1
|
Kovács MM, Fritsch B, Lahn L, Bachmann J, Kasian O, Mayrhofer KJJ, Hutzler A, Dworschak D. Electrospun Iridium-Based Nanofiber Catalysts for Oxygen Evolution Reaction: Influence of Calcination on Activity-Stability Relation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:52179-52190. [PMID: 39293816 PMCID: PMC11450683 DOI: 10.1021/acsami.4c07831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/02/2024] [Accepted: 09/08/2024] [Indexed: 09/20/2024]
Abstract
The enhanced utilization of noble metal catalysts through highly porous nanostructures is crucial to advancing the commercialization prospects of proton exchange membrane water electrolysis (PEMWE). In this study, hierarchically structured IrOx-based nanofiber catalyst materials for acidic water electrolysis are synthesized by electrospinning, a process known for its scalability and ease of operation. A calcination study at various temperatures from 400 to 800 °C is employed to find the best candidates for both electrocatalytic activity and stability. Morphology, structure, phase, and chemical composition are investigated using a scale-bridging approach by SEM, TEM, XRD, and XPS to shed light on the structure-function relationship of the thermally prepared nanofibers. Activity and stability are monitored by a scanning flow cell (SFC) coupled with an inductively coupled plasma mass spectrometer (ICP-MS). We evaluate the dissolution of all metals potentially incorporated into the final catalyst material throughout the synthesis pathway. Despite the opposite trend of performance and stability, the present study demonstrates that an optimum between these two aspects can be achieved at 600 °C, exhibiting values that are 1.4 and 2.4 times higher than those of the commercial reference material, respectively. The dissolution of metal contaminations such as Ni, Fe, and Cr remains minimal, exhibiting no correlation with the steps of the electrochemical protocol applied, thus exerting a negligible influence on the stability of the nanofibrous catalyst materials. This work demonstrates the scalability of electrospinning to produce nanofibers with enhanced catalyst utilization and their testing by SFC-ICP-MS. Moreover, it illustrates the influence of calcination temperature on the structure and chemical composition of the nanofibers, resulting in outstanding electrocatalytic performance and stability compared to commercial catalyst materials for PEMWE.
Collapse
Affiliation(s)
- Miklós Márton Kovács
- Forschungszentrum
Jülich GmbH, Helmholtz Institute Erlangen-Nürnberg for
Renewable Energy (IET-2), 91058 Erlangen, Germany
- Friedrich-Alexander-Universität
Erlangen-Nürnberg, Department of Chemical
and Biological Engineering, 91058 Erlangen, Germany
| | - Birk Fritsch
- Forschungszentrum
Jülich GmbH, Helmholtz Institute Erlangen-Nürnberg for
Renewable Energy (IET-2), 91058 Erlangen, Germany
| | - Leopold Lahn
- Forschungszentrum
Jülich GmbH, Helmholtz Institute Erlangen-Nürnberg for
Renewable Energy (IET-2), 91058 Erlangen, Germany
- Helmholtz-Zentrum
Berlin für Materialien und Energie GmbH, Dynamic Electrocatalytic Interfaces, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
- Friedrich-Alexander-Universität
Erlangen-Nürnberg, Department of
Materials Science and Engineering, 91058 Erlangen, Germany
| | - Julien Bachmann
- Friedrich-Alexander-Universität
Erlangen-Nürnberg, Chemistry of Thin
Film Materials, IZNF, 91058 Erlangen, Germany
| | - Olga Kasian
- Forschungszentrum
Jülich GmbH, Helmholtz Institute Erlangen-Nürnberg for
Renewable Energy (IET-2), 91058 Erlangen, Germany
- Helmholtz-Zentrum
Berlin für Materialien und Energie GmbH, Dynamic Electrocatalytic Interfaces, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
- Friedrich-Alexander-Universität
Erlangen-Nürnberg, Department of
Materials Science and Engineering, 91058 Erlangen, Germany
| | - Karl J. J. Mayrhofer
- Forschungszentrum
Jülich GmbH, Helmholtz Institute Erlangen-Nürnberg for
Renewable Energy (IET-2), 91058 Erlangen, Germany
- Friedrich-Alexander-Universität
Erlangen-Nürnberg, Department of Chemical
and Biological Engineering, 91058 Erlangen, Germany
| | - Andreas Hutzler
- Forschungszentrum
Jülich GmbH, Helmholtz Institute Erlangen-Nürnberg for
Renewable Energy (IET-2), 91058 Erlangen, Germany
| | - Dominik Dworschak
- Forschungszentrum
Jülich GmbH, Helmholtz Institute Erlangen-Nürnberg for
Renewable Energy (IET-2), 91058 Erlangen, Germany
| |
Collapse
|
2
|
Xu C, Li Y, Li D, Zhang Y, Liu B, Akhon MDH, Huo P. Electrospinning-derived transition metal/carbon nanofiber composites as electrocatalysts for Zn-air batteries. NANOSCALE 2024; 16:8286-8306. [PMID: 38602047 DOI: 10.1039/d4nr00389f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
The sluggish kinetics of the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) significantly impede the broader implementation of Zn-air batteries (ZABs), underscoring the necessity for advanced high-efficiency materials to catalyze these electrochemical processes. Recent advancements have highlighted the potential of transition metal/carbon nanofiber (TM/CNF) composite materials, synthesized via electrospinning technology, due to their expansive surface area, profusion of active sites, and elevated catalytic efficacy. This review comprehensively examines the structural characteristics of TM/CNFs, with a particular emphasis on the pivotal role of electrospinning technology in fabricating diverse structural configurations. Additionally, it delves into the mechanistic underpinnings of various strategies aimed at augmenting the catalytic activity of TM/CNFs. A meticulous discourse is also presented on the application scope of TM/CNFs in the realm of electrocatalysis, with a special focus on their impact on the performance of assembled ZABs. Lastly, this review encapsulates the challenges and future prospects in the development of TM/CNF composite materials via electrospinning, aiming to provide an exhaustive understanding of the current state of research in this domain and to foster further advancements in the commercialization of ZABs.
Collapse
Affiliation(s)
- Chengxiao Xu
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255000, China.
| | - Yuzheng Li
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255000, China.
| | - Daming Li
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255000, China.
| | - Yingjie Zhang
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255000, China.
| | - Bo Liu
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255000, China.
| | - M D Hasan Akhon
- School of mechanical engineering, Shandong University of Technology, Zibo 255000, China
| | - Peipei Huo
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255000, China.
| |
Collapse
|
3
|
Yang Y, Zhou T, Zeng Z, Hu Y, Yang F, Sun W, He L. Novel sulfate solid supported binary Ru-Ir oxides for superior electrocatalytic activity towards OER and CER. J Colloid Interface Sci 2024; 659:191-202. [PMID: 38176229 DOI: 10.1016/j.jcis.2023.12.178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/23/2023] [Accepted: 12/29/2023] [Indexed: 01/06/2024]
Abstract
Electrolysis for producing hydrogen powered by renewable electricity can be dramatically expanded by adapting different electrolytes (brine, seawater or pure water), which means the anode materials must stand up to complex electrolyte conditions. Here, a novel catalyst/support hybrid of binary Ru3.5Ir1Ox supported by barium strontium sulfate (BaSrSO4) was synthesized (RuIrOx/BSS) by exchanging the anion ligands of support. The as-synthesized RuIrOx/BSS exhibits compelling oxygen evolution (OER) and chlorine evolution (CER) performances, which affords to 10 mA cm-2 with only overpotential of 244 mV and 38 mV, respectively. The performed X-ray adsorption spectra clearly indicate the presence of an interface charge transfer effect, which results in the assignment of more electrons to the d orbitals of the Ru and Ir sites. The theoretical calculations demonstrated that the electronic structures of the catalytic active sites were modulated to give a lower overpotential, confirming the intrinsically high OER and CER catalytic activity.
Collapse
Affiliation(s)
- Yifei Yang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, College of Ecology and Environment, Hainan University, 58 Renmin Road, Haikou 570228, PR China
| | - Tingxi Zhou
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, College of Ecology and Environment, Hainan University, 58 Renmin Road, Haikou 570228, PR China
| | - Zhen Zeng
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, College of Ecology and Environment, Hainan University, 58 Renmin Road, Haikou 570228, PR China
| | - Yuling Hu
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, College of Ecology and Environment, Hainan University, 58 Renmin Road, Haikou 570228, PR China
| | - Fei Yang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, College of Ecology and Environment, Hainan University, 58 Renmin Road, Haikou 570228, PR China
| | - Wei Sun
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, College of Ecology and Environment, Hainan University, 58 Renmin Road, Haikou 570228, PR China.
| | - Leilei He
- Zhejiang Provincial Key Laboratory of Water Science and Technology, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, Zhejiang 314006, PR China.
| |
Collapse
|
4
|
He F, Wang Y, Liu J, Yao X. One-dimensional carbon based nanoreactor fabrication by electrospinning for sustainable catalysis. EXPLORATION (BEIJING, CHINA) 2023; 3:20220164. [PMID: 37933386 PMCID: PMC10624385 DOI: 10.1002/exp.20220164] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 03/10/2023] [Indexed: 11/08/2023]
Abstract
An efficient and economical electrocatalyst as kinetic support is key to electrochemical reactions. For this reason, chemists have been working to investigate the basic changing of chemical principles when the system is confined in limited space with nanometer-scale dimensions or sub-microliter volumes. Inspired by biological research, the design and construction of a closed reaction environment, namely the reactor, has attracted more and more interest in chemistry, biology, and materials science. In particular, nanoreactors became a high-profile rising star and different types of nanoreactors have been fabricated. Compared with the traditional particle nanoreactor, the one-dimensional (1D) carbon-based nanoreactor prepared by the electrospinning process has better electrolyte diffusion, charge transfer capabilities, and outstanding catalytic activity and selectivity than the traditional particle catalyst which has great application potential in various electrochemical catalytic reactions.
Collapse
Affiliation(s)
- Fagui He
- State Key Laboratory of Catalysis, Dalian Institute of Chemical PhysicsChinese Academy of SciencesDalianLiaoningChina
| | - Yiyan Wang
- DICP‐Surrey Joint Centre for Future Materials, Department of Chemical and Process Engineering, and Advanced Technology InstituteUniversity of SurreyGuilfordSurreyUK
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Shanghai Research Institute of Petrochemical TechnologySinopecShanghaiChina
| | - Jian Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical PhysicsChinese Academy of SciencesDalianLiaoningChina
- DICP‐Surrey Joint Centre for Future Materials, Department of Chemical and Process Engineering, and Advanced Technology InstituteUniversity of SurreyGuilfordSurreyUK
- Shanghai Key Laboratory of Molecular Catalysis and Innovative MaterialsFudan UniversityShanghaiP. R. China
| | - Xiangdong Yao
- School of Advanced EnergySun‐yat Sen University (Shenzhen)ShenzhenGuangdongChina
| |
Collapse
|
5
|
Liu Z, Lu Y, Cui Z, Qi R. Coaxial Nanofiber IrO x@SbSnO x as an Efficient Electrocatalyst for Proton Exchange Membrane Dehumidifier. ACS APPLIED MATERIALS & INTERFACES 2023; 15:10606-10620. [PMID: 36791314 DOI: 10.1021/acsami.2c18375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Development of efficient catalysts for oxygen evolution reaction (OER) remains challenging in PEM dehumidifier or vapor electrolyzer. This study developed novel coaxial IrOx@SbSnOx nanofiber (NF) catalysts by electrospinning using a dual-channel needle. This method ensures the fibrous structure and the uniform loading of Ir oxide on the support of antimony tin oxide (ATO). IrO2@SbSnOx nanoparticles were synthesized for comparison. Characterizations showed that the active area and charge transfer resistance of NF was 1.47 times and 17.72% of that of commercial ones, respectively. The overpotential of NF at 10 mA·cm-2 was 359 mV, much smaller than that of commercial IrO2 (418 mV). In addition, the reaction overpotential of NF increased by only 38 mV after 1000 cyclic voltammetry cycles, indicating good electrochemical stability. To explore the enhancement mechanism, first-principles calculations were conducted for theoretically simulating the hetero-structures. Based on d-band theory, the structure formed between ATO and IrO2 can effectively weaken the adsorption of oxygen intermediates on the catalyst surface, which reduces the OER energy barrier from 1.705 to 1.632 eV, causing an over 15% decrease of overpotential after loading on ATO. As a practical attempt, we applied the new catalysts in real PEM assembly for air dehumidification and found that the performance was improved by about 2 times compared with that using commercial catalysts. This study provides a research direction for the design of one-dimensional NF catalysts and their using in PEM applications.
Collapse
Affiliation(s)
- Zhen Liu
- Key Laboratory of Enhanced Heat Transfer and Energy Conservation of Education Ministry, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Ying Lu
- Key Laboratory of Enhanced Heat Transfer and Energy Conservation of Education Ministry, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Zhuoan Cui
- Key Laboratory of Enhanced Heat Transfer and Energy Conservation of Education Ministry, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Ronghui Qi
- Key Laboratory of Enhanced Heat Transfer and Energy Conservation of Education Ministry, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
6
|
Xu H, Yuan J, He G, Chen H. Current and future trends for spinel-type electrocatalysts in electrocatalytic oxygen evolution reaction. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
7
|
Song M, Lu X, Du M, Chen Z, Zhu C, Xu H, Cheng W, Zhuang W, Li Z, Tian L. Electronic and architecture engineering of hammer-shaped Ir–NiMoO 4-ZIF for effective oxygen evolution. CrystEngComm 2022. [DOI: 10.1039/d2ce00924b] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Electronic and architecture engineering is realized via doping an ultralow amount of Ir into NiMoO4-ZIF hammers to achieve outstanding electrocatalytic OER performance.
Collapse
Affiliation(s)
- Ming Song
- School of Materials and Chemical Engineering, Xuzhou University of Technology, 221018, PR China
| | - Xinhu Lu
- School of Materials and Chemical Engineering, Xuzhou University of Technology, 221018, PR China
| | - Minglin Du
- School of Materials and Chemical Engineering, Xuzhou University of Technology, 221018, PR China
| | - Zhenyang Chen
- School of Materials and Chemical Engineering, Xuzhou University of Technology, 221018, PR China
| | - Chen Zhu
- School of Materials and Chemical Engineering, Xuzhou University of Technology, 221018, PR China
| | - Hui Xu
- School of Materials and Chemical Engineering, Xuzhou University of Technology, 221018, PR China
| | - Wenjing Cheng
- School of Chemistry and Environmental Science, Yili Normal University, 835000, PR China
| | - Wenchang Zhuang
- School of Materials and Chemical Engineering, Xuzhou University of Technology, 221018, PR China
| | - Zhao Li
- School of Materials and Chemical Engineering, Xuzhou University of Technology, 221018, PR China
| | - Lin Tian
- School of Materials and Chemical Engineering, Xuzhou University of Technology, 221018, PR China
- School of Chemistry and Environmental Science, Yili Normal University, 835000, PR China
| |
Collapse
|
8
|
Zhao R, Wang Z, Xu Q, Niu X, Han Y, Qin Y, Wang Q. Self-supported amorphous iridium oxide catalysts for highly efficient and durable oxygen evolution reaction in acidic media. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138955] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
9
|
Kim Y, Yu A, Lee Y. Iridium‐cobalt
alloy nanotubes as a bifunctional electrocatalyst for
pH‐universal
overall water splitting. B KOREAN CHEM SOC 2021. [DOI: 10.1002/bkcs.12382] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Yoonkyeong Kim
- Department of Chemistry and Nanoscience Ewha Womans University Seoul South Korea
| | - Areum Yu
- Department of Chemistry and Nanoscience Ewha Womans University Seoul South Korea
| | - Youngmi Lee
- Department of Chemistry and Nanoscience Ewha Womans University Seoul South Korea
| |
Collapse
|
10
|
Sun W, Wang Z, Tian X, Deng H, Liao J, Ma C, Yang J, Gong X, Huang W, Ge C. In situ formation of grain boundaries on a supported hybrid to boost water oxidation activity of iridium oxide. NANOSCALE 2021; 13:13845-13857. [PMID: 34477659 DOI: 10.1039/d1nr01795k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Coupling electrochemical water splitting with renewable energy sources shows great potential to produce hydrogen fuel. The sluggish kinetics of the oxygen evolution reaction (OER) resulting from the complicated reaction mechanism and the requirement of the noble metal iridium as the anode catalyst are the two key challenges in implementing proton exchange membrane electrolysis. These challenges may be overcome by the nanoscale design and assembly of novel hybrid materials. Grain boundaries (GBs) are a common crystallographic feature that increase in variability and attractiveness as the particle size decreases. However, the effects of GBs on OER activity in supported hybrid IrO2 catalysts remain unclear. In this study, supported hybrid IrO2 catalysts containing ultrafine nanoparticles were prepared via the self-assembly of iridium precursors on the β-MnO2 surface. The GBs induced intriguing features such as abundant coordination-unsaturated iridium sites and surface hydroxylation, resulting in enhanced OER activity. The formation of GBs was strongly dependent on the nature of the support. In addition to the morphology, the crystal structure of the substrate may play an important role in inducing dense nanoparticle growth. The established relationship between GB formation and OER activity provides an opportunity to design more stable and effective IrO2-based hybrid materials for the OER.
Collapse
Affiliation(s)
- Wei Sun
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, College of Ecology and Environment, Hainan University, 58 Renmin Road, Haikou 570228, P.R. China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Yu A, Kim MH, Lee C, Lee Y. Structural transformation between rutile and spinel crystal lattices in Ru-Co binary oxide nanotubes: enhanced electron transfer kinetics for the oxygen evolution reaction. NANOSCALE 2021; 13:13776-13785. [PMID: 34477652 DOI: 10.1039/d1nr02244j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A variety of binary Ru-Co mixed oxide nanotubes (RuxCo1-xOy with x = 0.19, 0.33, 0.47, 0.64 and 0.77) were readily synthesized via electrospinning and subsequent calcination. RuxCo1-xOy nanotubes (0 < x < 0.77) were composed of both rutile (Ru in RuO2 is replaced with Co) and spinel (Co in Co3O4 is replaced with Ru) structures. This elemental substitution created oxygen vacancies in the rutile structure and also resulted in the incorporation of Ru3+ in the octahedral sites of the spinel structure. The as-prepared RuxCo1-xOy nanotubes were investigated for oxygen evolution reaction (OER) electrocatalytic activity in 1.0 M HClO4 aqueous solution. RuxCo1-xOy nanotubes with x≥ 0.47 presented an excellent OER activity comparable to pure RuO2, known to be the best OER catalyst. Even after more than half of the noble/active Ru content was replaced with cheap/less-active Co, Ru0.47Co0.53Oy showed a good OER activity and a greatly improved stability compared to RuO2 under the continuous OER. These attractive catalytic properties of RuxCo1-xOy can be attributed to the relatively large surface area of the tubular morphology and the substituted structures, presenting feasibility as a practical and economical OER catalyst.
Collapse
Affiliation(s)
- Areum Yu
- Department of Chemistry & Nanoscience, Ewha Womans University, Seoul 03760, Korea.
| | | | | | | |
Collapse
|
12
|
Wang C, Jin L, Shang H, Xu H, Shiraishi Y, Du Y. Advances in engineering RuO2 electrocatalysts towards oxygen evolution reaction. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.11.051] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
13
|
Tan L, Zhang A, Liu Z, Wei P, Yang P, Guo H, Fang H, Han J, Zhu Y, Ren Z. Nanostructured RuO 2-Co 3O 4@RuCo-EO with low Ru loading as a high-efficiency electrochemical oxygen evolution catalyst. RSC Adv 2021; 11:11779-11785. [PMID: 35423785 PMCID: PMC8696486 DOI: 10.1039/d1ra00271f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/17/2021] [Indexed: 11/28/2022] Open
Abstract
Electrochemical water splitting technology is considered to be the most reliable method for converting renewable energy such as wind and solar energy into hydrogen. Here, a nanostructured RuO2/Co3O4–RuCo-EO electrode is designed via magnetron sputtering combined with electrochemical oxidation for the oxygen evolution reaction (OER) in an alkaline medium. The optimized RuO2/Co3O4–RuCo-EO electrode with a Ru loading of 0.064 mg cm−2 exhibits excellent electrocatalytic performance with a low overpotential of 220 mV at the current density of 10 mA cm−2 and a low Tafel slope of 59.9 mV dec−1 for the OER. Compared with RuO2 prepared by thermal decomposition, its overpotential is reduced by 82 mV. Meanwhile, compared with RuO2 prepared by magnetron sputtering, the overpotential is also reduced by 74 mV. Furthermore, compared with the RuO2/Ru with core–shell structure (η = 244 mV), the overpotential is still decreased by 24 mV. Therefore, the RuO2/Co3O4–RuCo-EO electrode has excellent OER activity. There are two reasons for the improvement of the OER activity. On the one hand, the core–shell structure is conducive to electron transport, and on the other hand, the addition of Co adjusts the electronic structure of Ru. The optimized RuO2/Co3O4–RuCo-EO electrode with Ru loading of 0.064 mg cm−2 exhibits the excellent oxygen evolution activity with an overpotential of 220 mV at the current density of 10 mA cm−2 and a Tafel slope of 59.9 mV dec−1.![]()
Collapse
Affiliation(s)
- Lingjun Tan
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University Wuhan 430023 P. R. China
| | - Ailian Zhang
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University Wuhan 430023 P. R. China
| | - Ziyi Liu
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University Wuhan 430023 P. R. China
| | - Ping'an Wei
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University Wuhan 430023 P. R. China
| | - Panpan Yang
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University Wuhan 430023 P. R. China
| | - Huan Guo
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University Wuhan 430023 P. R. China
| | - Hua Fang
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University Wuhan 430023 P. R. China
| | - Juanjuan Han
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University Wuhan 430023 P. R. China
| | - Yuchan Zhu
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University Wuhan 430023 P. R. China
| | - Zhandong Ren
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University Wuhan 430023 P. R. China
| |
Collapse
|
14
|
Li G, Zheng K, Li W, He Y, Xu C. Ultralow Ru-Induced Bimetal Electrocatalysts with a Ru-Enriched and Mixed-Valence Surface Anchored on a Hollow Carbon Matrix for Oxygen Reduction and Water Splitting. ACS APPLIED MATERIALS & INTERFACES 2020; 12:51437-51447. [PMID: 33152235 DOI: 10.1021/acsami.0c14521] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Rational design of trifunctional electrocatalysts with robust efficiency used for oxygen reduction, oxygen evolution, and hydrogen evolution reactions (ORR, OER, and HER) is of significance to renewable energy conversion techniques, which remains a challenging issue. This study integrates dominant Co/Co3O4 with a small fraction of RuO2 and the CoRu alloy anchored on a hollow carbon matrix, originating from the novel Ru-doped hollow metal-organic framework (MOF) precursor, which is synthesized via tannic etching and ion exchange. Notably, the introduced ultralow Ru (1.28 wt %) not only generates new Ru-based species but also induces a Ru-enriched surface with abundant oxygen vacancies. Moreover, a suitable balance among different valencies of Co or Ru can be tuned by oxidation time, resulting in preferable Co2+ and Ru4+ species. Triggered by these unparalleled surface properties along with good conductivity, hollow structure, and the synergistic effect of multiple active sites, the resulting CoRu-O/A@hollow nitrogen-doped carbon (HNC) shows robust catalytic performance for ORR/OER/HER in an alkaline electrolyte. Typically, it exhibits a potential gap of 0.662 V for OER/ORR and enables an alkaline water electrolyzer with a cell voltage of 1.558 V at 10 mA cm-2. This work would serve as guidance for well construction of transition-metal-based trifunctional electrocatalysts by the MOF-assisted strategy or the modulation effects of low-content Ru.
Collapse
Affiliation(s)
- Guoning Li
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Chemical Engineering Research Center, Tianjin University, Tianjin 300072, China
| | - Kaitian Zheng
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Chemical Engineering Research Center, Tianjin University, Tianjin 300072, China
| | - Weisong Li
- School of Chemical Engineering and Technology, China University of Mining & Technology, Xuzhou 221116, China
| | - Yongchao He
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Chemical Engineering Research Center, Tianjin University, Tianjin 300072, China
| | - Chunjian Xu
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Chemical Engineering Research Center, Tianjin University, Tianjin 300072, China
| |
Collapse
|
15
|
Badruzzaman A, Yuda A, Ashok A, Kumar A. Recent advances in cobalt based heterogeneous catalysts for oxygen evolution reaction. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119854] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Back S, Tran K, Ulissi ZW. Discovery of Acid-Stable Oxygen Evolution Catalysts: High-Throughput Computational Screening of Equimolar Bimetallic Oxides. ACS APPLIED MATERIALS & INTERFACES 2020; 12:38256-38265. [PMID: 32799519 DOI: 10.1021/acsami.0c11821] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Discovering acid-stable, cost-effective, and active catalysts for oxygen evolution reaction (OER) is critical since this reaction is a bottleneck in many electrochemical energy conversion systems. The current systems use extremely expensive iridium oxide catalysts. Identifying Ir-free or less-Ir containing catalysts has been suggested as the goal, but no systematic strategy to discover such catalysts has been reported. In this work, we perform first-principles-based high-throughput catalyst screening to discover OER-active and acid-stable catalysts focusing on equimolar bimetallic oxides with space groups derived from those of IrOx. We develop an approach to evaluate acid-stability under the reaction condition by utilizing the Materials Project database and density functional theory (DFT) calculations. For acid-stable materials, we further investigate their OER catalytic activities and identify promising OER catalysts that satisfy all the desired properties: Co-Ir, Fe-Ir, and Mo-Ir bimetallic oxides. Based on the calculated results, we provide insights to efficiently perform future high-throughput screening to discover catalysts with desirable properties and discuss the remaining challenges.
Collapse
Affiliation(s)
- Seoin Back
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Republic of Korea
| | - Kevin Tran
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh 15213, Pennsylvania, United States
| | - Zachary W Ulissi
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh 15213, Pennsylvania, United States
| |
Collapse
|
17
|
Electrochemical fabrication of IrOx nanoarrays with tunable length and morphology for solid polymer electrolyte water electrolysis. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136302] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
18
|
Sun W, Tian X, Liao J, Deng H, Ma C, Ge C, Yang J, Huang W. Assembly of a Highly Active Iridium-Based Oxide Oxygen Evolution Reaction Catalyst by Using Metal-Organic Framework Self-Dissolution. ACS APPLIED MATERIALS & INTERFACES 2020; 12:29414-29423. [PMID: 32496754 DOI: 10.1021/acsami.0c08358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The proton exchange membrane (PEM) electrolyzer for hydrogen production has multiple advantages but is greatly restricted by expensive iridium and sluggish oxygen evolution reaction (OER) kinetics. The most promising way to reduce the precious metal loading is to design and develop highly active Ir-based catalysts. In this study, a versatile approach is reported to prepare a hybrid in the form of a catalyst-support structure (Fe-IrOx@α-Fe2O3, abbreviated Ir@Fe-MF) by utilizing the self-dissolving properties of Fe-MIL-101 under aqueous conditions. The formation of this hybrid is mainly due to the Ir4+ and released Fe3+ ions coprecipitated to assemble into Fe-IrOx nanoparticles, and the Fe3+ released from the inward collapse of the metal-organic framework (MOF) spontaneously forms α-Fe2O3. The prepared Ir@Fe-MF-2 hybrid exhibits enhanced catalytic activity toward OER with a lower onset potential and Tafel slop, and only 260 mV overpotential is required to drive the current density to reach 10 mA cm-2. The performed characterizations clearly indicate that the IrO6 coordination structure is changed significantly by Fe incorporated into the IrO2 lattice. The performed X-ray adsorption spectra (XAS) provides evidence that Ir 5d orbital degeneracy is eliminated because of multiple orbitals being semi-occupied in the presence of Fe, which is mainly responsible for the enhancement of OER activity. These findings open an opportunity for the design and preparation of more efficient OER catalysts of transition metal oxides by utilization of the MOF materials. It should be highlighted that a long-term stability of this catalyst run at a high current density in acidic conditions still faces great challenges.
Collapse
Affiliation(s)
- Wei Sun
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, College of Ecology and Environment, Hainan University, 58 Renmin Road, Haikou, Hainan 570228, P.R. China
| | - Xinlong Tian
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, 58 Renmin Road, Haikou, Hainan 570228, P.R. China
| | - Jianjun Liao
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, College of Ecology and Environment, Hainan University, 58 Renmin Road, Haikou, Hainan 570228, P.R. China
| | - Hui Deng
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, College of Ecology and Environment, Hainan University, 58 Renmin Road, Haikou, Hainan 570228, P.R. China
| | - Chenglong Ma
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Processes, School of Resources and Environmental Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P.R. China
| | - Chengjun Ge
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, College of Ecology and Environment, Hainan University, 58 Renmin Road, Haikou, Hainan 570228, P.R. China
| | - Ji Yang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Processes, School of Resources and Environmental Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P.R. China
| | - Weiwei Huang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, College of Ecology and Environment, Hainan University, 58 Renmin Road, Haikou, Hainan 570228, P.R. China
| |
Collapse
|
19
|
Zhang L, Liu T, Ren R, Zhang J, He D, Zhao C, Suo H. In situ synthesis of hierarchical platinum nanosheets-polyaniline array on carbon cloth for electrochemical detection of ammonia. JOURNAL OF HAZARDOUS MATERIALS 2020; 392:122342. [PMID: 32109797 DOI: 10.1016/j.jhazmat.2020.122342] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/15/2020] [Accepted: 02/16/2020] [Indexed: 05/25/2023]
Abstract
In this work, a self-supported electrode has been designed and fabricated based on carbon cloth-supported polyaniline array and Pt nanosheets (Pt-PANI-CC). PANI array was firstly loaded on the surface of CC via chronoamperometry technique, and then, Pt nanosheets were deposited on the per-grown PANI array through amperometric measurement. The hierarchical structure of Pt-PANI-CC electrode and unique sheet-like Pt nanoparticles offered large specific surface and response centers. The electrochemical sensor based on Pt-PANI-CC electrode has been successfully constructed for detection of ammonia. The experiment results demonstrated that Pt-PANI-CC displayed great catalytic activity for electro-oxidation of ammonia and exhibited acceptable performances for sensing ammonia with low detection limit of 77.2 nM and wide linear range from 0.5 μM to 550 μM. Moreover, the anti-interference ability, reusability, reproducibility and stability of sensor have been investigated and showed great performances. This work provides a promising way for designing self-supported sensing electrode toward a wide electrochemical detection.
Collapse
Affiliation(s)
- Liang Zhang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, PR China
| | - Tianyu Liu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, PR China
| | - Runhua Ren
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, PR China
| | - Jingwen Zhang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, PR China
| | - Dong He
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, PR China
| | - Chun Zhao
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, PR China.
| | - Hui Suo
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, PR China.
| |
Collapse
|
20
|
The influence of Ir content in (Ni0.4Co0.6)1-xIrx-oxide anodes on their electrocatalytic activity in oxygen evolution by acidic and alkaline water electrolysis. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114122] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
21
|
Jiang N, Wang Y, Zhao Q, Ye Z. Application of Ti/IrO 2 electrode in the electrochemical oxidation of the TNT red water. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 259:113801. [PMID: 31891908 DOI: 10.1016/j.envpol.2019.113801] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 11/15/2019] [Accepted: 12/10/2019] [Indexed: 06/10/2023]
Abstract
Via the thermal sintering, a nanocrystalline IrO2 coating was formed on the Ti substrate to successfully prepare a Ti/IrO2 electrode. Based on the electrochemical analysis, the prepared Ti/IrO2 electrode was found to have powerful oxidation effect on the organics in the TNT red water, where the nitro compound was oxidized through an irreversible electrochemical process at 0.6 V vs. SCE. According to the analysis of the nitro compound content, the UV-vis spectra, and the FTIR spectra of 2,4,6-trinitrotoluene (TNT) red water with electrolytic periods, the degradation mechanism of the dinitrotoluene sulfonate (DNTS) was developed. And the intermediates were characterized by UPLC-HRMS. The DNTS mainly occurred one electron transfer reaction on the Ti/IrO2 electrode. At the early stage of the electrolysis, the polymerization of DNTS was mainly dominated. The generated polymer did not form a polymer film on the electrode surface, but instead it promoted a further reduction. After electrolyzing for 30 h, all NO2 function group in the TNT red water was degraded completely.
Collapse
Affiliation(s)
- Nan Jiang
- Department of Environmental Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, 100871, China
| | - Yuchao Wang
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083, China
| | - Quanlin Zhao
- Department of Environmental Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, 100871, China
| | - Zhengfang Ye
- Department of Environmental Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, 100871, China.
| |
Collapse
|
22
|
Zhou Z, Zaman WQ, Sun W, Zhang H, Tariq M, Cao L, Yang J. Effective Strain Engineering of IrO
2
Toward Improved Oxygen Evolution Catalysis through a Catalyst‐Support System. ChemElectroChem 2019. [DOI: 10.1002/celc.201901037] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Zhenhua Zhou
- Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Processes School of Resources and Environmental Engineering East China University of Science and Technology Meilong Road 130 Shanghai
| | - Waqas Qamar Zaman
- Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Processes School of Resources and Environmental Engineering East China University of Science and Technology Meilong Road 130 Shanghai
| | - Wei Sun
- Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Processes School of Resources and Environmental Engineering East China University of Science and Technology Meilong Road 130 Shanghai
| | - Hao Zhang
- Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Processes School of Resources and Environmental Engineering East China University of Science and Technology Meilong Road 130 Shanghai
| | - Muhammad Tariq
- Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Processes School of Resources and Environmental Engineering East China University of Science and Technology Meilong Road 130 Shanghai
| | - Limei Cao
- Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Processes School of Resources and Environmental Engineering East China University of Science and Technology Meilong Road 130 Shanghai
| | - Ji Yang
- Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Processes School of Resources and Environmental Engineering East China University of Science and Technology Meilong Road 130 Shanghai
- Shanghai Institute of Pollution Control and Ecological Security Shanghai
| |
Collapse
|
23
|
Kim SY, Yu A, Lee Y, Kim HY, Kim YJ, Lee NS, Lee C, Lee Y, Kim MH. Single phase of spinel Co 2RhO 4 nanotubes with remarkably enhanced catalytic performance for the oxygen evolution reaction. NANOSCALE 2019; 11:9287-9295. [PMID: 31049518 DOI: 10.1039/c9nr02197c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We report the effective crystal growth for a unique single phase of spinel cobalt rhodium oxide (Co2RhO4) nanotubes via the electrospinning process combined with the thermal annealing process. In the spinel structure of the electrospun Co2RhO4 nanotubes, Co3+ cations and Rh3+ cations randomly occupy the octahedral sites, while the remaining half of the Co2+ cations occupy the centres of the tetrahedral sites as proved by microscopic and spectroscopic observations. Furthermore, electrospun spinel Co2RhO4 nanotubes exhibit excellent catalytic performances with the least positive onset potential, greatest current density, and low Tafel slope which are even better than those of the commercial Ir/C electrocatalyst for the oxygen evolution reaction (OER) in alkaline solution. Our demonstration of significantly enhanced OER activity with a single phase of electrospun spinel Co2RhO4 nanotubes thus opens up the broad applicability of our synthetic methodology for accessing new OER catalysis.
Collapse
Affiliation(s)
- So Yeon Kim
- Department of Chemistry & Nanoscience, Ewha Womans University, Seoul, 13760, Korea.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Construction of Ir-Co/C nanocomposites and their application in ammonia oxidation reaction. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.02.044] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
25
|
|
26
|
Shi Q, Zhu C, Du D, Lin Y. Robust noble metal-based electrocatalysts for oxygen evolution reaction. Chem Soc Rev 2019; 48:3181-3192. [PMID: 31112142 DOI: 10.1039/c8cs00671g] [Citation(s) in RCA: 343] [Impact Index Per Article: 57.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The oxygen evolution reaction (OER) is a kinetically sluggish anodic reaction and requires a large overpotential to deliver appreciable current. Despite the fact that non-precious metal-based alkaline water electrocatalysts are receiving increased attention, noble metal-based electrocatalysts (NMEs) applied in proton exchange membrane water electrolyzers still have advantageous features of larger current and power densities with lower stack cost. Engineering NMEs for OER catalysis with high efficiency, durability and utilization rate is of vital importance in promoting the development of cost-effective renewable energy production and conversion devices. In this tutorial review, we covered the recent progress in the composition and structure optimization of NMEs for OER including Ir- and Ru-based oxides and alloys, and noble-metals beyond Ir and Ru with a variety of morphologies. To shed light on the fundamental science and mechanisms behind composition/structure-performance relationships and activity-stability relationships, integrated experimental and theoretical studies were pursued for illuminating the metal-support interaction, size effect, heteroatom doping effect, phase transformation, degradation processes and single-atom catalysis. Finally, the challenges and outlook are provided for guiding the rational engineering of OER electrocatalysts for applications in renewable energy-related devices.
Collapse
Affiliation(s)
- Qiurong Shi
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA-99164, USA.
| | | | | | | |
Collapse
|
27
|
Lu X, Li M, Wang H, Wang C. Advanced electrospun nanomaterials for highly efficient electrocatalysis. Inorg Chem Front 2019. [DOI: 10.1039/c9qi00799g] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We highlight the recent developments of electrospun nanomaterials with controlled morphology, composition and architecture for highly efficient electrocatalysis.
Collapse
Affiliation(s)
- Xiaofeng Lu
- Alan G. MacDiarmid Institute
- College of Chemistry
- Jilin University
- Changchun
- P. R. China
| | - Meixuan Li
- Alan G. MacDiarmid Institute
- College of Chemistry
- Jilin University
- Changchun
- P. R. China
| | - Huiyuan Wang
- Key Laboratory of Automobile Materials of Ministry of Education & School of Materials Science and Engineering
- Nanling Campus
- Jilin University
- Changchun 130025
- P. R. China
| | - Ce Wang
- Alan G. MacDiarmid Institute
- College of Chemistry
- Jilin University
- Changchun
- P. R. China
| |
Collapse
|
28
|
Xu H, Wei J, Zhang M, Wang J, Shiraishi Y, Tian L, Du Y. Self-supported nickel-cobalt nanowires as highly efficient and stable electrocatalysts for overall water splitting. NANOSCALE 2018; 10:18767-18773. [PMID: 30276398 DOI: 10.1039/c8nr05279d] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The development and design of highly active and stable electrocatalysts based on cheap and Earth-abundant materials is critically important to enable water splitting as a desirable renewable energy source. Herein, we fulfill the significant electrochemical water splitting enhancement in both electrocatalytic activity and durability by constructing self-supported nickel-cobalt nanowire catalysts with abundant oxygen vacancies. Specifically, the rich oxygen vacancies can largely promote the oxygen evolution reaction (OER) activity of optimal Ni1Co1O2 NWs with a relatively low overpotential of 248 mV to drive a current density of 10 mA cm-2. More significantly, after the phosphorization of Ni1Co1O2 NWs, the resultant Ni1Co1P NWs can also display excellent electrocatalytic hydrogen evolution reaction (HER) performances with an overpotential of only 101 mV to achieve a current density of 10 mA cm-2. Furthermore, benefiting from the unique 1D nanowire structure, the synergistic effect, and the optimal Gibbs free energy for hydrogen evolution evolved from the phosphorization, the Ni1Co1O2 NWs//Ni1Co1P NWs couple is thus highly active and stable for overall water electrolysis with a low voltage of 1.58 V at 10 mA cm-2, showing extraordinary promise for practical overall water splitting electrolysis.
Collapse
Affiliation(s)
- Hui Xu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China.
| | | | | | | | | | | | | |
Collapse
|
29
|
Xu H, Zhang K, Liu C, Tian L, Du Y. 3D‐1D Heterostructure of CoZn Oxyphosphide Nanosheets Anchored on Carbon Nanotubes as Electrocatalysts for the Oxygen Evolution Reaction. ChemElectroChem 2018. [DOI: 10.1002/celc.201800656] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Hui Xu
- College of Chemistry, Chemical Engineering and Materials ScienceSoochow University Suzhou 215123 P.R. China
| | - Ke Zhang
- College of Chemistry, Chemical Engineering and Materials ScienceSoochow University Suzhou 215123 P.R. China
| | - Chaofan Liu
- College of Chemistry, Chemical Engineering and Materials ScienceSoochow University Suzhou 215123 P.R. China
| | - Lin Tian
- College of Chemistry and Chemical EngineeringXuzhou University of Technology Xuzhou 221111 P.R. China
| | - Yukou Du
- College of Chemistry, Chemical Engineering and Materials ScienceSoochow University Suzhou 215123 P.R. China
| |
Collapse
|
30
|
Fu L, Zeng X, Cheng G, Luo W. IrCo Nanodendrite as an Efficient Bifunctional Electrocatalyst for Overall Water Splitting under Acidic Conditions. ACS APPLIED MATERIALS & INTERFACES 2018; 10:24993-24998. [PMID: 30016069 DOI: 10.1021/acsami.8b08717] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Investigation of high-efficiency electrocatalysts for acidic overall water splitting is of great significance toward fulfillment of proton exchange membrane (PEM) electrolyzers but still remains challenging. Herein, we report the colloidally synthesis of IrCo alloy nanodendrites with petal-like architecture (NDs). Benefiting from unique hierarchical architecture and strong electronic interaction arising from synergistic alloying effect of IrCo at the atomic level, the resultant IrCo0.65 NDs display remarkable hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) performances with overpotentials of 17 and 281 mV to achieve 10 mA cm-2 in 0.1 M HClO4, respectively. Moreover, when further used as bifunctional electrocatalyst toward acidic overall splitting, a low cell voltage of 1.593 V is achieved at 10 mA cm-2.
Collapse
Affiliation(s)
- Luhong Fu
- College of Chemistry and Molecular Sciences , Wuhan University , Wuhan , Hubei 430072 , P. R. China
| | - Xiang Zeng
- College of Chemistry and Molecular Sciences , Wuhan University , Wuhan , Hubei 430072 , P. R. China
| | - Gongzhen Cheng
- College of Chemistry and Molecular Sciences , Wuhan University , Wuhan , Hubei 430072 , P. R. China
| | - Wei Luo
- College of Chemistry and Molecular Sciences , Wuhan University , Wuhan , Hubei 430072 , P. R. China
| |
Collapse
|
31
|
Zhang Y, Wu C, Jiang H, Lin Y, Liu H, He Q, Chen S, Duan T, Song L. Atomic Iridium Incorporated in Cobalt Hydroxide for Efficient Oxygen Evolution Catalysis in Neutral Electrolyte. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1707522. [PMID: 29575370 DOI: 10.1002/adma.201707522] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 02/08/2018] [Indexed: 06/08/2023]
Abstract
Developing highly efficient catalysts for oxygen evolution reaction (OER) in neutral media is extremely crucial for microbial electrolysis cells and electrochemical CO2 reduction. Herein, a facile one-step approach is developed to synthesize a new type of well-dispersed iridium (Ir) incorporated cobalt-based hydroxide nanosheets (nominated as CoIr) for OER. The Ir species as clusters and single atoms are incorporated into the defect-rich hydroxide nanosheets through the formation of rich Co-Ir species, as revealed by systematic synchrotron radiation based X-ray spectroscopic characterizations combining with high-angle annular dark-field scanning transmission electron microscopy measurement. The optimized CoIr with 9.7 wt% Ir content displays highly efficient OER catalytic performance with an overpotential of 373 mV to achieve the current density of 10 mA cm-2 in 1.0 m phosphate buffer solution, significantly outperforming the commercial IrO2 catalysts. Further characterizations toward the catalyst after undergoing OER process indicate that unique Co oxyhydroxide and high valence Ir species with low-coordination structure are formed due to the high oxidation potentials, which authentically contributes to superior OER performance. This work not only provides a state-of-the-art OER catalyst in neutral media but also unravels the root of the excellent performance based on efficient structural identifications.
Collapse
Affiliation(s)
- Youkui Zhang
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, 230029, China
- School of National Defense Science and Technology, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Chuanqiang Wu
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, 230029, China
| | - Hongliang Jiang
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, 230029, China
| | - Yunxiang Lin
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, 230029, China
| | - Hengjie Liu
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, 230029, China
| | - Qun He
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, 230029, China
| | - Shuangming Chen
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, 230029, China
| | - Tao Duan
- School of National Defense Science and Technology, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Li Song
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, 230029, China
| |
Collapse
|