplatforms accumulate preferentially in the tumor microenvironment, increasing drug concentration and minimizing damage to healthy tissues. Additionally, nanoplatforms can be engineered to carry multiple drugs or a combination of drugs and diagnostic agents, enabling personalized and precise treatment approaches. Conclusion The utilization of nanoplatforms in oral cancer treatment holds significant promise in revolutionizing therapeutic strategies. Despite the promising results in preclinical studies, further research is required to evaluate the safety, efficacy, and long-term effects of nanoformulations in clinical settings. If successfully translated into clinical practice, nanoplatform-based therapies have the potential to improve patient outcomes, reduce side effects, and pave the way for more personalized and effective oral cancer treatments.
Collapse
Affiliation(s)
- Kalpani Senevirathna
- Centre for Research in Oral Cancer, Faculty of Dental SciencesUniversity of PeradeniyaPeradeniyaSri Lanka
| | - Shalindu M. Jayawickrama
- Centre for Research in Oral Cancer, Faculty of Dental SciencesUniversity of PeradeniyaPeradeniyaSri Lanka
| | - Yovanthi A. Jayasinghe
- Centre for Research in Oral Cancer, Faculty of Dental SciencesUniversity of PeradeniyaPeradeniyaSri Lanka
| | - Karunakalage I. P. Prabani
- Centre for Research in Oral Cancer, Faculty of Dental SciencesUniversity of PeradeniyaPeradeniyaSri Lanka
| | - Kushani Akshala
- Department of Agricultural Biology, Faculty of AgricultureUniversity of PeradeniyaPeradeniyaSri Lanka
| | | | | | - Kalani Hettiarachchi
- Centre for Research in Oral Cancer, Faculty of Dental SciencesUniversity of PeradeniyaPeradeniyaSri Lanka
| | - Thinley Dorji
- Department of Internal MedicineCentral Regional Referral HospitalGelegphuBhutan
| | - Don E. Lucero‐Prisno
- Department of Global Health and DevelopmentLondon School of Hygiene and Tropical MedicineLondonUK
| | | | - Kehinde K. Kanmodi
- Faculty of DentistryUniversity of PuthisastraPhnom PenhCambodia
- School of DentistryUniversity of RwandaKigaliRwanda
- School of Health and Life SciencesTeesside UniversityMiddlesbroughUK
- Cephas Health Research Initiative IncIbadanNigeria
| | - Ruwan D. Jayasinghe
- Centre for Research in Oral Cancer, Faculty of Dental SciencesUniversity of PeradeniyaPeradeniyaSri Lanka
- Faculty of DentistryUniversity of PuthisastraPhnom PenhCambodia
| |
Collapse
|
16
|
Yun WS, Kim J, Lim DK, Kim DH, Jeon SI, Kim K. Recent Studies and Progress in the Intratumoral Administration of Nano-Sized Drug Delivery Systems. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2225. [PMID: 37570543 PMCID: PMC10421122 DOI: 10.3390/nano13152225] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/23/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023]
Abstract
Over the last 30 years, diverse types of nano-sized drug delivery systems (nanoDDSs) have been intensively explored for cancer therapy, exploiting their passive tumor targetability with an enhanced permeability and retention effect. However, their systemic administration has aroused some unavoidable complications, including insufficient tumor-targeting efficiency, side effects due to their undesirable biodistribution, and carrier-associated toxicity. In this review, the recent studies and advancements in intratumoral nanoDDS administration are generally summarized. After identifying the factors to be considered to enhance the therapeutic efficacy of intratumoral nanoDDS administration, the experimental results on the application of intratumoral nanoDDS administration to various types of cancer therapies are discussed. Subsequently, the reports on clinical studies of intratumoral nanoDDS administration are addressed in short. Intratumoral nanoDDS administration is proven with its versatility to enhance the tumor-specific accumulation and retention of therapeutic agents for various therapeutic modalities. Specifically, it can improve the efficacy of therapeutic agents with poor bioavailability by increasing their intratumoral concentration, while minimizing the side effect of highly toxic agents by restricting their delivery to normal tissues. Intratumoral administration of nanoDDS is considered to expand its application area due to its potent ability to improve therapeutic effects and relieve the systemic toxicities of nanoDDSs.
Collapse
Affiliation(s)
- Wan Su Yun
- Korea Institute of Science and Technology (KU-KIST), Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| | - Jeongrae Kim
- Korea Institute of Science and Technology (KU-KIST), Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| | - Dong-Kwon Lim
- Korea Institute of Science and Technology (KU-KIST), Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| | - Dong-Hwee Kim
- Korea Institute of Science and Technology (KU-KIST), Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| | - Seong Ik Jeon
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Kwangmeyung Kim
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
17
|
Barman R, Bej R, Dey P, Ghosh S. Cisplatin-Conjugated Polyurethane Capsule for Dual Drug Delivery to a Cancer Cell. ACS APPLIED MATERIALS & INTERFACES 2023; 15:25193-25200. [PMID: 36745598 DOI: 10.1021/acsami.2c22146] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
This paper describes the synthesis of a polymer-prodrug conjugate, its aqueous self-assembly, noncovalent encapsulation of a second drug, and stimuli-responsive intracellular dual drug delivery. Condensation polymerization between a functionalized diol and a commercially available diisocyanate in the presence of poly(ethylene glycol) hydroxide (PEG-OH) as the chain stopper produces an ABA-type amphiphilic block copolymer (PU-1) in one pot, with the middle hydrophobic block being a polyurethane containing a pendant tert-butyloxycarbonyl (Boc)-protected amine in every repeating unit. Deprotection of the Boc group, followed by covalent attachment of the Pt(IV) prodrug using the pendant amine groups, produces the polymer-prodrug conjugate PU-Pt-1, which aggregates to nanocapsule-like structures in water with a hydrophilic interior. In the presence of sodium ascorbate, the Pt(IV) prodrug can be detached from the polymer backbone, producing the active Pt(II) drug. Cell culture studies show appreciable cell viability by the parent polymer. However, the polymer-prodrug conjugate nanocapsules exhibit cellular uptake and intracellular release of the active drug under a reducing environment. The capsule-like aggregates of the polymer-prodrug conjugate were used for noncovalent encapsulation of a second drug, doxorubicin (Dox), and Dox-loaded PU-Pt-1 aggregate showed a significantly superior cell killing efficiency compared to either of the individual drugs, highlighting the promising application of such a dual-drug-delivery approach.
Collapse
Affiliation(s)
- Ranajit Barman
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata 700032, India
| | - Raju Bej
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata 700032, India
| | - Pradip Dey
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata 700032, India
| | - Suhrit Ghosh
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata 700032, India
| |
Collapse
|
18
|
Tanga S, Aucamp M, Ramburrun P. Injectable Thermoresponsive Hydrogels for Cancer Therapy: Challenges and Prospects. Gels 2023; 9:gels9050418. [PMID: 37233009 DOI: 10.3390/gels9050418] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/06/2023] [Accepted: 05/08/2023] [Indexed: 05/27/2023] Open
Abstract
The enervating side effects of chemotherapeutic drugs have necessitated the use of targeted drug delivery in cancer therapy. To that end, thermoresponsive hydrogels have been employed to improve the accumulation and maintenance of drug release at the tumour site. Despite their efficiency, very few thermoresponsive hydrogel-based drugs have undergone clinical trials, and even fewer have received FDA approval for cancer treatment. This review discusses the challenges of designing thermoresponsive hydrogels for cancer treatment and offers suggestions for these challenges as available in the literature. Furthermore, the argument for drug accumulation is challenged by the revelation of structural and functional barriers in tumours that may not support targeted drug release from hydrogels. Other highlights involve the demanding preparation process of thermoresponsive hydrogels, which often involves poor drug loading and difficulties in controlling the lower critical solution temperature and gelation kinetics. Additionally, the shortcomings in the administration process of thermosensitive hydrogels are examined, and special insight into the injectable thermosensitive hydrogels that reached clinical trials for cancer treatment is provided.
Collapse
Affiliation(s)
- Sandrine Tanga
- School of Pharmacy, Faculty of Natural Sciences, University of the Western Cape, Bellville 7535, South Africa
| | - Marique Aucamp
- School of Pharmacy, Faculty of Natural Sciences, University of the Western Cape, Bellville 7535, South Africa
| | - Poornima Ramburrun
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
| |
Collapse
|
19
|
Zhu H, Zheng J, Oh XY, Chan CY, Low BQL, Tor JQ, Jiang W, Ye E, Loh XJ, Li Z. Nanoarchitecture-Integrated Hydrogel Systems toward Therapeutic Applications. ACS NANO 2023; 17:7953-7978. [PMID: 37071059 DOI: 10.1021/acsnano.2c12448] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Hydrogels, as one of the most feasible soft biomaterials, have gained considerable attention in therapeutic applications by virtue of their tunable properties including superior patient compliance, good biocompatibility and biodegradation, and high cargo-loading efficiency. However, hydrogel application is still limited by some challenges like inefficient encapsulation, easy leakage of loaded cargoes, and the lack of controllability. Recently, nanoarchitecture-integrated hydrogel systems were found to be therapeutics with optimized properties, extending their bioapplication. In this review, we briefly presented the category of hydrogels according to their synthetic materials and further discussed the advantages in bioapplication. Additionally, various applications of nanoarchitecture hybrid hydrogels in biomedical engineering are systematically summarized, including cancer therapy, wound healing, cardiac repair, bone regeneration, diabetes therapy, and obesity therapy. Last, the current challenges, limitations, and future perspectives in the future development of nanoarchitecture-integrated flexible hydrogels are addressed.
Collapse
Affiliation(s)
- Houjuan Zhu
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Jie Zheng
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore
| | - Xin Yi Oh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Chui Yu Chan
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Beverly Qian Ling Low
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Jia Qian Tor
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Wenbin Jiang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Enyi Ye
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore
| | - Zibiao Li
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117574, Republic of Singapore
| |
Collapse
|
20
|
Liu W, Li X, Wang T, Xiong F, Sun C, Yao X, Huang W. Platinum Drug-Incorporating Polymeric Nanosystems for Precise Cancer Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2208241. [PMID: 36843317 DOI: 10.1002/smll.202208241] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/01/2023] [Indexed: 05/25/2023]
Abstract
Platinum (Pt) drugs are widely used in clinic for cancer therapy, but their therapeutic outcomes are significantly compromised by severe side effects and acquired drug resistance. With the emerging immunotherapy and imaging-guided cancer therapy, precise delivery and release of Pt drugs have drawn great attention these days. The targeting delivery of Pt drugs can greatly increase the accumulation at tumor sites, which ultimately enhances antitumor efficacy. Further, with the combination of Pt drugs and other theranostic agents into one nanosystem, it not only possesses excellent synergistic efficacy but also achieves real-time monitoring. In this review, after the introduction of Pt drugs and their characteristics, the recent progress of polymeric nanosystems for efficient delivery of Pt drugs is summarized with an emphasis on multi-modal synergistic therapy and imaging-guided Pt-based cancer treatment. In the end, the conclusions and future perspectives of Pt-encapsulated nanosystems are given.
Collapse
Affiliation(s)
- Wei Liu
- School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
| | - Xin Li
- School of Pharmaceutical Science, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Ting Wang
- School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
| | - Fei Xiong
- School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
| | - Changrui Sun
- School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
| | - Xikuang Yao
- School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
| | - Wei Huang
- School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials and Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, P. R. China
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing, 210023, P. R. China
| |
Collapse
|
21
|
The recent advancement in the PLGA-based thermo-sensitive hydrogel for smart drug delivery. Int J Pharm 2023; 631:122484. [PMID: 36509221 DOI: 10.1016/j.ijpharm.2022.122484] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022]
Abstract
To date, hydrogels have opened new prospects for potential applications for drug delivery. The thermo-sensitive hydrogels have the great potential to provide more effective and controllable release of therapeutic/bioactive agents in response to changes in temperature. PLGA is a safe FDA-approved copolymer with good biocompatibility and biodegradability. Recently, PLGA-based formulation have attracted a lot of interest for thermo-sensitive hydrogels. Thermo-sensitive PLGA-based hydrogels provide the delivery system with good spatial and temporal control, and have been widely applied in drug delivery. This review is focused on the recent progression of the thermo-sensitive and biodegradable PLGA-based hydrogels that have been reported for smart drug delivery to the different organs. Eventually, future perspectives and challenges of thermo-sensitive PLGA-based hydrogels are discussed briefly.
Collapse
|
22
|
Wu Y, Yang Y, Lv X, Gao M, Gong X, Yao Q, Liu Y. Nanoparticle-Based Combination Therapy for Ovarian Cancer. Int J Nanomedicine 2023; 18:1965-1987. [PMID: 37077941 PMCID: PMC10106804 DOI: 10.2147/ijn.s394383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 03/19/2023] [Indexed: 04/21/2023] Open
Abstract
Ovarian cancer is one of the most common malignant tumors in gynecology with a high incidence. Combination therapy, eg, administration of paclitaxel followed by a platinum anticancer drug is recommended to treat ovarian cancer due to its advantages in, eg, reducing side effects and reversing (multi)drug-resistance compared to single treatment. However, the benefits of combination therapy are often compromised. In chemo and chemo/gene combinations, co-deposition of the combined therapeutics in the tumor cells is required, which is difficult to achieve due to dramatic pharmacokinetic differences between combinational agents in free forms. Moreover, some undesired properties such as the low-water solubility of chemodrugs and the difficulty of cellular internalization of gene therapeutics also hinder the therapeutic potential. Delivery of dual or multiple agents by nanoparticles provides opportunities to tackle these limits. Nanoparticles encapsulate hydrophobic drug(s) to yield aqueous dispersions facilitating its administration and/or to accommodate hydrophilic genes facilitating its access to cells. Moreover, nanoparticle-based therapeutics can not only improve drug properties (eg, in vivo stability) and ensure the same drug disposition behavior with controlled drug ratios but also can minimize drug exposure of the normal tissues and increase drug co-accumulation at targeted tissues via passive and/or active targeting strategies. Herein, this work summarizes nanoparticle-based combination therapies, mainly including anticancer drug-based combinations and chemo/gene combinations, and emphasizes the advantageous outcomes of nanocarriers in the combination treatment of ovarian cancer. In addition, we also review mechanisms of synergetic effects resulting from different combinations.
Collapse
Affiliation(s)
- Yingli Wu
- School of Pharmacy and Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, People’s Republic of China
- NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Jinan, Shandong, 250117, People’s Republic of China
- Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Jinan, Shandong, 250117, People’s Republic of China
| | - Yu Yang
- School of Pharmacy and Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, People’s Republic of China
- NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Jinan, Shandong, 250117, People’s Republic of China
- Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Jinan, Shandong, 250117, People’s Republic of China
| | - Xiaolin Lv
- School of Pharmacy and Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, People’s Republic of China
- NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Jinan, Shandong, 250117, People’s Republic of China
- Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Jinan, Shandong, 250117, People’s Republic of China
| | - Menghan Gao
- School of Pharmacy and Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, People’s Republic of China
| | - Xujin Gong
- School of Pharmacy and Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, People’s Republic of China
- NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Jinan, Shandong, 250117, People’s Republic of China
- Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Jinan, Shandong, 250117, People’s Republic of China
| | - Qingqiang Yao
- School of Pharmacy and Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, People’s Republic of China
- NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Jinan, Shandong, 250117, People’s Republic of China
- Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Jinan, Shandong, 250117, People’s Republic of China
- Jining Medical University, Jining, Shandong, 272067, People’s Republic of China
- Correspondence: Qingqiang Yao, Jining Medical University, No. 133 HeHua Road, Jinan, Shandong, 272067, People’s Republic of China, Email
| | - Yanna Liu
- School of Pharmacy and Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, People’s Republic of China
- NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Jinan, Shandong, 250117, People’s Republic of China
- Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Jinan, Shandong, 250117, People’s Republic of China
- Yanna Liu, Shandong First Medical University, No. 6699 Qingdao Road, HuaiYin District, Jinan, Shandong, 250117, People’s Republic of China, Email
| |
Collapse
|
23
|
Cao D, Ding J. Recent advances in regenerative biomaterials. Regen Biomater 2022; 9:rbac098. [PMID: 36518879 PMCID: PMC9745784 DOI: 10.1093/rb/rbac098] [Citation(s) in RCA: 106] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/23/2022] [Accepted: 12/01/2022] [Indexed: 07/22/2023] Open
Abstract
Nowadays, biomaterials have evolved from the inert supports or functional substitutes to the bioactive materials able to trigger or promote the regenerative potential of tissues. The interdisciplinary progress has broadened the definition of 'biomaterials', and a typical new insight is the concept of tissue induction biomaterials. The term 'regenerative biomaterials' and thus the contents of this article are relevant to yet beyond tissue induction biomaterials. This review summarizes the recent progress of medical materials including metals, ceramics, hydrogels, other polymers and bio-derived materials. As the application aspects are concerned, this article introduces regenerative biomaterials for bone and cartilage regeneration, cardiovascular repair, 3D bioprinting, wound healing and medical cosmetology. Cell-biomaterial interactions are highlighted. Since the global pandemic of coronavirus disease 2019, the review particularly mentions biomaterials for public health emergency. In the last section, perspectives are suggested: (i) creation of new materials is the source of innovation; (ii) modification of existing materials is an effective strategy for performance improvement; (iii) biomaterial degradation and tissue regeneration are required to be harmonious with each other; (iv) host responses can significantly influence the clinical outcomes; (v) the long-term outcomes should be paid more attention to; (vi) the noninvasive approaches for monitoring in vivo dynamic evolution are required to be developed; (vii) public health emergencies call for more research and development of biomaterials; and (viii) clinical translation needs to be pushed forward in a full-chain way. In the future, more new insights are expected to be shed into the brilliant field-regenerative biomaterials.
Collapse
Affiliation(s)
- Dinglingge Cao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| |
Collapse
|
24
|
Flexible polymeric patch based nanotherapeutics against non-cancer therapy. Bioact Mater 2022; 18:471-491. [PMID: 35415299 PMCID: PMC8971585 DOI: 10.1016/j.bioactmat.2022.03.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 12/16/2022] Open
Abstract
Flexible polymeric patches find widespread applications in biomedicine because of their biological and tunable features including excellent patient compliance, superior biocompatibility and biodegradation, as well as high loading capability and permeability of drug. Such polymeric patches are classified into microneedles (MNs), hydrogel, microcapsule, microsphere and fiber depending on the formed morphology. The combination of nanomaterials with polymeric patches allows for improved advantages of increased curative efficacy and lowered systemic toxicity, promoting on-demand and regulated drug administration, thus providing the great potential to their clinic translation. In this review, the category of flexible polymeric patches that are utilized to integrate with nanomaterials is briefly presented and their advantages in bioapplications are further discussed. The applications of nanomaterials embedded polymeric patches in non-cancerous diseases were also systematically reviewed, including diabetes therapy, wound healing, dermatological disease therapy, bone regeneration, cardiac repair, hair repair, obesity therapy and some immune disease therapy. Alternatively, the limitations, latest challenges and future perspectives of such biomedical therapeutic devices are addressed. The most explored polymeric patches, such as microneedle, hydrogel, microsphere, microcapsule, and fiber are summarized. Polymeric patches integrated with a diversity of nanomaterials are systematically overviewed in non-cancer therapy. The future prospective for the development of polymeric patch based nanotherapeutics is discussed.
Collapse
|
25
|
Fang G, Zhang A, Zhu L, Wang Q, Sun F, Tang B. Nanocarriers containing platinum compounds for combination chemotherapy. Front Pharmacol 2022; 13:1050928. [DOI: 10.3389/fphar.2022.1050928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 10/25/2022] [Indexed: 11/11/2022] Open
Abstract
Platinum compounds-based drugs are used widely in the clinic for the treatment of many types of cancer. However, serious undesirable side effects and intrinsic or acquired resistance limit their successful clinic use. Nanocarrier-based combination chemotherapy is considered to be an effective strategy to resolve these challenges. This review introduces the recent advance in nanocarriers containing platinum compounds for combination cancer chemotherapy, including liposomes, polymer nanoparticles, polymer micelles, mesoporous silica nanoparticles, carbon nanohors, polymer-caged nanobins, carbon nanotube, nanostructured lipid carriers, solid lipid nanoparticles, and multilayered fiber mats in detail.
Collapse
|
26
|
Ye W, Zhu F, Cai Y, Wang L, Zhang G, Zhao G, Chu X, Shuai Q, Yan Y. Improved paclitaxel delivery with PEG-b-PLA/zein nanoparticles prepared via flash nanoprecipitation. Int J Biol Macromol 2022; 221:486-495. [PMID: 36087755 DOI: 10.1016/j.ijbiomac.2022.09.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/28/2022] [Accepted: 09/04/2022] [Indexed: 11/18/2022]
Abstract
Polymeric micelle is a promising vehicle to improve the bioavailability and clinical outcomes of paclitaxel (PTX) which has been proven effective in the treatment of a wide range of cancers. However, conventional PTX formulation with the amphiphilic PEG-b-PLA usually suffers from insufficient PTX loading, low stability of PTX-micelles, and rapid PTX release due to low compatibility between PTX and PLA, limiting its clinical application. In this study, a novel nanoparticle platform was developed to improve the stability of PTX-loaded nanoparticles (NPs) and the delivery efficacy of PTX by integrating the flash nanoprecipitation (FNP) technique and a combination of amphiphilic PEG-PLA and super hydrophobic zein. The incorporation of zein led to the formation of distinct hydrophobic interiors of NPs which enhanced the interaction between PTX and NPs, therefore improving the encapsulation efficiency of PTX and sustained drug release compared with PEG-PLA micelles without zein. In addition, FNP allowed facile fabrication of PTX-NPs with smaller sizes and higher stability. These PTX-NPs showed superior sustained release of PTX and good cancer cell-killing in vitro. Among them, PTX-5k-16k-1Z NPs exhibited excellent biosafety and anti-tumor efficacy in a xenograft tumor model in mice, suggesting great potential in the delivery of hydrophobic drugs for cancer therapy.
Collapse
Affiliation(s)
- Wenbo Ye
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Fangtao Zhu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Yue Cai
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Longyu Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Guangliang Zhang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Guangkuo Zhao
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Xiaohe Chu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Qi Shuai
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Yunfeng Yan
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China.
| |
Collapse
|
27
|
Shukla A, Maiti P. Nanomedicine and versatile therapies for cancer treatment. MedComm (Beijing) 2022; 3:e163. [PMID: 35992969 PMCID: PMC9386439 DOI: 10.1002/mco2.163] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/11/2022] [Accepted: 06/14/2022] [Indexed: 12/19/2022] Open
Abstract
The higher prevalence of cancer is related to high rates of mortality and morbidity worldwide. By virtue of the properties of matter at the nanoscale, nanomedicine is proven to be a powerful tool to develop innovative drug carriers with greater efficacies and fewer side effects than conventional therapies. In this review, different nanocarriers for controlled drug release and their routes of administration have been discussed in detail, especially for cancer treatment. Special emphasis has been given on the design of drug delivery vehicles for sustained release and specific application methods for targeted delivery to the affected areas. Different polymeric vehicles designed for the delivery of chemotherapeutics have been discussed, including graft copolymers, liposomes, hydrogels, dendrimers, micelles, and nanoparticles. Furthermore, the effect of dimensional properties on chemotherapy is vividly described. Another integral section of the review focuses on the modes of administration of nanomedicines and emerging therapies, such as photothermal, photodynamic, immunotherapy, chemodynamic, and gas therapy, for cancer treatment. The properties, therapeutic value, advantages, and limitations of these nanomedicines are highlighted, with a focus on their increased performance versus conventional molecular anticancer therapies.
Collapse
Affiliation(s)
- Aparna Shukla
- School of Materials Science and TechnologyIndian Institute of Technology (Banaras Hindu University)VaranasiIndia
| | - Pralay Maiti
- School of Materials Science and TechnologyIndian Institute of Technology (Banaras Hindu University)VaranasiIndia
| |
Collapse
|
28
|
Xu L, Tang S, Yang H, Liang M, Ren P, Wei D, He J, Kong W, Liu P, Zhang T. Sustained delivery of gemcitabine via in situ injectable mussel-inspired hydrogels for the local therapy of pancreatic cancer. J Mater Chem B 2022; 10:6338-6350. [PMID: 35930367 DOI: 10.1039/d1tb02858h] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
The issue of pervasively enhanced drug resistance of pancreatic cancer is fundamental to a better understanding of gemcitabine-based chemotherapy. Currently available treatment plans involving injectable therapeutics are mainly engineered to improve the performance and broaden their applications in the domain of biomedicine. Fixed-dose-rate infusion of free gemcitabine (Gem) has drawn appropriate attention for its potent anti-tumor efficacy against various solid tumors, whereas it remains a considerable challenge to extend its application and achieve better treatment. Here, we have prepared and demonstrated a long-acting delivery system using gemcitabine and injectable in situ hydrogel for the localized treatment of pancreatic cancer. The hydrogel was prepared using polysaccharide derivatives, oxidized-carboxymethylcellulose (OCMC) and carboxymethylchitosan (CMCS) at optimal ratios by a dopamine-functionalized method for the controlled release of Gem. In vitro drug release behaviors for up to a week indicated sustained drug release of the Gem delivery system. Moreover, desirable apoptosis promotion and apparent cellular proliferation inhibition associated with the drug depot have been found in vitro against BxPC-3 pancreatic cancer cells, bringing minimized side effects to systemic normal tissues. The current findings manifested that the release out of the localized delivery platform in a sustained pattern afforded a durable gemcitabine-based chemotherapy effect and inhibited tumor metastasis more persistently after intratumoral injection of the Gem@Gel system, thereby advancing the development of novel drug-loaded materials with properties not accessed previously.
Collapse
Affiliation(s)
- Li Xu
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Shengnan Tang
- Department of Nuclear Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Huiquan Yang
- School of Medicine, Southeast University, Nanjing 210009, China
| | - Min Liang
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Pengfei Ren
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Dandan Wei
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Jian He
- Department of Nuclear Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Weiwei Kong
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing 210008, China
| | - Peidang Liu
- School of Medicine, Southeast University, Nanjing 210009, China
- Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing 210096, China
| | - Tianzhu Zhang
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| |
Collapse
|
29
|
Ma J, Wang B, Shao H, Zhang S, Chen X, Li F, Liang W. Hydrogels for localized chemotherapy of liver cancer: a possible strategy for improved and safe liver cancer treatment. Drug Deliv 2022; 29:1457-1476. [PMID: 35532174 PMCID: PMC9090357 DOI: 10.1080/10717544.2022.2070299] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The systemic drug has historically been preferred for the treatment of the majority of pathological conditions, particularly liver cancer. Indeed, this mode of treatment is associated with adverse reactions, toxicity, off-target accumulation, and rapid hepatic and renal clearance. Numerous efforts have been made to design systemic therapeutic carriers to improve retention while decreasing side effects and clearance. Following systemic medication, local administration of therapeutic agents allows for higher 'effective' doses with fewer side effects, kidney accumulation, and clearance. Hydrogels are highly biocompatible and can be used for both imaging and therapy. Hydrogel-based drug delivery approach has fewer side effects than traditional chemotherapy and can deliver drugs to tumors for a longer time. The chemical and physical flexibility of hydrogels can be used to achieve disease-induced in situ accumulation as well as subsequent drug release and hydrogel-programmed degradation. Moreover, they can act as a biocompatible depot for localized chemotherapy when stimuli-responsive carriers are administrated. Herein, we summarize the design strategies of various hydrogels used for localized chemotherapy of liver cancer and their delivery routes, as well as recent research on smart hydrogels.
Collapse
Affiliation(s)
- Jianyong Ma
- Department of General Practice, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, China
| | - Bingzhu Wang
- Internal Medicine of Integrated Traditional Chinese and Western Medicine, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Haibin Shao
- Internal Medicine of Integrated Traditional Chinese and Western Medicine, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Songou Zhang
- College of Medicine, Shaoxing University, Shaoxing, China
| | - Xiaozhen Chen
- College of Medicine, Shaoxing University, Shaoxing, China
| | - Feize Li
- Internal Medicine of Integrated Traditional Chinese and Western Medicine, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Wenqing Liang
- Medical Research Center, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| |
Collapse
|
30
|
Peña Q, Wang A, Zaremba O, Shi Y, Scheeren HW, Metselaar JM, Kiessling F, Pallares RM, Wuttke S, Lammers T. Metallodrugs in cancer nanomedicine. Chem Soc Rev 2022; 51:2544-2582. [PMID: 35262108 DOI: 10.1039/d1cs00468a] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Metal complexes are extensively used for cancer therapy. The multiple variables available for tuning (metal, ligand, and metal-ligand interaction) offer unique opportunities for drug design, and have led to a vast portfolio of metallodrugs that can display a higher diversity of functions and mechanisms of action with respect to pure organic structures. Clinically approved metallodrugs, such as cisplatin, carboplatin and oxaliplatin, are used to treat many types of cancer and play prominent roles in combination regimens, including with immunotherapy. However, metallodrugs generally suffer from poor pharmacokinetics, low levels of target site accumulation, metal-mediated off-target reactivity and development of drug resistance, which can all limit their efficacy and clinical translation. Nanomedicine has arisen as a powerful tool to help overcome these shortcomings. Several nanoformulations have already significantly improved the efficacy and reduced the toxicity of (chemo-)therapeutic drugs, including some promising metallodrug-containing nanomedicines currently in clinical trials. In this critical review, we analyse the opportunities and clinical challenges of metallodrugs, and we assess the advantages and limitations of metallodrug delivery, both from a nanocarrier and from a metal-nano interaction perspective. We describe the latest and most relevant nanomedicine formulations developed for metal complexes, and we discuss how the rational combination of coordination chemistry with nanomedicine technology can assist in promoting the clinical translation of metallodrugs.
Collapse
Affiliation(s)
- Quim Peña
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, 52074, Aachen, Germany.
| | - Alec Wang
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, 52074, Aachen, Germany.
| | - Orysia Zaremba
- BCMaterials, Bld. Martina Casiano, 3rd. Floor, UPV/EHU Science Park, 48940, Leioa, Spain
| | - Yang Shi
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, 52074, Aachen, Germany.
| | - Hans W Scheeren
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, 52074, Aachen, Germany.
| | - Josbert M Metselaar
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, 52074, Aachen, Germany.
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, 52074, Aachen, Germany
| | - Roger M Pallares
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, 52074, Aachen, Germany.
| | - Stefan Wuttke
- BCMaterials, Bld. Martina Casiano, 3rd. Floor, UPV/EHU Science Park, 48940, Leioa, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, Spain.
| | - Twan Lammers
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, 52074, Aachen, Germany.
| |
Collapse
|
31
|
Duran T, Costa A, Gupta A, Xu X, Zhang H, Burgess D, Chaudhuri B. Coarse-Grained Molecular Dynamics Simulations of Paclitaxel-Loaded Polymeric Micelles. Mol Pharm 2022; 19:1117-1134. [PMID: 35243863 DOI: 10.1021/acs.molpharmaceut.1c00800] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A continuous manufacturing technology based on coaxial turbulent jet in coflow was previously developed to produce paclitaxel-loaded polymeric micelles. Herein, coarse-grained molecular dynamics (CG-MD) simulations were implemented to better understand the effect of the material attributes (i.e., the drug-polymer ratio and the ethanol concentration) and process parameters (i.e., temperature) on the self-assembly process of polymeric micelles as well as to provide molecular details on micelle instability. An all-atom (AA) poly (ethylene glycol)-poly (lactic acid) (PEG-PLA) polymer model was developed as the reference for parameterizing a coarse-grained (CG) model, and the AA polymer model was further validated with experimental glass transition temperature (Tg). The model transferability was verified by comparing structural properties between the AA and CG models. The CG model was further validated with experimental data, including micelle particle size measurements and drug encapsulation efficiency. Furthermore, the encapsulation of paclitaxel into the polymeric micelles was included in the simulations, taking into consideration the interactions between the paclitaxel and the polymers. The results from various points of view demonstrated a strong dependence of the shape of the micelles on the drug encapsulation, with micelles transitioning from spherical to ellipsoidal structures with an increasing paclitaxel amount. Simulation data were also used to identify the critical aggregation number (i.e., the number of polymer and drug molecules required for transition from one shape to another). Improved micellar structural stability was found with a larger micellar size and less solvent accessibility. Lastly, an evaluation was performed on the micellar dissociation free energy using a steered molecular dynamics simulation over a range of temperatures and ethanol concentrations. These simulations revealed that at higher ethanol and temperature conditions, micelles become destabilized, resulting in greater paclitaxel release. The increased drug release was determined to originate from the solvation of the hydrophobic core, which promoted micellar swelling and an associated reduction in hydrophobic interactions, leading to a loosely packed micellar structure.
Collapse
Affiliation(s)
- Tibo Duran
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Antonio Costa
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Anand Gupta
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Xiaoming Xu
- Office of Testing and Research, Office of Pharmaceutical Quality, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Hailing Zhang
- Office of Lifecycle Drug Product, Office of Pharmaceutical Quality, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Diane Burgess
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Bodhisattwa Chaudhuri
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut 06269, United States.,Institute of Materials Sciences (IMS), University of Connecticut, Storrs, Connecticut 06269, United States.,Department of Chemical & Biomolecular Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| |
Collapse
|
32
|
He M, Wang R, Wan P, Wang H, Cheng Y, Miao P, Wei Z, Leng X, Li Y, Du J, Fan J, Sun W, Peng X. Biodegradable Ru-Containing Polycarbonate Micelles for Photoinduced Anticancer Multitherapeutic Agent Delivery and Phototherapy Enhancement. Biomacromolecules 2022; 23:1733-1744. [PMID: 35107271 DOI: 10.1021/acs.biomac.1c01651] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The lack of selectivity between tumor and healthy cells, along with inefficient reactive oxygen species production in solid tumors, are two major impediments to the development of anticancer Ru complexes. The development of photoinduced combination therapy based on biodegradable polymers that can be light activated in the "therapeutic window" would be beneficial for enhancing the therapeutic efficacy of Ru complexes. Herein, a biodegradable Ru-containing polymer (poly(DCARu)) is developed, in which two different therapeutics (the drug and the Ru complex) are rationally integrated and then conjugated to a diblock copolymer (MPEG-b-PMCC) containing hydrophilic poly(ethylene glycol) and cyano-functionalized polycarbonate with good degradability and biocompatibility. The polymer self-assembles into micelles with high drug loading capacity, which can be efficiently internalized into tumor cells. Red light induces the generation of singlet oxygen and the release of anticancer drug-Ru complex conjugates from poly(DCARu) micelles, hence inhibiting tumor cell growth. Furthermore, the phototherapy of polymer micelles demonstrates remarkable inhibition of tumor growth in vivo. Meanwhile, polymer micelles exhibit good biocompatibility with blood and healthy tissues, which opens up opportunities for multitherapeutic agent delivery and enhanced phototherapy.
Collapse
Affiliation(s)
- Maomao He
- State Key Laboratory of Fine Chemicals, Liaoning key Laboratory of Polymer Science and Engineering, Dalian University of Technology, Dalian 116024, China
| | - Ran Wang
- State Key Laboratory of Fine Chemicals, Liaoning key Laboratory of Polymer Science and Engineering, Dalian University of Technology, Dalian 116024, China
| | - Peiyuan Wan
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Hexiang Wang
- State Key Laboratory of Fine Chemicals, Liaoning key Laboratory of Polymer Science and Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yi Cheng
- State Key Laboratory of Fine Chemicals, Liaoning key Laboratory of Polymer Science and Engineering, Dalian University of Technology, Dalian 116024, China
| | - Pengcheng Miao
- State Key Laboratory of Fine Chemicals, Liaoning key Laboratory of Polymer Science and Engineering, Dalian University of Technology, Dalian 116024, China
| | - Zhiyong Wei
- State Key Laboratory of Fine Chemicals, Liaoning key Laboratory of Polymer Science and Engineering, Dalian University of Technology, Dalian 116024, China
| | - Xuefei Leng
- State Key Laboratory of Fine Chemicals, Liaoning key Laboratory of Polymer Science and Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yang Li
- State Key Laboratory of Fine Chemicals, Liaoning key Laboratory of Polymer Science and Engineering, Dalian University of Technology, Dalian 116024, China
| | - Jianjun Du
- State Key Laboratory of Fine Chemicals, Liaoning key Laboratory of Polymer Science and Engineering, Dalian University of Technology, Dalian 116024, China.,Ningbo Institute of Dalian University of Technology, Ningbo 315016, China
| | - Jiangli Fan
- State Key Laboratory of Fine Chemicals, Liaoning key Laboratory of Polymer Science and Engineering, Dalian University of Technology, Dalian 116024, China.,Ningbo Institute of Dalian University of Technology, Ningbo 315016, China
| | - Wen Sun
- State Key Laboratory of Fine Chemicals, Liaoning key Laboratory of Polymer Science and Engineering, Dalian University of Technology, Dalian 116024, China.,Ningbo Institute of Dalian University of Technology, Ningbo 315016, China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Liaoning key Laboratory of Polymer Science and Engineering, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
33
|
Liu H, Prachyathipsakul T, Koyasseril-Yehiya TM, Le SP, Thayumanavan S. Molecular bases for temperature sensitivity in supramolecular assemblies and their applications as thermoresponsive soft materials. MATERIALS HORIZONS 2022; 9:164-193. [PMID: 34549764 PMCID: PMC8757657 DOI: 10.1039/d1mh01091c] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Thermoresponsive supramolecular assemblies have been extensively explored in diverse formats, from injectable hydrogels to nanoscale carriers, for a variety of applications including drug delivery, tissue engineering and thermo-controlled catalysis. Understanding the molecular bases behind thermal sensitivity of materials is fundamentally important for the rational design of assemblies with optimal combination of properties and predictable tunability for specific applications. In this review, we summarize the recent advances in this area with a specific focus on the parameters and factors that influence thermoresponsive properties of soft materials. We summarize and analyze the effects of structures and architectures of molecules, hydrophilic and lipophilic balance, concentration, components and external additives upon the thermoresponsiveness of the corresponding molecular assemblies.
Collapse
Affiliation(s)
- Hongxu Liu
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, USA.
| | | | | | - Stephanie P Le
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, USA.
| | - S Thayumanavan
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, USA.
- Department of Biomedical Engineering, University of Massachusetts, Amherst, Massachusetts 01003, USA
- Molecular and Cellular Biology Program, University of Massachusetts, Amherst, Massachusetts 01003, USA
- Centre for Bioactive Delivery, Institute for Applied Life Science, University of Massachusetts, Amherst, Massachusetts 01003, USA
| |
Collapse
|
34
|
Yang X, Zhang L, Zheng L, Wang Y, Gao L, Luo R, Li X, Gong C, Luo H, Wu Q. An in situ spontaneously-forming micelle-hydrogel system with programable release for sequential therapy of anaplastic thyroid cancer. J Mater Chem B 2022; 10:1236-1249. [PMID: 35119450 DOI: 10.1039/d1tb01904j] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Anaplastic thyroid carcinoma (ATC) is a lethal malignancy with 1-year-survival less than 20%. Combination chemotherapy of cisplatin and paclitaxel is recommended as a critical therapy approach for ATC. However, intolerant...
Collapse
Affiliation(s)
- Xi Yang
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Lingyun Zhang
- Department of Thyroid and Parathyroid Surgery, Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, P. R. China.
- West China School of Medicine, Sichuan University, Chengdu 610041, P. R. China
| | - Lingnan Zheng
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Yan Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, P. R. China.
| | - Ling Gao
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Rui Luo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, P. R. China.
| | - Xinchao Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, P. R. China.
| | - Changyang Gong
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, P. R. China.
| | - Han Luo
- Department of Thyroid and Parathyroid Surgery, Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, P. R. China.
| | - Qinjie Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, P. R. China.
| |
Collapse
|
35
|
Velasco-Lozano S, Castro SAD, Sanchez-Cano C, Benítez-Mateos AI, López-Gallego F, Salassa L. Metal substrate catalysis in the confined space for platinum drug delivery. Chem Sci 2021; 13:59-67. [PMID: 35059151 PMCID: PMC8694326 DOI: 10.1039/d1sc05151b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/22/2021] [Indexed: 01/10/2023] Open
Abstract
Catalysis-based approaches for the activation of anticancer agents hold considerable promise. These principally rely on the use of metal catalysts capable of deprotecting inactive precursors of organic drugs or transforming key biomolecules available in the cellular environment. Nevertheless, the efficiency of most of the schemes described so far is rather low, limiting the benefits of catalytic amplification as strategy for controlling the therapeutic effects of anticancer compounds. In the work presented here, we show that flavin reactivity within a hydrogel matrix provides a viable solution for the efficient catalytic activation and delivery of cisplatin, a worldwide clinically-approved inorganic chemotherapy agent. This is achieved by ionically adsorbing a flavin catalyst and a Pt(iv) prodrug as substrate into porous amino-functionalized agarose beads. The hydrogel chassis supplies high local concentrations of electron donating groups/molecules in the surrounding of the catalyst, ultimately boosting substrate conversion rates (TOF >200 min-1) and enabling controlled liberation of the drug by light or chemical stimuli. Overall, this approach can afford platforms for the efficient delivery of platinum drugs as demonstrated herein by using a transdermal diffusion model simulating the human skin.
Collapse
Affiliation(s)
- Susana Velasco-Lozano
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA) Paseo de Miramon 182 San Sebastián 20014 Spain
| | | | - Carlos Sanchez-Cano
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA) Paseo de Miramon 182 San Sebastián 20014 Spain
- Donostia International Physics Center Paseo Manuel de Lardizabal 4 Donostia 20018 Spain
- Ikerbasque, Basque Foundation for Science Bilbao 48011 Spain
| | - Ana I Benítez-Mateos
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA) Paseo de Miramon 182 San Sebastián 20014 Spain
| | - Fernando López-Gallego
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA) Paseo de Miramon 182 San Sebastián 20014 Spain
- Ikerbasque, Basque Foundation for Science Bilbao 48011 Spain
| | - Luca Salassa
- Donostia International Physics Center Paseo Manuel de Lardizabal 4 Donostia 20018 Spain
- Ikerbasque, Basque Foundation for Science Bilbao 48011 Spain
- Polimero eta Material Aurreratuak: Fisika, Kimika eta Teknologia, Kimika Fakultatea, Euskal Herriko Unibertsitatea UPV/EHU Paseo Manuel de Lardizabal 3 Donostia 20018 Spain
| |
Collapse
|
36
|
Li P, Lou Y. Clinical Efficacy of Fuzheng Guben Anticancer Decoction Combined with Taxol in Treating Ovarian Carcinoma and Its Effect on Complication Incidence. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:2782875. [PMID: 38837981 PMCID: PMC8709778 DOI: 10.1155/2021/2782875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/19/2021] [Accepted: 11/20/2021] [Indexed: 11/17/2022]
Abstract
Objective To investigate the clinical value of Fuzheng Guben anticancer decoction combined with taxol in treating ovarian carcinoma (OC). Methods The medical records of 80 OC patients treated in the First People's Hospital of Fuyang Hangzhou (January 2018-January 2021) were retrospectively analyzed, and the patients were split into the control group and the experimental group according to the treatment regimen, with 40 cases each. Those in the control group accepted the taxol chemotherapy, and on this basis, those in the experimental group took the Fuzheng Guben anticancer decoction, so as to compare its clinical efficacy and complication incidence. Results No statistical between-group differences in patients' general information were observed (P > 0.05); compared with the control group, the disease objective remission rate of the experimental group was greatly higher (P < 0.05); before and after treatment, the changes in CD8+ were not significant, indicating no statistically significant between-group differences (P > 0.05), and after treatment, CD3+, CD4+, and CD4+/CD8+ were obviously higher than before and were obviously higher in the experimental group than in the control group (P < 0.05); after treatment, the CA125, CA199, and CEA levels were obviously lower than before and were significantly lower in the experimental group than in the control group (P < 0.05); the mean survival of the experimental group was significantly higher than that of the control group (19.80 ± 5.84 vs. 14.075 ± 5.12 months, P < 0.05); and between the two groups, the incidence rate of adverse reactions of the experimental group was remarkably lower (P < 0.05). Conclusion On the basis of taxol chemotherapy, jointly applying Fuzheng Guben anticancer decoction can significantly improve the clinical efficacy of OC, help to improve patients' immune function, lower the complication incidence rate, and prolong the mean survival.
Collapse
Affiliation(s)
- Pinger Li
- Integrated Traditional Chinese and Western Medicine, The First People's Hospital, Fuyang, Hangzhou 311400, Zhejiang, China
| | - Yinmei Lou
- Integrated Traditional Chinese and Western Medicine, The First People's Hospital, Fuyang, Hangzhou 311400, Zhejiang, China
| |
Collapse
|
37
|
Yang X, Wang Y, Mao T, Wang Y, Liu R, Yu L, Ding J. An oxygen-enriched thermosensitive hydrogel for the relief of a hypoxic tumor microenvironment and enhancement of radiotherapy. Biomater Sci 2021; 9:7471-7482. [PMID: 34617528 DOI: 10.1039/d1bm01280k] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The rapid proliferation of tumor cells and tortuous vasculature in solid tumors often bring about a hypoxic tumor microenvironment, which renders tumor cells more resistant to many cancer treatments, including radiotherapy. In this study, an injectable and thermosensitive composite hydrogel composed of perfluorooctanoic acid (PFOA) modified monomethoxy poly(ethylene glycol)-poly(D,L-lactide-co-glycolide) (mPEG-PLGA-PFOA) and perfluorooctyl bromide (PFOB) that presented a thermoreversible sol-gel transition upon heating was developed to deliver exogenous oxygen for the relief of tumor hypoxia and enhancement of radiotherapy. The fluorinated modification of copolymers significantly increased the stability of PFOB in the mPEG-PLGA-PFOA aqueous solution owing to the fluorophilic interaction between PFOB and PFOA-modified copolymers. The introduction of PFOB not only efficiently heightened the oxygen loading capacity of the composite hydrogel, but also endowed it with excellent X-ray opacity, allowing the visual observation of the hydrogel via micro-CT imaging. After peritumoral injection of the oxygen-enriched composite hydrogel, the continuous supply of oxygen effectively relieved tumor hypoxia and down-regulated the expression of hypoxia-inducible factor-1α. Profiting from this, the hyposensitivity of tumor cells to radiation was successfully reversed, and the tumor growth in mice was significantly suppressed and the survival of mice was prolonged when combined with multiple X-ray exposure. As a result, the oxygen-enriched composite hydrogel shows a great potential for radiosensitization to improve the radiotherapeutic efficacy.
Collapse
Affiliation(s)
- Xiaowei Yang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Shanghai Stomatological Hospital, Fudan University, Shanghai 200438, China.
| | - Yaoben Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Shanghai Stomatological Hospital, Fudan University, Shanghai 200438, China.
| | - Tianjiao Mao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Shanghai Stomatological Hospital, Fudan University, Shanghai 200438, China.
| | - Yang Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Shanghai Stomatological Hospital, Fudan University, Shanghai 200438, China.
| | - Ruili Liu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Shanghai Stomatological Hospital, Fudan University, Shanghai 200438, China.
| | - Lin Yu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Shanghai Stomatological Hospital, Fudan University, Shanghai 200438, China.
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Shanghai Stomatological Hospital, Fudan University, Shanghai 200438, China.
| |
Collapse
|
38
|
Kong Y, Dai Y, Qi D, Du W, Ni H, Zhang F, Zhao H, Shen Q, Li M, Fan Q. Injectable and Thermosensitive Liposomal Hydrogels for NIR-II Light-Triggered Photothermal-Chemo Therapy of Pancreatic Cancer. ACS APPLIED BIO MATERIALS 2021; 4:7595-7604. [PMID: 35006703 DOI: 10.1021/acsabm.1c00864] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
An injectable hydrogel sustained drug release system could be a promising technique for in situ treatment. Herein, an injectable hydrogel was prepared for photothermal-chemo therapy of cancer based on the thermosensitive liposomal hydrogel (Lip-Gel). The Lip-Gel system was fabricated by encapsulation of the NIR-II photothermal agent (DPP-BTz) and chemotherapy drugs (GEM) in thermosensitive liposomes and then combined with hydrogel precursor solution. The hydrogel precursor was used as an injectable flowing solution at room temperature and transferred into a cross-linked gel structure at physiological temperature. After being injected into the tumor, DPP-BTz in the Lip-Gel system can generate heat under irradiation of 1064 nm laser, breaking the thermosensitive liposomes and releasing GEM to kill tumor cells. From the treatment results, the Lip-Gel system showed a significant antitumor effect through chemo-/photothermal therapy combination therapy triggered by the NIR-II laser. This work provides a useful scheme for the development of drug delivery and drug treatment directions for local cancer therapy.
Collapse
Affiliation(s)
- Yingjie Kong
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Yeneng Dai
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Dashan Qi
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Wenyu Du
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Haiyang Ni
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Fan Zhang
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Honghai Zhao
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Qingming Shen
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Meixing Li
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Quli Fan
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| |
Collapse
|
39
|
Guo Z, Bai Y, Zhang Z, Mei H, Li J, Pu Y, Zhao N, Gao W, Wu F, He B, Xie J. Thermosensitive polymer hydrogel as a physical shield on colonic mucosa for colitis treatment. J Mater Chem B 2021; 9:3874-3884. [PMID: 33928321 DOI: 10.1039/d1tb00499a] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis (UC), is a chronic disease characterized by diffuse mucosal inflammation limited to the colon. Topical drug delivery systems that could be facilely performed and efficiently retained at colon sites are attractive for clinical IBD treatment. Herein, we report the exploration of an injectable thermosensitive copolymer hydrogel as a topical formulation for IBD treatment and demonstrate its feasibility in UC treatment by shielding ulcer sites from the external environment and being a drug reservoir for sustained release. Poly(aliphatic ester)-based triblock copolymer, poly(dl-lactic acid)-poly(ethylene glycol)-poly(dl-lactic acid) (PDLLA-PEG-PDLLA), adopts the solution state at room temperature yet a gel state at body temperature when the polymer concentration is more than 11%. The gel acts not only as a physical mucosal barrier for protecting ulcer sites from microorganisms like bacteria but also as a mesalazine depot for enhanced drug retention in the colon for localized, sustained drug release. In vivo UC treatment reveals that blank gel as a mucosal protector shows nearly the same treatment effect to mesalazine SR granules. Mesalazine-loaded gel significantly suppresses inflammation and has the best outcomes of indices such as colonic length, mucosal injury index, pathological tissue, and inflammatory factor. The injectable thermosensitive polymer hydrogel represents a novel, robust platform for the efficient treatment of IBD by acting as a physical shield to block out the pro-inflammatory factors as well as a drug depot for enhanced drug retention and controlled delivery.
Collapse
Affiliation(s)
- Zhaoyuan Guo
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| | - Yun Bai
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| | - Zhuangzhuang Zhang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| | - Heng Mei
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| | - Jing Li
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| | - Yuji Pu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| | - Nan Zhao
- Puliyan (Nanjing) Medical Science & Technology Co. LTD, Nanjing 210042, China
| | - Wenxia Gao
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Fang Wu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| | - Bin He
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| | - Jing Xie
- Department of Stomatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| |
Collapse
|
40
|
Li P, Lou Y. The Pellagra Problem. JAMA 2021; 326:573. [PMID: 34374730 PMCID: PMC8709778 DOI: 10.1001/jama.2020.18074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/19/2021] [Accepted: 11/20/2021] [Indexed: 11/14/2022]
Abstract
Objective To investigate the clinical value of Fuzheng Guben anticancer decoction combined with taxol in treating ovarian carcinoma (OC). Methods The medical records of 80 OC patients treated in the First People's Hospital of Fuyang Hangzhou (January 2018–January 2021) were retrospectively analyzed, and the patients were split into the control group and the experimental group according to the treatment regimen, with 40 cases each. Those in the control group accepted the taxol chemotherapy, and on this basis, those in the experimental group took the Fuzheng Guben anticancer decoction, so as to compare its clinical efficacy and complication incidence. Results No statistical between-group differences in patients' general information were observed (P > 0.05); compared with the control group, the disease objective remission rate of the experimental group was greatly higher (P < 0.05); before and after treatment, the changes in CD8+ were not significant, indicating no statistically significant between-group differences (P > 0.05), and after treatment, CD3+, CD4+, and CD4+/CD8+ were obviously higher than before and were obviously higher in the experimental group than in the control group (P < 0.05); after treatment, the CA125, CA199, and CEA levels were obviously lower than before and were significantly lower in the experimental group than in the control group (P < 0.05); the mean survival of the experimental group was significantly higher than that of the control group (19.80 ± 5.84 vs. 14.075 ± 5.12 months, P < 0.05); and between the two groups, the incidence rate of adverse reactions of the experimental group was remarkably lower (P < 0.05). Conclusion On the basis of taxol chemotherapy, jointly applying Fuzheng Guben anticancer decoction can significantly improve the clinical efficacy of OC, help to improve patients' immune function, lower the complication incidence rate, and prolong the mean survival.
Collapse
Affiliation(s)
- Pinger Li
- Integrated Traditional Chinese and Western Medicine, The First People's Hospital, Fuyang, Hangzhou 311400, Zhejiang, China
| | - Yinmei Lou
- Integrated Traditional Chinese and Western Medicine, The First People's Hospital, Fuyang, Hangzhou 311400, Zhejiang, China
| |
Collapse
|
41
|
|
42
|
Shi J, Yu L, Ding J. PEG-based thermosensitive and biodegradable hydrogels. Acta Biomater 2021; 128:42-59. [PMID: 33857694 DOI: 10.1016/j.actbio.2021.04.009] [Citation(s) in RCA: 146] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/09/2021] [Accepted: 04/01/2021] [Indexed: 02/07/2023]
Abstract
Injectable thermosensitive hydrogels are free-flowing polymer solutions at low or room temperature, making them easy to encapsulate the therapeutic payload or cells via simply mixing. Upon injection into the body, in situ forming hydrogels triggered by body temperature can act as drug-releasing reservoirs or cell-growing scaffolds. Finally, the hydrogels are eliminated from the administration sites after they accomplish their missions as depots or scaffolds. This review outlines the recent progress of poly(ethylene glycol) (PEG)-based biodegradable thermosensitive hydrogels, especially those composed of PEG-polyester copolymers, PEG-polypeptide copolymers and poly(organophosphazene)s. The material design, performance regulation, thermogelation and degradation mechanisms, and corresponding applications in the biomedical field are summarized and discussed. A perspective on the future thermosensitive hydrogels is also highlighted. STATEMENT OF SIGNIFICANCE: Thermosensitive hydrogels undergoing reversible sol-to-gel phase transitions in response to temperature variations are a class of promising biomaterials that can serve as minimally invasive injectable systems for various biomedical applications. Hydrophilic PEG is a main component in the design and fabrication of thermoresponsive hydrogels due to its excellent biocompatibility. By incorporating hydrophobic segments, such as polyesters and polypeptides, into PEG-based systems, biodegradable and thermosensitive hydrogels with adjustable properties in vitro and in vivo have been developed and have recently become a research hotspot of biomaterials. The summary and discussion on molecular design, performance regulation, thermogelation and degradation mechanisms, and biomedical applications of PEG-based thermosensitive hydrogels may offer a demonstration of blueprint for designing new thermogelling systems and expanding their application scope.
Collapse
|
43
|
Jiang G, Wang X, Zhou Y, Zou C, Wang L, Wang W, Zhang D, Xu H, Li J, Li F, Luo D, Ma X, Ma D, Tan S, Wei R, Xi L. TMTP1-Modified, Tumor Microenvironment Responsive Nanoparticles Co-Deliver Cisplatin and Paclitaxel Prodrugs for Effective Cervical Cancer Therapy. Int J Nanomedicine 2021; 16:4087-4104. [PMID: 34163161 PMCID: PMC8214535 DOI: 10.2147/ijn.s298252] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 04/28/2021] [Indexed: 12/30/2022] Open
Abstract
Background and Purpose Cisplatin-paclitaxel (TP) combination chemotherapy as the first-line therapy for numerous cancers is hindered by its inadequate accumulation in tumors and severe side effects resulting from non-specific distribution. The aim of this study is to explore whether TMTP1-modified, cisplatin and paclitaxel prodrugs co-loaded nanodrug could improve cervical cancer chemotherapy and relieve its side effects through active and passive tumor targeting accumulation and controlled drug release. Methods TDNP, with capacities of active targeting for tumors and controlled drug release, was prepared to co-deliver cisplatin and paclitaxel prodrugs. The characteristics were investigated, including the diameter, surface zeta potential, stability and tumor microenvironment (TME) dependent drug release profiles. Cellular uptake, cytotoxicity, drug accumulation in tumors, antitumor effects and safety analysis were evaluated in vitro and in vivo. Results The oxidized cisplatin and the paclitaxel linked to the polymer achieved a high loading effciency of over 80% and TME-dependent sustained drug release. Moreover, TMTP1 modification enhanced cellular uptake of TDNP and further improved the cytotoxicity of TDNP in vitro. In vivo, TDNP showed an extended blood circulation and increased accumulation in SiHa xenograft models with the aid of TMTP1. More importantly, TDNP controlled tumor growth without life-threatening side effects. Conclusion Our study provided a novel TP co-delivery platform for targeted chemotherapy of cervical cancer, which was promising to improve the therapeutic effcacy of TP and may also have application in other tumors.
Collapse
Affiliation(s)
- Guiying Jiang
- Department of Obstetrics & Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei Province, People's Republic of China
| | - Xueqian Wang
- Department of Obstetrics & Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei Province, People's Republic of China
| | - Ying Zhou
- Department of Obstetrics & Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei Province, People's Republic of China
| | - Chenming Zou
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei Province, People's Republic of China.,School of Pharmacy, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Ling Wang
- Department of Obstetrics & Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei Province, People's Republic of China
| | - Wei Wang
- Department of Obstetrics & Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei Province, People's Republic of China
| | - Danya Zhang
- Department of Obstetrics & Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei Province, People's Republic of China
| | - Hanjie Xu
- Department of Obstetrics & Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei Province, People's Republic of China
| | - Jie Li
- Department of Obstetrics & Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei Province, People's Republic of China
| | - Fei Li
- Department of Obstetrics & Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei Province, People's Republic of China
| | - Danfeng Luo
- Department of Obstetrics & Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei Province, People's Republic of China
| | - Xiangyi Ma
- Department of Obstetrics & Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei Province, People's Republic of China
| | - Ding Ma
- Department of Obstetrics & Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei Province, People's Republic of China
| | - Songwei Tan
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei Province, People's Republic of China
| | - Rui Wei
- Department of Obstetrics & Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei Province, People's Republic of China
| | - Ling Xi
- Department of Obstetrics & Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei Province, People's Republic of China
| |
Collapse
|
44
|
Wang Q, Wu C, Li X, Yang D, Shi L. Cisplatin and paclitaxel co-delivery nanosystem for ovarian cancer chemotherapy. Regen Biomater 2021; 8:rbab015. [PMID: 35707698 DOI: 10.1093/rb/rbab015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 03/04/2021] [Accepted: 03/22/2021] [Indexed: 12/24/2022] Open
Abstract
We have designed and developed an effective drug delivery system using biocompatible polymer of poly (ethylene glycol)-polyaspartic acid (mPEG-PAsp) for co-loading the chemotherapy drugs paclitaxel (PTX) and cisplatin (CP) in one nano-vehicle. This study aimed to improve the anti-cancer efficacy of combinations of chemotherapy drugs and reduce their side effects. mPEG-PAsp-(PTX/Pt) nano-micelles disperse well in aqueous solution and have a narrow size distribution (37.8 ± 3.2 nm) in dynamic light scattering (DLS). Drug release profiles found that CP released at pH 5.5 was significantly faster than that at pH 7.4. MPEG-PAsp-(PTX/Pt) nano-micelles displayed a significantly higher tumor inhibitory effect than mPEG-PAsp-PTX nano-micelles when the polymer concentrations reached 50 μg/mL. Our data indicated that polymer micelles of mPEG-PAsp loaded with the combined drug exert synergistic anti-tumor efficacy on SKOV3 ovarian cells via different action mechanisms. Results from our studies suggested that mPEG-PAsp-(PTX/Pt) nano-micelles are promising alternatives for carrying and improving the delivery of therapeutic drugs with different water solubilities.
Collapse
Affiliation(s)
- Qiaoying Wang
- Department of Medicine, Leshan Vocational and Technical College, No. 1336, Middle Section of Qingyijiang Avenue, Shizhong District, Leshan City, Sichuan Province, China
| | - Changqiang Wu
- Medical Imaging Key Laboratory of Sichuan Province and School of Medical Imaging, North Sichuan Medical College, 55 Dongshun Road, Gaoping District, Nanchong, Sichuan Province, China
| | - Xiaoting Li
- Department of Medicine, Leshan Vocational and Technical College, No. 1336, Middle Section of Qingyijiang Avenue, Shizhong District, Leshan City, Sichuan Province, China
| | - Dixiao Yang
- Department of Medicine, Leshan Vocational and Technical College, No. 1336, Middle Section of Qingyijiang Avenue, Shizhong District, Leshan City, Sichuan Province, China
| | - Liangjun Shi
- Department of Medicine, Leshan Vocational and Technical College, No. 1336, Middle Section of Qingyijiang Avenue, Shizhong District, Leshan City, Sichuan Province, China
| |
Collapse
|
45
|
He M, Chen F, Shao D, Weis P, Wei Z, Sun W. Photoresponsive metallopolymer nanoparticles for cancer theranostics. Biomaterials 2021; 275:120915. [PMID: 34102525 DOI: 10.1016/j.biomaterials.2021.120915] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/12/2021] [Accepted: 05/20/2021] [Indexed: 12/13/2022]
Abstract
Over the past decades, transition metal complexes have been successfully used in anticancer phototherapies. They have shown promising properties in many different areas including photo-induced ligand exchange or release, rich excited state behavior, and versatile biochemical properties. When encorporated into polymeric frameworks and become part of nanostructures, photoresponsive metallopolymer nanoparticles (MPNs) show enhanced water solubility, extended blood circulation and increased tumor-specific accumulation, which greatly improves the tumor therapeutic effects compared to low-molecule-weight metal complexes. In this review, we aim to present the recent development of photoresponsive MPNs as therapeutic nanomedicines. This review will summarize four major areas separately, namely platinum-containing polymers, zinc-containing polymers, iridium-containing polymers and ruthenium-containing polymers. Representative MPNs of each type are discussed in terms of their design strategies, fabrication methods, and working mechanisms. Current challenges and future perspectives in this field are also highlighted.
Collapse
Affiliation(s)
- Maomao He
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China
| | - Fangman Chen
- Institutes for Life Sciences, School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong, 510630, China
| | - Dan Shao
- Institutes for Life Sciences, School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong, 510630, China
| | - Philipp Weis
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Zhiyong Wei
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China.
| | - Wen Sun
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China.
| |
Collapse
|
46
|
Levit SL, Tang C. Polymeric Nanoparticle Delivery of Combination Therapy with Synergistic Effects in Ovarian Cancer. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1048. [PMID: 33923947 PMCID: PMC8072532 DOI: 10.3390/nano11041048] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/10/2021] [Accepted: 04/12/2021] [Indexed: 12/23/2022]
Abstract
Treatment of ovarian cancer is challenging due to late stage diagnosis, acquired drug resistance mechanisms, and systemic toxicity of chemotherapeutic agents. Combination chemotherapy has the potential to enhance treatment efficacy by activation of multiple downstream pathways to overcome drug resistance and reducing required dosages. Sequence of delivery and the dosing schedule can further enhance treatment efficacy. Formulation of drug combinations into nanoparticles can further enhance treatment efficacy. Due to their versatility, polymer-based nanoparticles are an especially promising tool for clinical translation of combination therapies with tunable dosing schedules. We review polymer nanoparticle (e.g., micelles, dendrimers, and lipid nanoparticles) carriers of drug combinations formulated to treat ovarian cancer. In particular, the focus on this review is combinations of platinum and taxane agents (commonly used first line treatments for ovarian cancer) combined with other small molecule therapeutic agents. In vitro and in vivo drug potency are discussed with a focus on quantifiable synergistic effects. The effect of drug sequence and dosing schedule is examined. Computational approaches as a tool to predict synergistic drug combinations and dosing schedules as a tool for future nanoparticle design are also briefly discussed.
Collapse
Affiliation(s)
- Shani L Levit
- Chemical and Life Science Engineering Department, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Christina Tang
- Chemical and Life Science Engineering Department, Virginia Commonwealth University, Richmond, VA 23284, USA
| |
Collapse
|
47
|
Stimuli-responsive hydrogels for intratumoral drug delivery. Drug Discov Today 2021; 26:2397-2405. [PMID: 33892147 DOI: 10.1016/j.drudis.2021.04.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/30/2021] [Accepted: 04/11/2021] [Indexed: 12/13/2022]
Abstract
The ability of some hydrogels to exhibit a phase transition or change their structure in response to stimuli has been extensively explored for drug depot formation and controlled drug release. Taking advantage of the unique features of the tumor microenvironment (TME) or externally applied triggers, several injectable stimuli-responsive hydrogels have been described as promising candidates for intratumoral drug delivery. In this review, we provide a brief overview of the TME and highlight the advantages of intratumoral administration, followed by a summary of the reported strategies to endow hydrogels with responsiveness to physical (temperature and light), chemical (pH and redox potential), or biological (enzyme) stimuli.
Collapse
|
48
|
Injectable thermosensitive hydrogel-based drug delivery system for local cancer therapy. Colloids Surf B Biointerfaces 2021; 200:111581. [DOI: 10.1016/j.colsurfb.2021.111581] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 12/17/2020] [Accepted: 01/11/2021] [Indexed: 12/16/2022]
|
49
|
Zou L, Liu X, Li J, Li W, Zhang L, Fu C, Zhang J, Gu Z. Redox-sensitive carrier-free nanoparticles self-assembled by disulfide-linked paclitaxel-tetramethylpyrazine conjugate for combination cancer chemotherapy. Theranostics 2021; 11:4171-4186. [PMID: 33754055 PMCID: PMC7977472 DOI: 10.7150/thno.42260] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 01/17/2021] [Indexed: 12/21/2022] Open
Abstract
Rationale: Combinations of two or more therapeutic agents targeting different signaling pathways involved in tumor progression can have synergistic anticancer effects. However, combination chemotherapies are greatly limited by the different pharmacokinetics, tumor targeting, and cellular uptake capacities of the combined drugs. We have previously demonstrated the potential synergistic efficacy of paclitaxel (PTX) and the natural anti-angiogenic agent tetramethylpyrazine (TMP) for suppressing ovarian carcinoma growth. An efficient, facile, and smart nanosystem to deliver PTX and TMP simultaneously in vivo is greatly desired. Methods: We constructed a redox-sensitive nanosystem based on the amphiphilic PTX-ss-TMP conjugate, in which PTX and TMP are linked by a disulfide bond. We characterized the structure of the drug conjugate by 1H NMR and LC-MS, and then prepared PTX-ss-TMP NPs by a one-step nanoprecipitation method. We investigated the redox sensitivity, tumor-targeting ability, anticancer efficacy, and anti-angiogenesis activity of PTX-ss-TMP NPs in vitro and in vivo. Results: The amphiphilic PTX-ss-TMP conjugate readily self-assembled into stable nanoparticles in aqueous solution with a low critical association concentration of 1.35 µg/mL, well-defined spherical structure, small particle size (152 nm), high drug loading, redox-responsive drug release, high biocompatibility, and high storage stability. In cancer cells pretreated with GSH-OEt, PTX-ss-TMP NPs exhibited higher cytotoxicity, apoptosis rate, and cell-cycle arrest than monotherapy or combination therapy with free drugs, which was attributed to their improved cellular uptake and rapid intracellular drug release. Additionally, PTX-ss-TMP NPs also had a stronger anti-angiogenesis effect in HUVECs than free drug, which was mediated by VEGFR2-involved downstream signals. Finally, PTX-ss-TMP NPs showed tumor-specific accumulation and excellent antitumor activity in A2780 xenograft mice compared with free drug. Conclusions: These in vitro and in vivo results provide clear evidence that this redox-responsive carrier-free nanosystem with intrinsic amphiphilicity has great potential for combination cancer chemotherapy.
Collapse
|
50
|
Poustchi F, Amani H, Ahmadian Z, Niknezhad SV, Mehrabi S, Santos HA, Shahbazi M. Combination Therapy of Killing Diseases by Injectable Hydrogels: From Concept to Medical Applications. Adv Healthc Mater 2021; 10:e2001571. [PMID: 33274841 DOI: 10.1002/adhm.202001571] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/13/2020] [Indexed: 01/16/2023]
Abstract
The complexity of hard-to-treat diseases strongly undermines the therapeutic potential of available treatment options. Therefore, a paradigm shift from monotherapy toward combination therapy has been observed in clinical research to improve the efficiency of available treatment options. The advantages of combination therapy include the possibility of synchronous alteration of different biological pathways, reducing the required effective therapeutic dose, reducing drug resistance, and lowering the overall costs of treatment. The tunable physical properties, excellent biocompatibility, facile preparation, and ease of administration with minimal invasiveness of injectable hydrogels (IHs) have made them excellent candidates to solve the clinical and pharmacological limitations of present systems for multitherapy by direct delivery of therapeutic payloads and improving therapeutic responses through the formation of depots containing drugs, genes, cells, or a combination of them in the body after a single injection. In this review, currently available methods for the design and fabrication of IHs are systematically discussed in the first section. Next, as a step toward establishing IHs for future multimodal synergistic therapies, recent advances in cancer combination therapy, wound healing, and tissue engineering are addressed in detail in the following sections. Finally, opportunities and challenges associated with IHs for multitherapy are listed and further discussed.
Collapse
Affiliation(s)
- Fatemeh Poustchi
- Drug Research Program Division of Pharmaceutical Chemistry and Technology Faculty of Pharmacy University of Helsinki Helsinki FI‐00014 Finland
- Department of Nanotechnology University of Guilan Rasht Guilan 41996‐13765 Iran
| | - Hamed Amani
- Faculty of Advanced Technologies in Medicine, Department of Medical Nanotechnology Iran University of Medical Science Tehran 14496‐14535 Iran
| | - Zainab Ahmadian
- Department of Pharmaceutics School of Pharmacy Zanjan University of Medical Science Zanjan 45139‐56184 Iran
| | - Seyyed Vahid Niknezhad
- Burn and Wound Healing Research Center Shiraz University of Medical Sciences Shiraz 71987‐54361 Iran
| | - Soraya Mehrabi
- Faculty of Medicine, Department of Physiology Iran University of Medical Sciences Tehran 14496‐14535 Iran
| | - Hélder A. Santos
- Drug Research Program Division of Pharmaceutical Chemistry and Technology Faculty of Pharmacy University of Helsinki Helsinki FI‐00014 Finland
- Helsinki Institute of Life Science (HiLIFE) University of Helsinki Helsinki FI‐00014 Finland
| | - Mohammad‐Ali Shahbazi
- Drug Research Program Division of Pharmaceutical Chemistry and Technology Faculty of Pharmacy University of Helsinki Helsinki FI‐00014 Finland
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC) Zanjan University of Medical Sciences Zanjan 45139‐56184 Iran
| |
Collapse
|