1
|
Bulemo PM, Kim DH, Shin H, Cho HJ, Koo WT, Choi SJ, Park C, Ahn J, Güntner AT, Penner RM, Kim ID. Selectivity in Chemiresistive Gas Sensors: Strategies and Challenges. Chem Rev 2025; 125:4111-4183. [PMID: 40198852 DOI: 10.1021/acs.chemrev.4c00592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
The demand for highly functional chemical gas sensors has surged due to the increasing awareness of human health to monitor metabolic disorders or noncommunicable diseases, safety measures against harmful greenhouse and/or explosive gases, and determination of food freshness. Over the years of dedicated research, several types of chemiresistive gas sensors have been realized with appreciable sensitivities toward various gases. However, critical issues such as poor selectivity and sluggish response/recovery speeds continue to impede their widespread commercialization. Specifically, the mechanisms behind the selective response of some chemiresistive materials toward specific gas analytes remain unclear. In this review, we discuss state-of-the-art strategies employed to attain gas-selective chemiresistive materials, with particular emphasis on materials design, surface modification or functionalization with catalysts, defect engineering, material structure control, and integration with physical/chemical gas filtration media. The nature of material surface-gas interactions and the supporting mechanisms are elucidated, opening opportunities for optimizing the materials design, fine-tuning the gas sensing performance, and guiding the selection of the most appropriate materials for the accurate detection of specific gases. This review concludes with recommendations for future research directions and potential opportunities for further selectivity improvements.
Collapse
Affiliation(s)
- Peresi Majura Bulemo
- Department of Mechanical and Industrial Engineering, University of Dar es Salaam, P.O. Box 35131, Dar es Salaam, Tanzania
| | - Dong-Ha Kim
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan 15588, Republic of Korea
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Hamin Shin
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Advanced Nanosensor Research Center, KI Nanocentury, KAIST, Daejeon 34141, Republic of Korea
- Human-Centered Sensing Laboratory, Department of Mechanical and Process Engineering, ETH Zürich, CH-8092 Zürich, Switzerland
| | - Hee-Jin Cho
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Advanced Nanosensor Research Center, KI Nanocentury, KAIST, Daejeon 34141, Republic of Korea
| | - Won-Tae Koo
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Advanced Nanosensor Research Center, KI Nanocentury, KAIST, Daejeon 34141, Republic of Korea
| | - Seon-Jin Choi
- Division of Materials of Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
- Institute of Nano Science and Technology, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Chungseong Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Advanced Nanosensor Research Center, KI Nanocentury, KAIST, Daejeon 34141, Republic of Korea
| | - Jaewan Ahn
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Advanced Nanosensor Research Center, KI Nanocentury, KAIST, Daejeon 34141, Republic of Korea
| | - Andreas T Güntner
- Human-Centered Sensing Laboratory, Department of Mechanical and Process Engineering, ETH Zürich, CH-8092 Zürich, Switzerland
| | - Reginald M Penner
- Department of Chemistry, University of California, Irvine, Irvine, California 92697-2025, United States
| | - Il-Doo Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Advanced Nanosensor Research Center, KI Nanocentury, KAIST, Daejeon 34141, Republic of Korea
| |
Collapse
|
2
|
Wei P, Xie B, Wang J, Wu Y, Shi Q, Dong J. Evolution of the Structure and Morphology of Dual-Linker ZIF-301-eIm. Molecules 2024; 29:3395. [PMID: 39064973 PMCID: PMC11279793 DOI: 10.3390/molecules29143395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/27/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Few studies have reported on the continuous evolution of dual-linker zeolitic imidazolate frameworks' (ZIFs) structure and morphology during the crystal growth process. Herein, we report the synthesis of a novel ZIF material with CHA topology (ZIF-301-eIm) via the combination of a small-sized 2-ethylimidazole (eIm) with the large-sized 5-chlorobenzimidazole ligand. A series of derivative materials with distinct structures and morphologies were obtained via two pathways: (1) insufficient amount of eIm with prolonged crystallization time (pathway A) and (2) sufficient amount of eIm with prolonged crystallization time (pathway B). Various characterization techniques revealed the continuous evolution of structure and morphology during the crystal growth process. Insufficient amount of eIm and crystallization time (crystallization pathway A) led to ZIF-301-eIm derivatives with defective and open structures alongside an aggregated morphology of nanoparticles. Prolonging the crystallization time allowed small-sized eIm ligands to gradually fill into the framework, resulting in the formation of ZIF-301-eIm-A5 characterized by complete but dense structures with a perfect polyhedral morphology. Remarkably, a sufficient amount of eIm during synthesis (crystallization pathway B) formed ZIF-301-eIm-B1 with a similar structure and morphology to ZIF-301-eIm-A5 in just 1 day. ZIF-301-eIm-B3, with intact, dense structures, exhibits superior acetone/butanol separation performance compared to ZIF-301-eIm-A3 due to small pore windows and large cages facilitating selective adsorption of acetone through exclusion separation.
Collapse
Affiliation(s)
| | | | | | | | - Qi Shi
- Shanxi Key Laboratory of Chemical Product Engineering, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan 030024, China; (P.W.); (B.X.); (J.W.); (Y.W.); (J.D.)
| | | |
Collapse
|
3
|
Zhao Q, Lian S, Li R, Yang Y, Zang G, Song C. Fabricating Leaf-like hierarchical ZIF-67 as Intra-Mixed matrix membrane microarchitecture for efficient intensification of CO2 separation. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
4
|
Towards large-scale application of nanoporous materials in membranes for separation of energy-relevant gas mixtures. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
5
|
Zhou Y, Ban Y, Yang W. Reversibly Phase-Transformative Zeolitic Imidazolate Framework-108 and the Membrane Separation Utility. Inorg Chem 2022; 61:17342-17352. [PMID: 36266773 DOI: 10.1021/acs.inorgchem.2c02978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Reversible phase transformations (RPTs) of metal-organic frameworks not only create material diversity but also promise a self-restoration of crystals in a controllable manner. However, there are only limited examples because seeking for a convenient and effective trigger for RPTs, especially for RPTs with respect to spatiotemporal harmony in cleavage and reconstruction of metal-linker chemical bonds, is challenging. In this work, we found that zeolitic imidazolate framework (ZIF)-108 with Zn-N coordination bonds showing moderate strength was an ideal platform. We reported three crystal phases of ZIF-108, namely, sodalite (SOD), diamondoid (DIA), and large pore_sodalite (lp_SOD) topologies, and identified RPTs between phases: (1) when exposed to water or water vapor, the SOD structure could transform to a compact DIA version as a result of the decomposition of four-membered rings and synchronous reorganization of six-membered rings. Then, the DIA structure could also return back to SOD when soaked in dimethylformamide (DMF) or DMF vapor. (2) High-temperature treatment of SOD gives rise to lp_SOD, which then reverts to SOD by DMF. (3) lp_SOD could also be compressed into the DIA phase by water or water vapor and can then be restored via a two-step treatment, namely, soaking in DMF (DIA → SOD) right before a high-temperature therapy (SOD → lp_SOD). From the perspective of the separation utility, we found that the lp_SOD version of ZIF-108, relative to SOD-structured ZIF-108, can produce mixed matrix membranes having an interesting interfacial structure with the polymer chains, though both share the same chemical composition. We verified that the large pore of lp_SOD can allow being penetrated by polymer chains, which contributed to not only reinforcing the bi-phase interface but also sharpening the molecule sieve properties of fillers toward CO2 and CH4.
Collapse
Affiliation(s)
- Yingwu Zhou
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian116023, China.,University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing100039, China
| | - Yujie Ban
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian116023, China.,University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing100039, China
| | - Weishen Yang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian116023, China.,University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing100039, China
| |
Collapse
|
6
|
Cheng Y, Datta SJ, Zhou S, Jia J, Shekhah O, Eddaoudi M. Advances in metal-organic framework-based membranes. Chem Soc Rev 2022; 51:8300-8350. [PMID: 36070414 DOI: 10.1039/d2cs00031h] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Membrane-based separations have garnered considerable attention owing to their high energy efficiency, low capital cost, small carbon footprint, and continuous operation mode. As a class of highly porous crystalline materials with well-defined pore systems and rich chemical functionalities, metal-organic frameworks (MOFs) have demonstrated great potential as promising membrane materials over the past few years. Different types of MOF-based membranes, including polycrystalline membranes, mixed matrix membranes (MMMs), and nanosheet-based membranes, have been developed for diversified applications with remarkable separation performances. In this comprehensive review, we first discuss the general classification of membranes and outline the historical development of MOF-based membranes. Subsequently, particular attention is devoted to design strategies for MOF-based membranes, along with detailed discussions on the latest advances on these membranes for various gas and liquid separation processes. Finally, challenges and future opportunities for the industrial implementation of these membranes are identified and outlined with the intent of providing insightful guidance on the design and fabrication of high-performance membranes in the future.
Collapse
Affiliation(s)
- Youdong Cheng
- Functional Materials, Design, Discovery and Development (FMD3), Advanced Membrane & Porous Materials Center (AMPMC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
| | - Shuvo Jit Datta
- Functional Materials, Design, Discovery and Development (FMD3), Advanced Membrane & Porous Materials Center (AMPMC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
| | - Sheng Zhou
- Functional Materials, Design, Discovery and Development (FMD3), Advanced Membrane & Porous Materials Center (AMPMC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
| | - Jiangtao Jia
- Functional Materials, Design, Discovery and Development (FMD3), Advanced Membrane & Porous Materials Center (AMPMC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
| | - Osama Shekhah
- Functional Materials, Design, Discovery and Development (FMD3), Advanced Membrane & Porous Materials Center (AMPMC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
| | - Mohamed Eddaoudi
- Functional Materials, Design, Discovery and Development (FMD3), Advanced Membrane & Porous Materials Center (AMPMC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
| |
Collapse
|
7
|
Saeed S, Bashir R, Rehman SU, Nazir MT, ALOthman ZA, Muteb Aljuwayid A, Abid A, Adnan A. Synthesis and Characterization of ZIF-67 Mixed Matrix Nanobiocatalysis for CO2 Adsorption Performance. Front Bioeng Biotechnol 2022; 10:891549. [PMID: 36131723 PMCID: PMC9483184 DOI: 10.3389/fbioe.2022.891549] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/21/2022] [Indexed: 11/13/2022] Open
Abstract
In this study, ZIF-67-based mixed matrix membrane was synthesized with a solution casting method using tetrahydrofuran as the solvent. The as-synthesized ZIF-67 was characterized using PXRD, TGA, ATR-FTIR, and BET analysis for the surface area measurements. The minimum 3 wt% loading of ZIF-67 was incorporated within a hydrophobic polymer to evaluate the CO2 adsorption performance of ZIF-67. The stability of ZIF-67 in pure water and inorganic solvents was investigated. The maximum CO2 adsorption of the ZIF-67 mixed-matrix membrane (MMM) was 0.5 mmol/g at 273 K, which is higher than that of the pure polymer. The fabricated ZIF-67-based mixed-matrix membrane showed higher CO2 capture even at lower MOF loading using THF. The current study highly recommends the combination of hydrophobic polysulfone and a water-stable ZIF-67 for CO2 capture from wet flue gases.
Collapse
Affiliation(s)
- Saira Saeed
- Department of Chemistry, GC University Lahore, Lahore, Pakistan
| | - Rashdia Bashir
- Division of Science and Technology, University of Education Lahore, Lahore, Pakistan
| | - Shafique Ur Rehman
- Department of Chemistry, Faculty of Sciences, University of Central Punjab, Lahore, Pakistan
| | | | | | | | - Amin Abid
- University of Sahiwal, Sahiwal, Pakistan
| | - Ahmad Adnan
- Department of Chemistry, GC University Lahore, Lahore, Pakistan
- *Correspondence: Ahmad Adnan,
| |
Collapse
|
8
|
Hu CC, Lin CW, Hu CP, Keshebo DL, Huang SH, Hung WS, Lee KR, Lai JY. Carbon dioxide enrichment of PDMS/PSf composite membranes for solving the greenhouse effect and food crisis. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Goh SH, Lau HS, Yong WF. Metal-Organic Frameworks (MOFs)-Based Mixed Matrix Membranes (MMMs) for Gas Separation: A Review on Advanced Materials in Harsh Environmental Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107536. [PMID: 35224843 DOI: 10.1002/smll.202107536] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/27/2022] [Indexed: 06/14/2023]
Abstract
The booming of global environmental awareness has driven the scientific community to search for alternative sustainable approaches. This is accentuated in the 13th sustainable development goal (SDG13), climate action, where urgent efforts are salient in combating the drastic effects of climate change. Membrane separation is one of the indispensable gas purification technologies that effectively reduces the carbon footprint and is energy-efficient for large-scale integration. Metal-organic frameworks (MOFs) are recognized as promising fillers embedded in mixed matrix membranes (MMMs) to enhance gas separation performance. Tremendous research studies on MOFs-based MMMs have been conducted. Herein, this review offers a critical summary of the MOFs-based MMMs developed in the past 3 years. The basic models to estimate gas transport, preparation methods, and challenges in developing MMMs are discussed. Subsequently, the application and separation performance of a variety of MOFs-based MMMs including those of advanced MOFs materials are summarized. To accommodate industrial needs and resolve commercialization hurdles, the latest exploration of MOF materials for a harsh operating condition is emphasized. Along with the contemplation on the outlook, future perspective, and opportunities of MMMs, it is anticipated that this review will serve as a stepping stone for the coming MMMs research on sustainable and benign environmental application.
Collapse
Affiliation(s)
- Shu Hua Goh
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Selangor Darul Ehsan, 43900, Malaysia
| | - Hui Shen Lau
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Selangor Darul Ehsan, 43900, Malaysia
| | - Wai Fen Yong
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Selangor Darul Ehsan, 43900, Malaysia
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| |
Collapse
|
10
|
Chen Z, Zhang P, Wu H, Sun S, You X, Yuan B, Hou J, Duan C, Jiang Z. Incorporating amino acids functionalized graphene oxide nanosheets into Pebax membranes for CO2 separation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120682] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
11
|
Mixed matrix membranes for post-combustion carbon capture: From materials design to membrane engineering. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120140] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
12
|
Simultaneous increase in CO2 permeability and selectivity by BIT-72 and modified BIT-72 based mixed matrix membranes. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2021.12.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
13
|
Yu G, Shangguan X, Wang Z, Rong H, Wang K, Zhang Y, Shao T, Zou X. Seed assisted synthesis of anionic metal organic framework membrane for selective and permeable hydrogen separation. Inorg Chem Front 2022. [DOI: 10.1039/d1qi01600h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydrogen selective metal organic framework (MOF) membranes with excellent performances are still in high demand. Here, we are developing an anionic MOF material of CPM-5 into a membrane for H2...
Collapse
|
14
|
|
15
|
Shah Buddin M, Ahmad A. A review on metal-organic frameworks as filler in mixed matrix membrane: Recent strategies to surpass upper bound for CO2 separation. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2021.101616] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
16
|
Mixed monomer derived porous aromatic frameworks with superior membrane performance for CO2 capture. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119372] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
17
|
Wang Z, Yuan J, Li R, Zhu H, Duan J, Guo Y, Liu G, Jin W. ZIF-301 MOF/6FDA-DAM polyimide mixed-matrix membranes for CO2/CH4 separation. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118431] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
18
|
Liu S, Meng L, Fan J. Hollow Silica‐Based Porous Liquids Functionalized Mixed Matrix Membranes for CO
2
Capture. ChemistrySelect 2021. [DOI: 10.1002/slct.202100664] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Shuo Liu
- College of chemical engineering Shaanxi Institute of Technology Xi'an 710300 P. R. China
| | - Long Meng
- College of chemical engineering Shaanxi Institute of Technology Xi'an 710300 P. R. China
| | - Jinwen Fan
- College of Chemistry and Chemical Engineering Xi'an University of Science and Technology Xi'an 710021 P. R. China
| |
Collapse
|
19
|
|
20
|
Magnetically Aligned and Enriched Pathways of Zeolitic Imidazolate Framework 8 in Matrimid Mixed Matrix Membranes for Enhanced CO 2 Permeability. MEMBRANES 2020; 10:membranes10070155. [PMID: 32709108 PMCID: PMC7408041 DOI: 10.3390/membranes10070155] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 11/22/2022]
Abstract
Metal-organic frameworks (MOFs) as additives in mixed matrix membranes (MMMs) for gas separation have gained significant attention over the past decades. Many design parameters have been investigated for MOF based MMMs, but the spatial distribution of the MOF throughout MMMs lacks investigation. Therefore, magnetically aligned and enriched pathways of zeolitic imidazolate framework 8 (ZIF−8) in Matrimid MMMs were synthesized and investigated by means of their N2 and CO2 permeability. Magnetic ZIF−8 (m–ZIF−8) was synthesized by incorporating Fe3O4 in the ZIF−8 structure. The presence of Fe3O4 in m–ZIF−8 showed a decrease in surface area and N2 and CO2 uptake, with respect to pure ZIF−8. Alignment of m–ZIF−8 in Matrimid showed the presence of enriched pathways of m–ZIF−8 through the MMMs. At 10 wt.% m–ZIF−8 incorporation, no effect of alignment was observed for the N2 and CO2 permeability, which was ascribed anon-ideal tortuous alignment. However, alignment of 20 wt.% m–ZIF−8 in Matrimid showed to increase the CO2 diffusivity and permeability (19%) at 7 bar, while no loss in ideal selectivity was observed, with respect to homogeneously dispersed m–ZIF−8 membranes. Thus, the alignment of MOF particles throughout the matrix was shown to enhance the CO2 permeability at a certain weight content of MOF.
Collapse
|
21
|
Wang D, Song S, Zhang W, He Z, Wang Y, Zheng Y, Yao D, Pan Y, Yang Z, Meng Z, Li Y. CO2 selective separation of Pebax-based mixed matrix membranes (MMMs) accelerated by silica nanoparticle organic hybrid materials (NOHMs). Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116708] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
22
|
Habib N, Shamair Z, Tara N, Nizami AS, Akhtar FH, Ahmad NM, Gilani MA, Bilad MR, Khan AL. Development of highly permeable and selective mixed matrix membranes based on Pebax®1657 and NOTT-300 for CO2 capture. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116101] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Fang M, Zhang G, Liu Y, Xiong R, Wu W, Yang F, Liu L, Chen J, Li J. Exploiting Giant-Pore Systems of Nanosized MIL-101 in PDMS Matrix for Facilitated Reverse-Selective Hydrocarbon Transport. ACS APPLIED MATERIALS & INTERFACES 2020; 12:1511-1522. [PMID: 31804058 DOI: 10.1021/acsami.9b17516] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Membrane gas separation offers high energy efficiency, easy operation, and reduced environmental impacts for vast hydrocarbon recovery in the petrochemical industry. However, the recovery of real light hydrocarbon mixtures (e.g., olefin/nitrogen) remains challenging for lack of high-performance membranes with sufficient reverse selectivity (large molecules permeate faster) and permeability. Here, we report the incorporation of fine-tuned, giant-pore featured MIL-101 nanocrystals into rubbery polymers to fabricate hybrid membranes, which successfully exploited the giant-pore channels and large sorption volume of the MIL-101 pore system. The synthesized MIL-101/poly(dimethylsiloxane) (PDMS) hybrid membranes demonstrated remarkably simultaneous improvement of gas permeance and separation factor for the model gas mixture propylene/nitrogen. Compared with the pristine PDMS, the propylene permeance and separation factor could be improved by more than 50% by adjusting MIL-101 loading and operating conditions. By consulting molecular simulations and gas sorption analysis, we verified that the giant-pore system of MIL-101 and the elastic PDMS chains exhibited a synergistic effect on improving both hydrocarbon solution and diffusion. Pore properties of MIL-101 contributed favorably to accelerated propylene diffusion in MIL-101 that is 236% faster than that in PDMS. In the meantime, MIL-101 reinforced the hydrocarbon solution additionally to PDMS, which further facilitated hydrocarbon transport.
Collapse
Affiliation(s)
- Manquan Fang
- Institute of Materials , China Academy of Engineering Physics , Mianyang 621908 , Sichuan , China
| | - Guanghui Zhang
- Institute of Materials , China Academy of Engineering Physics , Mianyang 621908 , Sichuan , China
| | - Yuting Liu
- Institute of Materials , China Academy of Engineering Physics , Mianyang 621908 , Sichuan , China
| | - Renjin Xiong
- Institute of Materials , China Academy of Engineering Physics , Mianyang 621908 , Sichuan , China
| | - Wenqing Wu
- Institute of Materials , China Academy of Engineering Physics , Mianyang 621908 , Sichuan , China
| | - Feilong Yang
- Institute of Materials , China Academy of Engineering Physics , Mianyang 621908 , Sichuan , China
| | - Lang Liu
- Institute of Materials , China Academy of Engineering Physics , Mianyang 621908 , Sichuan , China
| | - Jinxun Chen
- Department of Chemical Engineering , Tsinghua University , Beijing 100084 , China
| | - Jiding Li
- Department of Chemical Engineering , Tsinghua University , Beijing 100084 , China
| |
Collapse
|
24
|
Kang DA, Kim K, Lim JY, Park JT, Kim JH. Mixed matrix membranes consisting of ZIF-8 in rubbery amphiphilic copolymer: Simultaneous improvement in permeability and selectivity. Chem Eng Res Des 2020. [DOI: 10.1016/j.cherd.2019.10.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
25
|
Liu G, Cheng L, Chen G, Liang F, Liu G, Jin W. Pebax‐Based Membrane Filled with Two‐Dimensional Mxene Nanosheets for Efficient CO
2
Capture. Chem Asian J 2019; 15:2364-2370. [DOI: 10.1002/asia.201901433] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/14/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Guozhen Liu
- State Key Laboratory of Materials-Oriented Chemical EngineeringCollege of Chemical EngineeringNanjing Tech University 30 Puzhu Road Nanjing 211816 P. R. China
| | - Long Cheng
- State Key Laboratory of Materials-Oriented Chemical EngineeringCollege of Chemical EngineeringNanjing Tech University 30 Puzhu Road Nanjing 211816 P. R. China
| | - Guining Chen
- State Key Laboratory of Materials-Oriented Chemical EngineeringCollege of Chemical EngineeringNanjing Tech University 30 Puzhu Road Nanjing 211816 P. R. China
| | - Feng Liang
- State Key Laboratory of Materials-Oriented Chemical EngineeringCollege of Chemical EngineeringNanjing Tech University 30 Puzhu Road Nanjing 211816 P. R. China
| | - Gongping Liu
- State Key Laboratory of Materials-Oriented Chemical EngineeringCollege of Chemical EngineeringNanjing Tech University 30 Puzhu Road Nanjing 211816 P. R. China
| | - Wanqin Jin
- State Key Laboratory of Materials-Oriented Chemical EngineeringCollege of Chemical EngineeringNanjing Tech University 30 Puzhu Road Nanjing 211816 P. R. China
| |
Collapse
|
26
|
Plasticization resistance-enhanced CO2 separation at elevated pressures by mixed matrix membranes containing flexible metal-organic framework fillers. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.03.088] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
27
|
Sun J, Li Q, Chen G, Duan J, Liu G, Jin W. MOF-801 incorporated PEBA mixed-matrix composite membranes for CO2 capture. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.02.036] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
28
|
Zhu H, Yuan J, Zhao J, Liu G, Jin W. Enhanced CO2/N2 separation performance by using dopamine/polyethyleneimine-grafted TiO2 nanoparticles filled PEBA mixed-matrix membranes. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2018.02.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
29
|
Kim T, Choi MK, Ahn HS, Rho J, Jeong HM, Kim K. Fabrication and characterization of zeolitic imidazolate framework-embedded cellulose acetate membranes for osmotically driven membrane process. Sci Rep 2019; 9:5779. [PMID: 30962494 PMCID: PMC6453919 DOI: 10.1038/s41598-019-42235-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 03/20/2019] [Indexed: 11/09/2022] Open
Abstract
Zeolitic imidazolate framework-302 (ZIF-302)-embedded cellulose acetate (CA) membranes for osmotic driven membrane process (ODMPs) were fabricated using the phase inversion method. We investigated the effects of different fractions of ZIF-302 in the CA membrane to understand their influence on ODMPs performance. Osmotic water transport was evaluated using different draw solution concentrations to investigate the effects of ZIF-302 contents on the performance parameters. CA/ZIF-302 membranes showed fouling resistance to sodium alginate by a decreased water flux decline and increased recovery ratio in the pressure retarded osmosis (PRO) mode. Results show that the hydrothermally stable ZIF-302-embedded CA/ZIF-302 composite membrane is expected to be durable in water and alginate-fouling conditions.
Collapse
Affiliation(s)
- Teayeop Kim
- School of Mechanical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Moon-Ki Choi
- School of Mechanical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Hyun S Ahn
- Department of Chemistry, Yonsei University, Seoul, 03722, Republic of Korea
| | - Junsuk Rho
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, 790-784, Republic of Korea.
| | - Hyung Mo Jeong
- Department of Materials Science & Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| | - Kyunghoon Kim
- School of Mechanical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
30
|
Yu G, Zou X, Sun L, Liu B, Wang Z, Zhang P, Zhu G. Constructing Connected Paths between UiO-66 and PIM-1 to Improve Membrane CO 2 Separation with Crystal-Like Gas Selectivity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1806853. [PMID: 30803076 DOI: 10.1002/adma.201806853] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 01/24/2019] [Indexed: 06/09/2023]
Abstract
Most metal-organic-framework- (MOF-) based hybrid membranes face the challenge of low gas permeability in CO2 separation. This study presents a new strategy of interweaving UiO-66 and PIM-1 to build freeways in UiO-66-CN@sPIM-1 membranes for fast CO2 transport. In this strategy, sPIM-1 is rigidified via thermal treatment to make polymer voids permanent, and concurrently polymer chains are mutually linked onto UiO-66-CN crystals to minimize interfacial defects. The pore chemistry of UiO-66-CN is kept intact in hybrid membranes, allowing full utilization of MOF pores and selective adsorption for CO2 . Separation results show that UiO-66-CN@sPIM-1 membranes possess exceptionally high CO2 permeability (15433.4-22665 Barrer), approaching to that of UiO-66-NH2 crystal (65-75% of crystal-derived permeability). Additionally, the CO2 /N2 permeation selectivity for a representative membrane (23.9-28.6) moves toward that of single crystal (24.6-29.6). The unique structure and superior CO2 /N2 separation performance make UiO-66-CN@sPIM-1 membranes promising in practical CO2 separations.
Collapse
Affiliation(s)
- Guangli Yu
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Xiaoqin Zou
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Lei Sun
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Baisong Liu
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Ziyang Wang
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Panpan Zhang
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Guangshan Zhu
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| |
Collapse
|
31
|
Luo XY, Lv XY, Shi GL, Meng Q, Li HR, Wang CM. Designing amino-based ionic liquids for improved carbon capture: One amine binds two CO2. AIChE J 2018. [DOI: 10.1002/aic.16420] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Xiao Y. Luo
- Dept. of Chemical and Biological Engineering, Key Laboratory of Biomass Chemical Engineering of Ministry of Education; Zhejiang University; Hangzhou China
| | - Xiao Y. Lv
- Dept. of Chemistry, ZJU-NHU United R&D Center; Zhejiang University; Hangzhou China
| | - Gui L. Shi
- Dept. of Chemistry, ZJU-NHU United R&D Center; Zhejiang University; Hangzhou China
| | - Qin Meng
- Dept. of Chemical and Biological Engineering, Key Laboratory of Biomass Chemical Engineering of Ministry of Education; Zhejiang University; Hangzhou China
| | - Hao R. Li
- Dept. of Chemistry, ZJU-NHU United R&D Center; Zhejiang University; Hangzhou China
| | - Cong M. Wang
- Dept. of Chemical and Biological Engineering, Key Laboratory of Biomass Chemical Engineering of Ministry of Education; Zhejiang University; Hangzhou China
- Dept. of Chemistry, ZJU-NHU United R&D Center; Zhejiang University; Hangzhou China
| |
Collapse
|
32
|
Orooji Y, Liang F, Razmjou A, Liu G, Jin W. Preparation of anti-adhesion and bacterial destructive polymeric ultrafiltration membranes using modified mesoporous carbon. Sep Purif Technol 2018. [DOI: 10.1016/j.seppur.2018.05.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
33
|
Guo A, Ban Y, Yang K, Yang W. Metal-organic framework-based mixed matrix membranes: Synergetic effect of adsorption and diffusion for CO2/CH4 separation. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.05.032] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
34
|
Recent advances on mixed-matrix membranes for gas separation: Opportunities and engineering challenges. KOREAN J CHEM ENG 2018. [DOI: 10.1007/s11814-018-0081-1] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|