1
|
Putranto AF, Petit-Etienne C, Cavalaglio S, Cabannes-Boué B, Panabiere M, Forcina G, Fleury G, Kogelschatz M, Zelsmann M. Controlled Anisotropic Wetting by Plasma Treatment for Directed Self-Assembly of High-χ Block Copolymers. ACS APPLIED MATERIALS & INTERFACES 2024; 16:27841-27849. [PMID: 38758246 DOI: 10.1021/acsami.4c01657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
The directed self-assembly (DSA) of block copolymers (BCPs) is a promising next-generation lithography technique for high-resolution patterning. However, achieving lithographically applicable BCP organization such as out-of-plane lamellae requires proper tuning of interfacial energies between the BCP domains and the substrate, which remains difficult to address effectively and efficiently with high-χ BCPs. Here, we present the successful generation of anisotropic wetting by plasma treatment on patterned spin-on-carbon (SOC) substrates and its application to the DSA of a high-χ Si-containing material, poly(1,1-dimethylsilacyclobutane)-block-polystyrene (PDMSB-b-PS), with a 9 nm half pitch. Exposing the SOC substrate to different plasma chemistries promotes the vertical alignment of the PDMSB-b-PS lamellae within the trenches. In particular, a patterned substrate treated with HBr/O2 plasma gives both a neutral wetting at the bottom interface and a strong PS-affine wetting at the sidewalls of the SOC trenches to efficiently guide the vertical BCP lamellae. Furthermore, prolonged exposure to HBr/O2 plasma enables an adjustment of the trench width and an increased density of BCP lines on the substrate. Experimental observations are in agreement with a free energy configurational model developed to describe the system. These advances, which could be easily implemented in industry, could contribute to the wider adoption of self-assembly techniques in microelectronics, and beyond to applications such as metasurfaces, surface-enhanced Raman spectroscopy, and sensing technologies.
Collapse
Affiliation(s)
- Achmad Fajar Putranto
- CNRS, CEA/LETI Minatec, Laboratoire des Technologies de la Microélectronique (LTM), Université Grenoble Alpes, 38000 Grenoble, France
| | - Camille Petit-Etienne
- CNRS, CEA/LETI Minatec, Laboratoire des Technologies de la Microélectronique (LTM), Université Grenoble Alpes, 38000 Grenoble, France
| | - Sébastien Cavalaglio
- CNRS, CEA/LETI Minatec, Laboratoire des Technologies de la Microélectronique (LTM), Université Grenoble Alpes, 38000 Grenoble, France
| | | | - Marie Panabiere
- CNRS, CEA/LETI Minatec, Laboratoire des Technologies de la Microélectronique (LTM), Université Grenoble Alpes, 38000 Grenoble, France
| | - Gianluca Forcina
- CNRS, CEA/LETI Minatec, Laboratoire des Technologies de la Microélectronique (LTM), Université Grenoble Alpes, 38000 Grenoble, France
| | - Guillaume Fleury
- CNRS, Bordeaux INP, LCPO, UMR 5629, Univ. Bordeaux, F-33600 Pessac, France
| | - Martin Kogelschatz
- CNRS, CEA/LETI Minatec, Laboratoire des Technologies de la Microélectronique (LTM), Université Grenoble Alpes, 38000 Grenoble, France
| | - Marc Zelsmann
- CNRS, CEA/LETI Minatec, Laboratoire des Technologies de la Microélectronique (LTM), Université Grenoble Alpes, 38000 Grenoble, France
| |
Collapse
|
2
|
Chevalier X, Pound-Lana G, Gomes Correia C, Cavalaglio S, Cabannes-Boué B, Restagno F, Miquelard-Garnier G, Roland S, Navarro C, Fleury G, Zelsmann M. Self-organization and dewetting kinetics in sub-10 nm diblock copolymer line/space lithography. NANOTECHNOLOGY 2023; 34:175602. [PMID: 36657158 DOI: 10.1088/1361-6528/acb49f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 01/19/2023] [Indexed: 06/17/2023]
Abstract
In this work, we investigated the self-assembly of a lamellar block copolymer (BCP) under different wetting conditions. We explored the influence of the chemical composition of under-layers and top-coats on the thin film stability, self-assembly kinetics and BCP domain orientation. Three different chemistries were chosen for these surface affinity modifiers and their composition was tuned in order to provide either neutral wetting (i.e. an out-of-plane lamellar structure), or affine wetting conditions (i.e. an in-plane lamellar structure) with respect to a sub-10 nm PS-b-PDMSB lamellar system. Using such controlled wetting configurations, the competition between the dewetting of the BCP layer and the self-organization kinetics was explored. We also evaluated the spreading parameter of the BCP films with respect to the configurations of surface-energy modifiers and demonstrated that BCP layers are intrinsically unstable to dewetting in a neutral configuration. Finally, the dewetting mechanisms were evaluated with respect to the different wetting configurations and we clearly observed that the rigidity of the top-coat is a key factor to delay BCP film instability.
Collapse
Affiliation(s)
- Xavier Chevalier
- ARKEMA France, GRL, Route Nationale 117, BP34, F-64170 Lacq, France
| | - Gwenaelle Pound-Lana
- Univ. Grenoble Alpes, CNRS, CEA/LETI Minatec, Grenoble INP, LTM, F-38000 Grenoble, France
| | | | - Sébastien Cavalaglio
- Univ. Grenoble Alpes, CNRS, CEA/LETI Minatec, Grenoble INP, LTM, F-38000 Grenoble, France
| | | | - Frédéric Restagno
- Laboratoire de Physique des Solides, UMR 8502, Univ. Paris Saclay, F-91405 Orsay, France
| | - Guillaume Miquelard-Garnier
- Laboratoire PIMM, Arts et Metiers Institute of Technology, CNRS, CNAM, HESAM Universite, F-75013 Paris, France
| | - Sébastien Roland
- Laboratoire PIMM, Arts et Metiers Institute of Technology, CNRS, CNAM, HESAM Universite, F-75013 Paris, France
| | | | - Guillaume Fleury
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600, Pessac, France
| | - Marc Zelsmann
- Univ. Grenoble Alpes, CNRS, CEA/LETI Minatec, Grenoble INP, LTM, F-38000 Grenoble, France
| |
Collapse
|
3
|
Hübner H, Niebuur BJ, Büttner T, Koch M, Stühn B, Kraus T, Scheschkewitz D, Gallei M. Self-Assembly of Amphiphilic Carbosilane-Based Block Copolymers in Organic Media and Structure Formation in Colloidal Confinement. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hanna Hübner
- Chair in Polymer Chemistry, Universität des Saarlandes, Campus Saarbrücken, 66123 Saarbrücken, Germany
| | - Bart-Jan Niebuur
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany
| | - Thomas Büttner
- Krupp-Chair of General and Inorganic Chemistry, Saarland University, 66123 Saarbrücken, Germany
| | - Marcus Koch
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany
| | - Bernd Stühn
- Institute for Condensed Matter Physics, Technical University of Darmstadt, Hochschulstraße 8, 64289 Darmstadt, Germany
| | - Tobias Kraus
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany
- Colloid and Interface Chemistry, Saarland University, Campus D2 2, 66123 Saarbrücken, Germany
| | - David Scheschkewitz
- Krupp-Chair of General and Inorganic Chemistry, Saarland University, 66123 Saarbrücken, Germany
| | - Markus Gallei
- Chair in Polymer Chemistry, Universität des Saarlandes, Campus Saarbrücken, 66123 Saarbrücken, Germany
- Saarene, Saarland Center for Energy Materials and Sustainability, Campus C4 2, 66123 Saarbrücken, Germany
| |
Collapse
|
4
|
Lai H, Zhang X, Huang G, Liu Y, Li W, Ji S. Directed self-assembly of poly(styrene-b-vinyl acetate) block copolymers on chemical patterns for sub-10 nm nanopatterning via thermal annealing. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
5
|
Pino G, Cummins C, Mantione D, Demazy N, Alvarez-Fernandez A, Guldin S, Fleury G, Hadziioannou G, Cloutet E, Brochon C. Design and Morphological Investigation of High-χ Catechol-Containing Styrenic Block Copolymers. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Guillaume Pino
- Université de Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600 Pessac, France
| | - Cian Cummins
- Université de Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600 Pessac, France
| | - Daniele Mantione
- POLYKEY Polymers, Joxe Mari Korta Center, Avda. Tolosa 72, 20018 Donostia-San Sebastian, Spain
| | - Nils Demazy
- Université de Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600 Pessac, France
| | - Alberto Alvarez-Fernandez
- Department of Chemical Engineering, University College London, Torrington Place, WC1E 6BT London, United Kingdom
| | - Stefan Guldin
- Department of Chemical Engineering, University College London, Torrington Place, WC1E 6BT London, United Kingdom
| | - Guillaume Fleury
- Université de Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600 Pessac, France
| | - Georges Hadziioannou
- Université de Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600 Pessac, France
| | - Eric Cloutet
- Université de Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600 Pessac, France
| | - Cyril Brochon
- Université de Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600 Pessac, France
| |
Collapse
|
6
|
Hübner H, Niebuur B, Janka O, Gemmer L, Koch M, Kraus T, Kickelbick G, Stühn B, Gallei M. Crystalline Carbosilane‐Based Block Copolymers: Synthesis by Anionic Polymerization and Morphology Evaluation in the Bulk State. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202200178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Hanna Hübner
- Chair in Polymer Chemistry Universität des Saarlandes Campus Saarbrücken Saarbrücken 66123 Germany
| | - Bart‐Jan Niebuur
- INM – Leibniz Institute for New Materials Campus D2 2 66123 Saarbrücken Germany
| | - Oliver Janka
- Inorganic Solid‐State Chemistry Saarland University Campus C4 1 66123 Saarbrücken Germany
| | - Lea Gemmer
- Chair in Polymer Chemistry Universität des Saarlandes Campus Saarbrücken Saarbrücken 66123 Germany
| | - Marcus Koch
- INM – Leibniz Institute for New Materials Campus D2 2 66123 Saarbrücken Germany
| | - Tobias Kraus
- INM – Leibniz Institute for New Materials Campus D2 2 66123 Saarbrücken Germany
- Colloid and Interface Chemistry Saarland University Campus D2 2 66123 Saarbrücken Germany
| | - Guido Kickelbick
- Inorganic Solid‐State Chemistry Saarland University Campus C4 1 66123 Saarbrücken Germany
| | - Bernd Stühn
- Institute for Condensed Matter Physics Technical University of Darmstadt Hochschulstraße 8 64289 Darmstadt Germany
| | - Markus Gallei
- Chair in Polymer Chemistry Universität des Saarlandes Campus Saarbrücken Saarbrücken 66123 Germany
- Saarene, Saarland Center for Energy Materials and Sustainability Campus C4 2 66123 Saarbrücken Germany
| |
Collapse
|
7
|
Shen Z, Luo K, Park SJ, Li D, Mahanthappa MK, Bates FS, Dorfman KD, Lodge TP, Siepmann JI. Stabilizing a Double Gyroid Network Phase with 2 nm Feature Size by Blending of Lamellar and Cylindrical Forming Block Oligomers. JACS AU 2022; 2:1405-1416. [PMID: 35783180 PMCID: PMC9241014 DOI: 10.1021/jacsau.2c00101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/20/2022] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
Molecular dynamics simulations are used to study binary blends of an AB-type diblock and an AB2-type miktoarm triblock amphiphiles (also known as high-χ block oligomers) consisting of sugar-based (A) and hydrocarbon (B) blocks. In their pure form, the AB diblock and AB2 triblock amphiphiles self-assemble into ordered lamellar (LAM) and cylindrical (CYL) structures, respectively. At intermediate compositions, however, the AB2-rich blend (0.2 ≤ x AB ≤ 0.4) forms a double gyroid (DG) network, whereas perforated lamellae (PL) are observed in the AB-rich blend (0.5 ≤ x AB ≤ 0.8). All of the ordered mesophases present domain pitches under 3 nm, with 1 nm feature sizes for the polar domains. Structural analyses reveal that the nonuniform interfacial curvatures of DG and PL structures are supported by local composition variations of the LAM- and CYL-forming amphiphiles. Self-consistent mean field theory calculations for blends of related AB and AB2 block polymers also show the DG network at intermediate compositions, when A is the minority block, but PL is not stable. This work provides molecular-level insights into how blending of shape-filling molecular architectures enables network phase formation with extremely small feature sizes over a wide composition range.
Collapse
Affiliation(s)
- Zhengyuan Shen
- Department
of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, Minnesota 55455-0132, United States
- Chemical
Theory Center, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455-0431, United States
| | - Ke Luo
- Chemical
Theory Center, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455-0431, United States
- Department
of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455-0431, United States
| | - So Jung Park
- Department
of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, Minnesota 55455-0132, United States
| | - Daoyuan Li
- Department
of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, Minnesota 55455-0132, United States
- Chemical
Theory Center, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455-0431, United States
| | - Mahesh K. Mahanthappa
- Department
of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, Minnesota 55455-0132, United States
| | - Frank S. Bates
- Department
of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, Minnesota 55455-0132, United States
| | - Kevin D. Dorfman
- Department
of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, Minnesota 55455-0132, United States
| | - Timothy P. Lodge
- Department
of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, Minnesota 55455-0132, United States
- Department
of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455-0431, United States
| | - J. Ilja Siepmann
- Department
of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, Minnesota 55455-0132, United States
- Chemical
Theory Center, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455-0431, United States
- Department
of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455-0431, United States
| |
Collapse
|
8
|
Pound-Lana G, Bézard P, Petit-Etienne C, Cavalaglio S, Cunge G, Cabannes-Boué B, Fleury G, Chevalier X, Zelsmann M. Dry-Etching Processes for High-Aspect-Ratio Features with Sub-10 nm Resolution High-χ Block Copolymers. ACS APPLIED MATERIALS & INTERFACES 2021; 13:49184-49193. [PMID: 34636239 DOI: 10.1021/acsami.1c13503] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Directed self-assembly of block copolymers (BCP) is a very attractive technique for the realization of functional nanostructures at high resolution. In this work, we developed full dry-etching strategies for BCP nanolithography using an 18 nm pitch lamellar silicon-containing block copolymer. Both an oxidizing Ar/O2 plasma and a nonoxidizing H2/N2 plasma are used to remove the topcoat material of our BCP stack and reveal the perpendicular lamellae. Under Ar/O2 plasma, an interfacial layer stops the etch process at the topcoat/BCP interface, which provides an etch-stop but also requires an additional CF4-based breakthrough plasma for further etching. This interfacial layer is not present in H2/N2. Increasing the H2/N2 ratio leads to more profound modifications of the silicon-containing lamellae, for which a chemistry in He/N2/O2 rather than Ar/O2 plasma produces a smoother and more regular lithographic mask. Finally, these features are successfully transferred into silicon, silicon-on-insulator, and silicon nitride substrates. This work highlights the performance of a silicon-containing block copolymer at 18 nm pitch to pattern relevant hard-mask materials for various applications, including microelectronics.
Collapse
Affiliation(s)
- Gwenaelle Pound-Lana
- Univ. Grenoble Alpes, CNRS, CEA/LETI Minatec, Grenoble INP, LTM, 38000 Grenoble, France
| | - Philippe Bézard
- Univ. Grenoble Alpes, CNRS, CEA/LETI Minatec, Grenoble INP, LTM, 38000 Grenoble, France
| | - Camille Petit-Etienne
- Univ. Grenoble Alpes, CNRS, CEA/LETI Minatec, Grenoble INP, LTM, 38000 Grenoble, France
| | - Sébastien Cavalaglio
- Univ. Grenoble Alpes, CNRS, CEA/LETI Minatec, Grenoble INP, LTM, 38000 Grenoble, France
| | - Gilles Cunge
- Univ. Grenoble Alpes, CNRS, CEA/LETI Minatec, Grenoble INP, LTM, 38000 Grenoble, France
| | | | - Guillaume Fleury
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600 Pessac, France
| | - Xavier Chevalier
- ARKEMA FRANCE, GRL, Route Nationale 117, BP34, 64170 Lacq, France
| | - Marc Zelsmann
- Univ. Grenoble Alpes, CNRS, CEA/LETI Minatec, Grenoble INP, LTM, 38000 Grenoble, France
| |
Collapse
|
9
|
Chevalier X, Correia CG, Pound-Lana G, Bézard P, Sérégé M, Petit-Etienne C, Gay G, Cunge G, Cabannes-Boué B, Nicolet C, Navarro C, Cayrefourcq I, Müller M, Hadziioannou G, Iliopoulos I, Fleury G, Zelsmann M. Multifunctional Top-Coats Strategy for DSA of High-χ Block Copolymers. J PHOTOPOLYM SCI TEC 2021. [DOI: 10.2494/photopolymer.34.11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Marcus Müller
- Georg-August Universität Göttingen, Institute for Theoretical Physics
| | | | - Ilias Iliopoulos
- Laboratoire PIMM, Arts et Métiers Institute of Technology, CNRS, Cnam, HESAM Université
| | | | | |
Collapse
|
10
|
Chevalier X, Gomes Correia C, Pound-Lana G, Bézard P, Sérégé M, Petit-Etienne C, Gay G, Cunge G, Cabannes-Boué B, Nicolet C, Navarro C, Cayrefourcq I, Müller M, Hadziioannou G, Iliopoulos I, Fleury G, Zelsmann M. Lithographically Defined Cross-Linkable Top Coats for Nanomanufacturing with High-χ Block Copolymers. ACS APPLIED MATERIALS & INTERFACES 2021; 13:11224-11236. [PMID: 33621463 DOI: 10.1021/acsami.1c00694] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The directed self-assembly (DSA) of block copolymers (BCPs) is a powerful method for the manufacture of high-resolution features. Critical issues remain to be addressed for successful implementation of DSA, such as dewetting and controlled orientation of BCP domains through physicochemical manipulations at the BCP interfaces, and the spatial positioning and registration of the BCP features. Here, we introduce novel top-coat (TC) materials designed to undergo cross-linking reactions triggered by thermal or photoactivation processes. The cross-linked TC layer with adjusted composition induces a mechanical confinement of the BCP layer, suppressing its dewetting while promoting perpendicular orientation of BCP domains. The selection of areas of interest with perpendicular features is performed directly on the patternable TC layer via a lithography step and leverages attractive integration pathways for the generation of locally controlled BCP patterns and nanostructured BCP multilayers.
Collapse
Affiliation(s)
- Xavier Chevalier
- ARKEMA FRANCE, GRL, Route Nationale 117, BP34 64170 Lacq, France
| | - Cindy Gomes Correia
- University of Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600 Pessac, France
| | - Gwenaelle Pound-Lana
- University of Grenoble Alpes, CNRS, CEA/LETI Minatec, Grenoble INP, LTM, 38000 Grenoble, France
| | - Philippe Bézard
- University of Grenoble Alpes, CNRS, CEA/LETI Minatec, Grenoble INP, LTM, 38000 Grenoble, France
| | - Matthieu Sérégé
- University of Grenoble Alpes, CNRS, CEA/LETI Minatec, Grenoble INP, LTM, 38000 Grenoble, France
| | - Camille Petit-Etienne
- University of Grenoble Alpes, CNRS, CEA/LETI Minatec, Grenoble INP, LTM, 38000 Grenoble, France
| | - Guillaume Gay
- University of Grenoble Alpes, CNRS, CEA/LETI Minatec, Grenoble INP, LTM, 38000 Grenoble, France
| | - Gilles Cunge
- University of Grenoble Alpes, CNRS, CEA/LETI Minatec, Grenoble INP, LTM, 38000 Grenoble, France
| | | | - Célia Nicolet
- ARKEMA FRANCE, GRL, Route Nationale 117, BP34 64170 Lacq, France
| | | | - Ian Cayrefourcq
- ARKEMA FRANCE, GRL, Route Nationale 117, BP34 64170 Lacq, France
| | - Marcus Müller
- Georg-August Universität Göttingen, Institute for Theoretical Physics, 37077 Göttingen, Germany
| | - Georges Hadziioannou
- University of Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600 Pessac, France
| | - Ilias Iliopoulos
- Laboratoire PIMM, Arts et Métiers Institute of Technology, CNRS, Cnam, HESAM Université, 151 Boulevard de l'Hôpital, 75013 Paris, France
| | - Guillaume Fleury
- University of Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600 Pessac, France
| | - Marc Zelsmann
- University of Grenoble Alpes, CNRS, CEA/LETI Minatec, Grenoble INP, LTM, 38000 Grenoble, France
| |
Collapse
|
11
|
Shen Z, Chen JL, Vernadskaia V, Ertem SP, Mahanthappa MK, Hillmyer MA, Reineke TM, Lodge TP, Siepmann JI. From Order to Disorder: Computational Design of Triblock Amphiphiles with 1 nm Domains. J Am Chem Soc 2020; 142:9352-9362. [PMID: 32392052 DOI: 10.1021/jacs.0c01829] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Using molecular dynamics simulations and transferable force fields, we designed a series of symmetric triblock amphiphiles (or high-χ block oligomers) comprising incompatible sugar-based (A) and hydrocarbon (B) blocks that can self-assemble into ordered nanostructures with sub-1 nm domains and full domain pitches as small as 1.2 nm. Depending on the chain length and block sequence, the ordered morphologies include lamellae, perforated lamellae, and hexagonally perforated lamellae. The self-assembly of these amphiphiles bears some similarities, but also some differences, to those formed by symmetric triblock polymers. In lamellae formed by ABA amphiphiles, the fraction of B blocks "bridging" adjacent polar domains is nearly unity, much higher than that found for symmetric triblock polymers, and the bridging molecules adopt elongated conformations. In contrast, "looping" conformations are prevalent for A blocks of BAB amphiphiles. Above the order-disorder transition temperature, the disordered states are locally well-segregated yet the B blocks of ABA amphiphiles are significantly less stretched than in the lamellar phases. Analysis of both hydrogen-bonded and nonpolar clusters reveals the bicontinuous nature of these network phases. This simulation study furnishes detailed insights into structure-property relationships for mesophase formation on the 1 nm length scale that will aid further miniaturization for numerous applications.
Collapse
Affiliation(s)
- Zhengyuan Shen
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, Minnesota 55455-0132, United States.,Chemical Theory Center, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455-0431, United States
| | - Jingyi L Chen
- Chemical Theory Center, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455-0431, United States.,Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455-0431, United States
| | - Viktoriia Vernadskaia
- Chemical Theory Center, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455-0431, United States
| | - S Piril Ertem
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455-0431, United States
| | - Mahesh K Mahanthappa
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, Minnesota 55455-0132, United States
| | - Marc A Hillmyer
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455-0431, United States
| | - Theresa M Reineke
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455-0431, United States
| | - Timothy P Lodge
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, Minnesota 55455-0132, United States.,Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455-0431, United States
| | - J Ilja Siepmann
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, Minnesota 55455-0132, United States.,Chemical Theory Center, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455-0431, United States.,Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455-0431, United States
| |
Collapse
|
12
|
Spiridon MC, Demazy N, Brochon C, Cloutet E, Hadziioannou G, Aissou K, Fleury G. Optical Alignment of Si-Containing Nanodomains Formed by Photoresponsive Amorphous Block Copolymer Thin Films. Macromolecules 2020. [DOI: 10.1021/acs.macromol.9b01551] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Nils Demazy
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600 Pessac, France
| | - Cyril Brochon
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600 Pessac, France
| | - Eric Cloutet
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600 Pessac, France
| | | | - Karim Aissou
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600 Pessac, France
| | - Guillaume Fleury
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600 Pessac, France
| |
Collapse
|
13
|
Barreda L, Shen Z, Chen QP, Lodge TP, Siepmann JI, Hillmyer MA. Synthesis, Simulation, and Self-Assembly of a Model Amphiphile To Push the Limits of Block Polymer Nanopatterning. NANO LETTERS 2019; 19:4458-4462. [PMID: 31188012 DOI: 10.1021/acs.nanolett.9b01248] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Efforts to create block-polymer-based templates with ultrasmall domain sizes has stimulated integrated experimental and theoretical work in an effort to design and prepare self-assembled systems that can achieve unprecedented domain sizes. We recently reported the utilization of molecular dynamics simulations with transferable force fields to identify amphiphilic oligomers capable of self-assembling into ordered layered and cylindrical morphologies with sub-3 nm domain sizes. Motivated by these predictions, we prepared a sugar-based amphiphile with a hydrocarbon tail that shows thermotropic self-assembly to give a lamellar mesophase with a 3.5 nm pitch and sub-2 nm nanodomains above the melting temperature and below the liquid-crystalline clearing temperature. Complementary atomistic simulations of the molecular assemblies gave morphologies and spacings that were in near-perfect agreement with the experimental results. The effective combination of molecular design, simulation, synthesis, and structural characterization demonstrates the power of this integrated approach for next-generation templating technologies.
Collapse
Affiliation(s)
- Leonel Barreda
- Department of Chemistry , University of Minnesota , 207 Pleasant Street SE , Minneapolis , Minnesota 55455-0431 , United States
| | - Zhengyuan Shen
- Department of Chemistry , University of Minnesota , 207 Pleasant Street SE , Minneapolis , Minnesota 55455-0431 , United States
- Chemical Theory Center , University of Minnesota , 207 Pleasant Street SE , Minneapolis , Minnesota 55455-0431 , United States
- Department of Chemical Engineering and Materials Science , University of Minnesota , 421 Washington Avenue SE , Minneapolis , Minnesota 55455-0132 , United States
| | - Qile P Chen
- Department of Chemistry , University of Minnesota , 207 Pleasant Street SE , Minneapolis , Minnesota 55455-0431 , United States
- Chemical Theory Center , University of Minnesota , 207 Pleasant Street SE , Minneapolis , Minnesota 55455-0431 , United States
- Department of Chemical Engineering and Materials Science , University of Minnesota , 421 Washington Avenue SE , Minneapolis , Minnesota 55455-0132 , United States
| | - Timothy P Lodge
- Department of Chemistry , University of Minnesota , 207 Pleasant Street SE , Minneapolis , Minnesota 55455-0431 , United States
- Department of Chemical Engineering and Materials Science , University of Minnesota , 421 Washington Avenue SE , Minneapolis , Minnesota 55455-0132 , United States
| | - J Ilja Siepmann
- Department of Chemistry , University of Minnesota , 207 Pleasant Street SE , Minneapolis , Minnesota 55455-0431 , United States
- Chemical Theory Center , University of Minnesota , 207 Pleasant Street SE , Minneapolis , Minnesota 55455-0431 , United States
- Department of Chemical Engineering and Materials Science , University of Minnesota , 421 Washington Avenue SE , Minneapolis , Minnesota 55455-0132 , United States
| | - Marc A Hillmyer
- Department of Chemistry , University of Minnesota , 207 Pleasant Street SE , Minneapolis , Minnesota 55455-0431 , United States
| |
Collapse
|
14
|
Aissou K, Mumtaz M, Bouzit H, Pécastaings G, Portale G, Fleury G, Hadziioannou G. Bicontinuous Network Nanostructure with Tunable Thickness Formed on Asymmetric Triblock Terpolymer Thick Films. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00572] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Karim Aissou
- Institut Européen des Membranes, Université de Montpellier—CNRS—ENSCM, 300 Avenue du Professeur Emile Jeanbrau, F-34090 Montpellier, France
| | - Muhammad Mumtaz
- Laboratoire de Chimie des Polymères Organiques, Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600 Pessac, France
| | - Hana Bouzit
- Institut Européen des Membranes, Université de Montpellier—CNRS—ENSCM, 300 Avenue du Professeur Emile Jeanbrau, F-34090 Montpellier, France
| | - Gilles Pécastaings
- Laboratoire de Chimie des Polymères Organiques, Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600 Pessac, France
| | - Giuseppe Portale
- Macromolecular Chemistry & New Polymeric Materials, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG, The Netherlands
| | - Guillaume Fleury
- Laboratoire de Chimie des Polymères Organiques, Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600 Pessac, France
| | - Georges Hadziioannou
- Laboratoire de Chimie des Polymères Organiques, Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600 Pessac, France
| |
Collapse
|
15
|
Watanabe K, Katsuhara S, Mamiya H, Yamamoto T, Tajima K, Isono T, Satoh T. Downsizing feature of microphase-separated structures via intramolecular crosslinking of block copolymers. Chem Sci 2019; 10:3330-3339. [PMID: 30996920 PMCID: PMC6429781 DOI: 10.1039/c8sc05016c] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 01/11/2019] [Indexed: 11/21/2022] Open
Abstract
A novel strategy for downsizing the feature of microphase-separated structures was developed via the intramolecular crosslinking reaction of block copolymers (BCPs) without changing the molecular weight. A series of BCPs consisting of poly[styrene-st-(p-3-butenyl styrene)] and poly(rac-lactide) (SBS-LA) was subjected to Ru-catalyzed olefin metathesis under highly diluted conditions to produce intramolecularly crosslinked BCPs (SBS(cl)-LAs). Small-angle X-ray scattering measurement and transmission electron microscopy observation of the SBS(cl)-LAs revealed feature size reduction in lamellar (LAM) and hexagonally close-packed cylinder (HEX) structures in the bulk state, which was surely due to the restricted chain dimensions of the intramolecularly crosslinked SBS block. Notably, the degree of size reduction was controllable by varying the crosslink density, with a maximum decrease of 22% in the LAM spacing. In addition, we successfully observed the downsizing of the HEX structure in the thin film state using atomic force microscopy, indicating the applicability of the present methodology to next-generation lithography technology.
Collapse
Affiliation(s)
- Kodai Watanabe
- Faculty of Engineering and Graduate School of Chemical Sciences and Engineering , Hokkaido University , Sapporo 060-8628 , Japan . ;
| | - Satoshi Katsuhara
- Faculty of Engineering and Graduate School of Chemical Sciences and Engineering , Hokkaido University , Sapporo 060-8628 , Japan . ;
| | - Hiroaki Mamiya
- Quantum Beam Unit , Advanced Key Technologies Division , National Institute for Materials Science , Ibaraki 305-0047 , Japan
| | - Takuya Yamamoto
- Faculty of Engineering and Graduate School of Chemical Sciences and Engineering , Hokkaido University , Sapporo 060-8628 , Japan . ;
| | - Kenji Tajima
- Faculty of Engineering and Graduate School of Chemical Sciences and Engineering , Hokkaido University , Sapporo 060-8628 , Japan . ;
| | - Takuya Isono
- Faculty of Engineering and Graduate School of Chemical Sciences and Engineering , Hokkaido University , Sapporo 060-8628 , Japan . ;
| | - Toshifumi Satoh
- Faculty of Engineering and Graduate School of Chemical Sciences and Engineering , Hokkaido University , Sapporo 060-8628 , Japan . ;
| |
Collapse
|