1
|
Salehi S. A comprehensive review on using injectable chitosan microgels for osteochondral tissue repair. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2025; 36:647-662. [PMID: 39460952 DOI: 10.1080/09205063.2024.2419715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024]
Abstract
Restoring cartilage to healthy state is challenging due to low cell density and hence low regenerative capacity. The current platforms are not compatible with clinical translation and require dedicated handling of trained personnel. However, by engineering and implanting cell microaggregates in higher concentrations, efficient formation of new cartilage can be achieved, even in the absence of exogenous growth factors. Therefore, one-step surgeries are preferable for novel treatments and we need cell laden microgels allowing the formation of microaggregaets in vivo. Injectability is a key parameter for in situ forming the shape and minimally invasive clinical applications. Hydrogels as bioinks can restore damaged tissues to their primary shape. Chitosan is a polysaccharide derived from chitin with abundant usage in tissue engineering. This review highlights the use of chitosan as an injectable hydrogel for osteochondral defects. Several studies focused on encapsulating mesenchymal stem cells within chitosan hydrogels have been categorized and incorporating microfluidic devices has been identified in the forefront to form microgels. Additionally, the printability is another convenience of chitosan for using in 3D printing for cartilage tissue engineering which is described in this review.
Collapse
Affiliation(s)
- Sarah Salehi
- School of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran
| |
Collapse
|
2
|
Gan Y, Han H, Zhang Y, Zhou Z, Shen X, Fang J, Cui L, Zhou Z. Chitosan-based injectable porous microcarriers with enhanced adipogenic differentiation and angiogenesis for subcutaneous adipose tissue regeneration. BIOMATERIALS ADVANCES 2025; 169:214174. [PMID: 39756088 DOI: 10.1016/j.bioadv.2025.214174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/02/2025] [Accepted: 01/02/2025] [Indexed: 01/07/2025]
Abstract
Chitosan is a promising biomaterial for tissue engineering, but its functionality is limited by a lack of bioactive sites. This study develops chitosan/amniotic membrane microcarriers to enhance vascularization and tissue regeneration for subcutaneous adipose tissue. The incorporation of decellularized amniotic membrane enhances the bioactivities of chitosan in promoting cell differentiation and angiogenesis. Optimized preparation yielded porous microcarriers with a particle size of 261.2 ± 28 μm and an average pore size of 19.0 ± 4 μm. In vitro degradation analysis showed accelerated degradation with higher amniotic membrane content. Cytocompatibility and adipogenic capacity assessments indicated that the microcarriers supported cell adhesion and proliferation over 7 days, with amniotic membrane facilitating adipogenic differentiation of adipose-derived stem cells. When injected subcutaneously into nude mice, these microcarriers formed neoplastic adipose tissues, which were harvested 8 weeks later. Fluorescence staining, oil-red O staining and CD31 labeling demonstrated that amniotic membrane incorporation significantly enhanced in vivo adipose tissue formation and angiogenesis.
Collapse
Affiliation(s)
- Yan Gan
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of the Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, PR China
| | - Haotian Han
- Department of Reconstructive and Regenerative Surgery, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Ying Zhang
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of the Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, PR China
| | - Ziwei Zhou
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of the Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, PR China
| | - Xiang Shen
- Department of Orthopedics, The Fourth Hospital of Changsha, Changsha, PR China
| | - Jianjun Fang
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of the Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, PR China.
| | - Lei Cui
- Department of Reconstructive and Regenerative Surgery, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, PR China.
| | - Zhihua Zhou
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of the Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, PR China.
| |
Collapse
|
3
|
Ma X, Yue Q, Wang Q, Liu C, Fu S, Luan J. Hydrophilic Components as Key Active Ingredients in Adipose-Derived Matrix Bioscaffolds for Inducing Fat Regeneration. Adv Healthc Mater 2024; 13:e2402331. [PMID: 39188185 PMCID: PMC11650414 DOI: 10.1002/adhm.202402331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/14/2024] [Indexed: 08/28/2024]
Abstract
Decellularized adipose-derived matrix (DAM) has emerged as a promising biomaterial for soft tissue reconstruction. However, due to a lack of research on its complex composition, the understanding of the key components in DAM remains limited, leading to inconsistent adipogenic properties and challenges in optimizing preparation methods purposefully. In this study, it is proposed for the first time that DAM comprises two distinct components: hydrophilic (H-DAM) and lipophilic (L-DAM), each with markedly different effects on fat regeneration. It is confirmed that H-DAM is the key component for inducing fat regeneration due to its enhanced cell-cell and cell-scaffold interactions, primarily mediated by the Hedgehog signaling pathway. In contrast, L-DAM exhibits poor cell adhesion and contains more antigenic components, leading to a higher immunoinflammatory response and reduced adipogenesis. In addition, it is found that intracellular proteins, which are more abundant in H-DAM, can be retained as beneficial components due to their hydrophilicity, contrary to the conventional view that they shall be removed. Accordingly, a purified bioscaffold with unprecedented efficacy is proposed for fat regeneration and reduced immunogenicity. This finding provides insights for developing scaffolds for fat regeneration and promotes the realization of xenotransplantation.
Collapse
Affiliation(s)
- Xiaomu Ma
- Plastic Surgery HospitalPeking Union Medical CollegeChinese Academy of Medical SciencesBeijing10014China
| | - Qiang Yue
- Plastic Surgery HospitalPeking Union Medical CollegeChinese Academy of Medical SciencesBeijing10014China
| | - Qian Wang
- Plastic Surgery HospitalPeking Union Medical CollegeChinese Academy of Medical SciencesBeijing10014China
| | - Chunjun Liu
- Plastic Surgery HospitalPeking Union Medical CollegeChinese Academy of Medical SciencesBeijing10014China
| | - Su Fu
- Plastic Surgery HospitalPeking Union Medical CollegeChinese Academy of Medical SciencesBeijing10014China
| | - Jie Luan
- Plastic Surgery HospitalPeking Union Medical CollegeChinese Academy of Medical SciencesBeijing10014China
| |
Collapse
|
4
|
Zheng F, Tian R, Lu H, Liang X, Shafiq M, Uchida S, Chen H, Ma M. Droplet Microfluidics Powered Hydrogel Microparticles for Stem Cell-Mediated Biomedical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401400. [PMID: 38881184 DOI: 10.1002/smll.202401400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/21/2024] [Indexed: 06/18/2024]
Abstract
Stem cell-related therapeutic technologies have garnered significant attention of the research community for their multi-faceted applications. To promote the therapeutic effects of stem cells, the strategies for cell microencapsulation in hydrogel microparticles have been widely explored, as the hydrogel microparticles have the potential to facilitate oxygen diffusion and nutrient transport alongside their ability to promote crucial cell-cell and cell-matrix interactions. Despite their significant promise, there is an acute shortage of automated, standardized, and reproducible platforms to further stem cell-related research. Microfluidics offers an intriguing platform to produce stem cell-laden hydrogel microparticles (SCHMs) owing to its ability to manipulate the fluids at the micrometer scale as well as precisely control the structure and composition of microparticles. In this review, the typical biomaterials and crosslinking methods for microfluidic encapsulation of stem cells as well as the progress in droplet-based microfluidics for the fabrication of SCHMs are outlined. Moreover, the important biomedical applications of SCHMs are highlighted, including regenerative medicine, tissue engineering, scale-up production of stem cells, and microenvironmental simulation for fundamental cell studies. Overall, microfluidics holds tremendous potential for enabling the production of diverse hydrogel microparticles and is worthy for various stem cell-related biomedical applications.
Collapse
Affiliation(s)
- Fangqiao Zheng
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, P. R. China
| | - Ruizhi Tian
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Hongxu Lu
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiao Liang
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, P. R. China
| | - Muhammad Shafiq
- Innovation Center of NanoMedicine (iCONM), Kawasaki Institute of Industrial Promotion, Kawasaki-ku, Kawasaki, Kanagawa, 210-0821, Japan
| | - Satoshi Uchida
- Innovation Center of NanoMedicine (iCONM), Kawasaki Institute of Industrial Promotion, Kawasaki-ku, Kawasaki, Kanagawa, 210-0821, Japan
- Department of Advanced Nanomedical Engineering, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8510, Japan
| | - Hangrong Chen
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, P. R. China
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ming Ma
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, P. R. China
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
5
|
Qin X, Gan Z, Liu H, Tao T, He J, Li X, Shang D, Li X, Xie F, Qin J. A Pump-Free Strategy for the Controllable Generation of Alginate Microgels as Cellular Microcarriers. ACS Biomater Sci Eng 2024; 10:3958-3967. [PMID: 38711418 DOI: 10.1021/acsbiomaterials.4c00375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Microgels are advanced scaffolds for tissue engineering due to their proper biodegradability, good biocompatibility, and high specific surface area for effective oxygen and nutrient transfer. However, most of the current monodispersed microgel fabrication systems rely heavily on various precision pumps, which highly increase the cost and complexity of their downstream application. In this work, we developed a simple and facile system for the controllable generation of uniform alginate microgels by integrating a gas-shearing strategy into a glass microfluidic device. Importantly, the cell-laden microgels can be rapidly prepared in a pump-free manner under an all-aqueous environment. The three-dimensional cultured green fluorescent protein-human A549 cells in alginate microgels exhibited enhanced stemness and drug resistance compared to those under two-dimensional conditions. The pancreatic cancer organoids in alginate microgels exhibited some of the key features of pancreatic cancer. The proposed microgels showed decent monodispersity, biocompatibility, and versatility, providing great opportunities in various biomedical applications such as microcarrier fabricating, organoid engineering, and high-throughput drug screening.
Collapse
Affiliation(s)
- Xinyuan Qin
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Science, Beijing 100049, China
| | - Zhongqiao Gan
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Science, Beijing 100049, China
| | - Haitao Liu
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Tingting Tao
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Jia He
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xianliang Li
- Department of HBP Surgery, Beijing Chao Yang Hospital, the Capital Medical University, Beijing 100020, China
| | - Dong Shang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, No.222 Zhongshan Road, Dalian 116011, China
- Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, No.222 Zhongshan Road, Dalian 116011, China
| | - Xiang Li
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC, No. 2 Fengyang Street, Zhengzhou 450001, China
| | - Fuwei Xie
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC, No. 2 Fengyang Street, Zhengzhou 450001, China
| | - Jianhua Qin
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Science, Beijing 100049, China
- Beijing Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China
- University of Science and Technology of China, Hefei 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
| |
Collapse
|
6
|
Hakami A, Narasimhan K, Comini G, Thiele J, Werner C, Dowd E, Newland B. Cryogel microcarriers for sustained local delivery of growth factors to the brain. J Control Release 2024; 369:404-419. [PMID: 38508528 DOI: 10.1016/j.jconrel.2024.03.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/05/2024] [Accepted: 03/14/2024] [Indexed: 03/22/2024]
Abstract
Neurotrophic growth factors such as glial cell line-derived neurotrophic factor (GDNF) and brain-derived neurotrophic factor (BDNF) have been considered as potential therapeutic candidates for neurodegenerative disorders due to their important role in modulating the growth and survival of neurons. However, clinical translation remains elusive, as their large size hinders translocation across the blood-brain barrier (BBB), and their short half-life in vivo necessitates repeated administrations. Local delivery to the brain offers a potential route to the target site but requires a suitable drug-delivery system capable of releasing these proteins in a controlled and sustained manner. Herein, we develop a cryogel microcarrier delivery system which takes advantage of the heparin-binding properties of GDNF and BDNF, to reversibly bind/release these growth factors via electrostatic interactions. Droplet microfluidics and subzero temperature polymerization was used to create monodisperse cryogels with varying degrees of negative charge and an average diameter of 20 μm. By tailoring the inclusion of 3-sulfopropyl acrylate (SPA) as a negatively charged moiety, the release duration of these two growth factors could be adjusted to range from weeks to half a year. 80% SPA cryogels and 20% SPA cryogels were selected to load GDNF and BDNF respectively, for the subsequent biological studies. Cell culture studies demonstrated that these cryogel microcarriers were cytocompatible with neuronal and microglial cell lines, as well as primary neural cultures. Furthermore, in vivo studies confirmed their biocompatibility after administration into the brain, as well as their ability to deliver, retain and release GDNF and BDNF in the striatum. Overall, this study highlights the potential of using cryogel microcarriers for long-term delivery of neurotrophic growth factors to the brain for neurodegenerative disorder therapeutics.
Collapse
Affiliation(s)
- Abrar Hakami
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, King Edward VII Avenue, Cardiff CF10 3NB, UK; Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Kaushik Narasimhan
- Pharmacology & Therapeutics and Galway Neuroscience Centre, University of Galway, H91 W5P7 Galway, Ireland
| | - Giulia Comini
- Pharmacology & Therapeutics and Galway Neuroscience Centre, University of Galway, H91 W5P7 Galway, Ireland
| | - Julian Thiele
- Leibniz-Institut für Polymerforschung Dresden e.V., 01069 Dresden, Germany; Institute of Chemistry, Otto von Guericke University Magdeburg, 39106 Magdeburg, Germany
| | - Carsten Werner
- Leibniz-Institut für Polymerforschung Dresden e.V., 01069 Dresden, Germany
| | - Eilís Dowd
- Pharmacology & Therapeutics and Galway Neuroscience Centre, University of Galway, H91 W5P7 Galway, Ireland.
| | - Ben Newland
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, King Edward VII Avenue, Cardiff CF10 3NB, UK.
| |
Collapse
|
7
|
Tong X, Xiao Z, Li P, Liu X, Wang M, Wen S, Wang N, Liao S, Zhou J. Angiogenesis and flap-related research: A bibliometric analysis. Int Wound J 2023; 20:3057-3072. [PMID: 37312275 PMCID: PMC10502283 DOI: 10.1111/iwj.14181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/21/2023] [Accepted: 03/27/2023] [Indexed: 06/15/2023] Open
Abstract
Adequate blood supply, a prerequisite for flap survival after grafting, makes angiogenesis of the flap the biggest problem to be solved. Researches have been conducted around vascularisation in correlation with flap grafting. However, bibliometric analyses systematically examining this research field are lacking. As such, we herein sought to conduct comprehensive comparative analyses of the contributions of different researchers, institutions, and countries to this research space in an effort to identify trends and hotspots in angiogenesis and vascularisation in the context of flap grafting. Publications pertaining to angiogenesis and vascularisation in the context of flap grafting were retrieved from the Web of Science Core Collection. References were then analysed and plotted using Microsoft Excel 2019, VOSviewer, and CiteSpace V. In total, 2234 papers that were cited 40 048 times (17.63 citations/paper) were included in this analysis. The greatest number of studies were from the United States, with these studies exhibiting both the highest number of citations (13 577) and the greatest overall H-index (60). For The institutions that published the greatest number of studies were WENZHOU MEDICAL UNIVERSITY (681), while UNIVERSITY OF ERLANGEN NUREMBERG has the highest number of citations (1458), and SHANGHAI JIAO TONG UNIVERSITY holds the greatest overall H-index (20). The greatest number of studies in this research space were published by Gao WY, while Horch RE was the most commonly cited researcher in the field. The VOS viewer software clustered relevant keywords into three clusters, with clusters 1, 2, 3, and 4 corresponding to studies in which the keywords 'anatomy', 'survival', 'transplantation', 'therapy' most frequently appeared. The most promising research hotspot-related terms in this field included 'autophagy', 'oxidative stress', 'ischemia/reperfusion injury', which exhibited a most recent average appearing year (AAY) of 2017 and after. Generally speaking, the results of this analysis indicate that the number of articles exploring angiogenesis and flap-related research has risen steadily, with the United States and China being the two countries publishing the greatest proportion of studies in this field. The overall focus of these studies has shifted away from 'infratest and tissue engineering' towards 'mechanisms'. In the future, particular attention should be paid to emerging research hotspots, which include 'ischemia/reperfusion injury' and treatments for promoting vascularization, such as 'platelet-rich plasma'. In light of these findings, funding agencies should continue increasing their investment in the exploration of the concrete mechanisms and interventional therapeutic relevance of angiogenesis during flap transplantation.
Collapse
Affiliation(s)
- Xiao‐Fei Tong
- Department of Plastic SurgeryThe Third Xiangya Hospital, Central South UniversityChangshaChina
| | - Zhen‐Yang Xiao
- Department of Plastic SurgeryThe Third Xiangya Hospital, Central South UniversityChangshaChina
| | - Pei‐Ting Li
- Department of Plastic SurgeryThe Third Xiangya Hospital, Central South UniversityChangshaChina
| | - Xin Liu
- Department of Plastic SurgeryThe Third Xiangya Hospital, Central South UniversityChangshaChina
| | - Ming‐Zhu Wang
- Department of Plastic SurgeryThe Third Xiangya Hospital, Central South UniversityChangshaChina
| | - Shi‐Yi Wen
- Department of Plastic SurgeryThe Third Xiangya Hospital, Central South UniversityChangshaChina
| | - Na Wang
- Department of Plastic SurgeryThe Third Xiangya Hospital, Central South UniversityChangshaChina
| | - Shenghui Liao
- School of Computer Science and EngineeringCentral South UniversityChangshaChina
| | - Jian‐Da Zhou
- Department of Plastic SurgeryThe Third Xiangya Hospital, Central South UniversityChangshaChina
| |
Collapse
|
8
|
Wang Y, Yuan Z, Pang Y, Zhang D, Li G, Zhang X, Yu Y, Yang X, Cai Q. Injectable, High Specific Surface Area Cryogel Microscaffolds Integrated with Osteoinductive Bioceramic Fibers for Enhanced Bone Regeneration. ACS APPLIED MATERIALS & INTERFACES 2023; 15:20661-20676. [PMID: 37083252 DOI: 10.1021/acsami.3c00192] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Organic-inorganic composites with high specific surface area and osteoinductivity provide a suitable microenvironment for cell ingrowth and effective ossification, which could greatly promote bone regeneration. Here, we report gelatin methacryloyl (GelMA) cryogel microspheres that are reinforced with hydroxyapatite (HA) nanowires and calcium silicate (CS) nanofibers to achieve the goal. The prepared composite cryogel microspheres with open porous structure and rough surface greatly facilitate cell anchoring, simultaneously exhibiting excellent injectability. Compared to the only HA- or CS-containing counterparts, the GelMA cryogel microspheres composited with HA:CS (termed as GMHC) achieve sustained release of bioactive Ca, P, and Si elements, which are conducive to osteogenic differentiation of bone marrow mesenchymal stromal cells (BMSCs). These composite microspheres can prevent from forming peralkalic conditions, which is beneficial for cell growth. After injection of cryogel microspheres into rat calvarial defects, neo-bone tissue grows into their pores, showing tight integration. The embedded bioceramic components significantly promote bone regeneration, with the GMHC achieving the best regenerative outcomes. Promisingly, porous organic-inorganic composite cryogel microspheres, with high specific surface area, biodegradability, and osteoinductivity, can act as injectable microscaffolds to repair bone defects with enhanced efficiency, which may widen the scaffold strategy for bone tissue engineering.
Collapse
Affiliation(s)
- Yue Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zuoying Yuan
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China
| | - Yanyun Pang
- School of Stomatology, Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, China
| | - Daixing Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Guangyu Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xu Zhang
- School of Stomatology, Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, China
| | - Yingjie Yu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaoping Yang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Qing Cai
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
9
|
Ni R, Luo C, Ci H, Sun D, An R, Wang Z, Yang J, Li Y, Sun J. Construction of vascularized tissue-engineered breast with dual angiogenic and adipogenic micro-tissues. Mater Today Bio 2022; 18:100539. [PMID: 36686035 PMCID: PMC9850046 DOI: 10.1016/j.mtbio.2022.100539] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 12/22/2022] [Accepted: 12/29/2022] [Indexed: 12/31/2022] Open
Abstract
Hydrogel-based micro-tissue engineering technique, a bottom-up approach, is promising in constructing soft tissue of large size with homogeneous spatial distribution and superior regeneration capacity compared to the top-down approach. However, most of the studies employed micro-tissues with simple mesenchymal stem cells, which could hardly meet the growth of matrix and vessels. Therefore, we recommend a dual micro-tissues assembly strategy to construct vascularized tissue-engineered breast grafts (TEBGs). Adipose micro-tissues (AMs) and vessel micro-tissues (VMs) were fabricated by seeding adipose-derived stem cells (ADSCs) and human umbilical vein endothelial cells (HUVECs) on collagen microgels (COLs) with a uniform diameter of ∼250 μm, respectively. TEBGs were constructed by injecting the dual micro-tissues into 3D printed breast-like Thermoplastic Urethane (TPU) scaffolds, then implanted into the subcutaneous pockets on the back of nude mice. After 3 months of implantation, TEBGs based on dual micro-tissues performed larger volume of adipose tissue regeneration and neo-vessel formation compared to TEBGs based on single AMs. This study extends the application of micro-tissue engineering technique for the construction of soft grafts, and is expected to be useful for creating heterogeneous tissue constructs in the future.
Collapse
Affiliation(s)
- Ruopiao Ni
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China,Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022, China,Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chao Luo
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China,Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022, China
| | - Hai Ci
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China,Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022, China
| | - Di Sun
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China,Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022, China
| | - Ran An
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China,Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022, China
| | - Zhenxing Wang
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China,Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022, China
| | - Jie Yang
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China,Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022, China,Corresponding author. Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China.
| | - Yiqing Li
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,Corresponding author.
| | - Jiaming Sun
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China,Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022, China,Corresponding author. Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China.
| |
Collapse
|
10
|
Zhu Y, Zhang X, Yang K, Shao Y, Gu R, Liu X, Liu H, Liu Y, Zhou Y. Macrophage-derived apoptotic vesicles regulate fate commitment of mesenchymal stem cells via miR155. Stem Cell Res Ther 2022; 13:323. [PMID: 35842708 PMCID: PMC9288680 DOI: 10.1186/s13287-022-03004-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 03/09/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND In tissue engineering, mesenchymal stem cells (MSCs) are common seed cells because of abundant sources, strong proliferation ability and immunomodulatory function. Numerous researches have demonstrated that MSC-macrophage crosstalk played a key role in the tissue engineering. Macrophages could regulate the differentiation of MSCs via different molecular mechanisms, including extracellular vesicles. Apoptotic macrophages could generate large amounts of apoptotic vesicles (apoVs). ApoVs are rich in proteins, RNA (microRNAs, mRNAs, ncRNAs, etc.) and lipids, and are a key intercellular communication mediator that can exert different regulatory effects on recipient cells. MiRNAs account for about half of the total RNAs of extracellular vesicles, and play important roles in biological processes such as cell proliferation and differentiation, whereas the functions of macrophage-derived apoVs remain largely unknown. There was no research to clarify the role of macrophage-derived apoVs in MSC fate choices. In this study, we aimed to characterize macrophage-derived apoVs, and investigate the roles of macrophage-derived apoVs in the fate commitment of MSCs. METHODS We characterized macrophage-derived apoVs, and investigated their role in MSC osteogenesis and adipogenesis in vitro and in vivo. Furthermore, we performed microRNA loss- and gain-of-function experiments and western blot to determine the molecular mechanism. RESULTS Macrophages could produce a large number of apoVs after apoptosis. MSCs could uptake apoVs. Then, we found that macrophage-derived apoVs inhibited osteogenesis and promoted adipogenesis of MSCs in vitro and in vivo. In mechanism, apoVs were enriched for microRNA155 (miR155), and apoVs regulated osteogenesis and adipogenesis of MSCs by delivering miR155. Besides, miR155 regulated osteogenesis and adipogenesis of MSCs cultured with macrophage-derived apoVs via the SMAD2 signaling pathway. CONCLUSIONS Macrophage-derived apoVs could regulate the osteogenesis and adipogenesis of MSCs through delivering miR155, which provided novel insights for MSC-mediated tissue engineering.
Collapse
Affiliation(s)
- Yuan Zhu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Beijing, 100081, China.,National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Xiao Zhang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Beijing, 100081, China.,National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Kunkun Yang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Beijing, 100081, China.,National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Yuzi Shao
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Beijing, 100081, China.,National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Ranli Gu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Beijing, 100081, China.,National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Xuenan Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Beijing, 100081, China.,National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Hao Liu
- The Central Laboratory, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Beijing, 100081, China.,National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Yunsong Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Beijing, 100081, China. .,National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, Peking University School and Hospital of Stomatology, Beijing, 100081, China.
| | - Yongsheng Zhou
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Beijing, 100081, China. .,National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, Peking University School and Hospital of Stomatology, Beijing, 100081, China.
| |
Collapse
|
11
|
Mahdieh Z, Cherne MD, Fredrikson JP, Sidar B, Sanchez HS, Chang CB, Bimczok D, Wilking JN. Granular Matrigel: restructuring a trusted extracellular matrix material for improved permeability. Biomed Mater 2022; 17:045020. [PMID: 35609584 DOI: 10.1088/1748-605x/ac7306] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/24/2022] [Indexed: 11/11/2022]
Abstract
Matrigel is a polymeric extracellular matrix material produced by mouse cancer cells. Over the past four decades, Matrigel has been shown to support a wide variety of two- and three-dimensional cell and tissue culture applications including organoids. Despite widespread use, transport of molecules, cells, and colloidal particles through Matrigel can be limited. These limitations restrict cell growth, viability, and function and limit Matrigel applications. A strategy to improve transport through a hydrogel without modifying the chemistry or composition of the gel is to physically restructure the material into microscopic microgels and then pack them together to form a porous material. These 'granular' hydrogels have been created using a variety of synthetic hydrogels, but granular hydrogels composed of Matrigel have not yet been reported. Here we present a drop-based microfluidics approach for structuring Matrigel into a three-dimensional, mesoporous material composed of packed Matrigel microgels, which we call granular Matrigel. We show that restructuring Matrigel in this manner enhances the transport of colloidal particles and human dendritic cells (DCs) through the gel while providing sufficient mechanical support for culture of human gastric organoids (HGOs) and co-culture of human DCs with HGOs.
Collapse
Affiliation(s)
- Zahra Mahdieh
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, MT, United States of America
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, United States of America
| | - Michelle D Cherne
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, United States of America
| | - Jacob P Fredrikson
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, MT, United States of America
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, United States of America
| | - Barkan Sidar
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, MT, United States of America
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, United States of America
| | - Humberto S Sanchez
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, MT, United States of America
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, United States of America
| | - Connie B Chang
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, MT, United States of America
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, United States of America
| | - Diane Bimczok
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, United States of America
| | - James N Wilking
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, MT, United States of America
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, United States of America
| |
Collapse
|
12
|
Yu S, Sun T, Liu W, Yang L, Gong H, Chen X, Li J, Weng J. PLGA Cage‐like Structures Loaded with Sr/Mg‐doped Hydroxyapatite for Repairing Osteoporotic Bone Defects. Macromol Biosci 2022; 22:e2200092. [DOI: 10.1002/mabi.202200092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/20/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Shangke Yu
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education) School of Materials Science and Engineering Southwest Jiaotong University Chengdu 610031 China
| | - Tong Sun
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education) School of Materials Science and Engineering Southwest Jiaotong University Chengdu 610031 China
| | - Wei Liu
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education) School of Materials Science and Engineering Southwest Jiaotong University Chengdu 610031 China
| | - Lu Yang
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education) School of Materials Science and Engineering Southwest Jiaotong University Chengdu 610031 China
| | - Hanwen Gong
- College of Medicine Southwest Jiaotong University Chengdu 610031 China
| | - Xingyu Chen
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education) School of Materials Science and Engineering Southwest Jiaotong University Chengdu 610031 China
- College of Medicine Southwest Jiaotong University Chengdu 610031 China
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 P.R. China
| | - Jianshu Li
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 P.R. China
| | - Jie Weng
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education) School of Materials Science and Engineering Southwest Jiaotong University Chengdu 610031 China
- College of Medicine Southwest Jiaotong University Chengdu 610031 China
| |
Collapse
|
13
|
Béduer A, Genta M, Kunz N, Verheyen C, Martins M, Brefie-Guth J, Braschler T. Design of an elastic porous injectable biomaterial for tissue regeneration and volume retention. Acta Biomater 2022; 142:73-84. [PMID: 35101581 DOI: 10.1016/j.actbio.2022.01.050] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 01/01/2022] [Accepted: 01/24/2022] [Indexed: 11/01/2022]
Abstract
Soft tissue reconstruction currently relies on two main approaches, one involving the implantation of external biomaterials and the second one exploiting surgical autologous tissue displacement. While both methods have different advantages and disadvantages, successful long-term solutions for soft tissue repair are still limited. Specifically, volume retention over time and local tissue regeneration are the main challenges in the field. In this study the performance of a recently developed elastic porous injectable (EPI) biomaterial based on crosslinked carboxymethylcellulose is analyzed. Nearly quantitative volumetric stability, with over 90% volume retention at 6 months, is observed, and the pore space of the material is effectively colonized with autologous fibrovascular tissue. A comparative analysis with hyaluronic acid and collagen-based clinical reference materials is also performed. Mechanical stability, evidenced by a low-strain elastic storage modulus (G') approaching 1kPa and a yield strain of several tens of percent, is required for volume retention in-vivo. Macroporosity, along with in-vivo persistence of at least several months, is instead needed for successful host tissue colonization. This study demonstrates the importance of understanding material design criteria and defines the biomaterial requirements for volume retention and tissue colonization in soft tissue regeneration. STATEMENT OF SIGNIFICANCE: We present the design of an elastic, porous, injectable (EPI) scaffold suspension capable of inducing a precisely defined, stable volume of autologous connective tissue in situ. It combines volume stability and vascularized tissue induction capacity known from bulk scaffolds with the ease of injection in shear yielding materials. By comparative study with a series of clinically established biomaterials including a wound healing matrix and dermal fillers, we establish design rules regarding rheological and compressive mechanical properties as well as degradation characteristics that rationally underpin the volume stability and tissue induction in a high-performance biomaterial. These design rules should allow to streamline the development of new colonizable injectables.
Collapse
|
14
|
A Paradigm Shift in Tissue Engineering: From a Top–Down to a Bottom–Up Strategy. Processes (Basel) 2021. [DOI: 10.3390/pr9060935] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Tissue engineering (TE) was initially designed to tackle clinical organ shortage problems. Although some engineered tissues have been successfully used for non-clinical applications, very few (e.g., reconstructed human skin) have been used for clinical purposes. As the current TE approach has not achieved much success regarding more broad and general clinical applications, organ shortage still remains a challenging issue. This very limited clinical application of TE can be attributed to the constraints in manufacturing fully functional tissues via the traditional top–down approach, where very limited cell types are seeded and cultured in scaffolds with equivalent sizes and morphologies as the target tissues. The newly proposed developmental engineering (DE) strategy towards the manufacture of fully functional tissues utilises a bottom–up approach to mimic developmental biology processes by implementing gradual tissue assembly alongside the growth of multiple cell types in modular scaffolds. This approach may overcome the constraints of the traditional top–down strategy as it can imitate in vivo-like tissue development processes. However, several essential issues must be considered, and more mechanistic insights of the fundamental, underpinning biological processes, such as cell–cell and cell–material interactions, are necessary. The aim of this review is to firstly introduce and compare the number of cell types, the size and morphology of the scaffolds, and the generic tissue reconstruction procedures utilised in the top–down and the bottom–up strategies; then, it will analyse their advantages, disadvantages, and challenges; and finally, it will briefly discuss the possible technologies that may overcome some of the inherent limitations of the bottom–up strategy.
Collapse
|
15
|
Mora-Boza A, Mancipe Castro LM, Schneider RS, Han WM, García AJ, Vázquez-Lasa B, San Román J. Microfluidics generation of chitosan microgels containing glycerylphytate crosslinker for in situ human mesenchymal stem cells encapsulation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 120:111716. [PMID: 33545868 PMCID: PMC8237249 DOI: 10.1016/j.msec.2020.111716] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/04/2020] [Accepted: 11/08/2020] [Indexed: 12/15/2022]
Abstract
Human mesenchymal stem cells (hMSCs) are an attractive source for cell therapies because of their multiple beneficial properties, i.e. via immunomodulation and secretory factors. Microfluidics is particularly attractive for cell encapsulation since it provides a rapid and reproducible methodology for microgel generation of controlled size and simultaneous cell encapsulation. Here, we report the fabrication of hMSC-laden microcarriers based on in situ ionotropic gelation of water-soluble chitosan in a microfluidic device using a combination of an antioxidant glycerylphytate (G1Phy) compound and tripolyphosphate (TPP) as ionic crosslinkers (G1Phy:TPP-microgels). These microgels showed homogeneous size distributions providing an average diameter of 104 ± 12 μm, somewhat lower than that of control (127 ± 16 μm, TPP-microgels). The presence of G1Phy in microgels maintained cell viability over time and upregulated paracrine factor secretion under adverse conditions compared to control TPP-microgels. Encapsulated hMSCs in G1Phy:TPP-microgels were delivered to the subcutaneous space of immunocompromised mice via injection, and the delivery process was as simple as the injection of unencapsulated cells. Immediately post-injection, equivalent signal intensities were observed between luciferase-expressing microgel-encapsulated and unencapsulated hMSCs, demonstrating no adverse effects of the microcarrier on initial cell survival. Cell persistence, inferred by bioluminescence signal, decreased exponentially over time showing relatively higher half-life values for G1Phy:TPP-microgels compared to TPP-microgels and unencapsulated cells. In overall, results position the microfluidics generated G1Phy:TPP-microgels as a promising microcarrier for supporting hMSC survival and reparative activities.
Collapse
Affiliation(s)
- Ana Mora-Boza
- Institute of Polymer Science and Technology (ICTP-CSIC), Madrid, Spain; CIBER-BBN, Health Institute Carlos III, Madrid, Spain
| | - Lina M Mancipe Castro
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA; Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Rebecca S Schneider
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA; School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Woojin M Han
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA; Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Andrés J García
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA; Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Blanca Vázquez-Lasa
- Institute of Polymer Science and Technology (ICTP-CSIC), Madrid, Spain; CIBER-BBN, Health Institute Carlos III, Madrid, Spain.
| | - Julio San Román
- Institute of Polymer Science and Technology (ICTP-CSIC), Madrid, Spain; CIBER-BBN, Health Institute Carlos III, Madrid, Spain
| |
Collapse
|
16
|
Shi Z, Wang Q, Li GF, Shou YF, Zong HJ, Yan SF, Zhang KX, Yin JB. Preparation and Characterization of Attractive Poly(amino acid) Hydrogels Based on 2-Ureido-4[1H]-pyrimidinone. CHINESE JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1007/s10118-021-2498-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
17
|
Zhang L, Xiang Y, Zhang H, Cheng L, Mao X, An N, Zhang L, Zhou J, Deng L, Zhang Y, Sun X, Santos HA, Cui W. A Biomimetic 3D-Self-Forming Approach for Microvascular Scaffolds. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1903553. [PMID: 32382485 PMCID: PMC7201264 DOI: 10.1002/advs.201903553] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/28/2020] [Accepted: 02/13/2020] [Indexed: 05/12/2023]
Abstract
The development of science and technology often drew lessons from natural phenomena. Herein, inspired by drying-driven curling of apple peels, hydrogel-based micro-scaled hollow tubules (MHTs) are proposed for biomimicking microvessels, which promote microcirculation and improve the survival of random skin flaps. MHTs with various pipeline structures are fabricated using hydrogel in corresponding shapes, such as Y-branches, anastomosis rings, and triangle loops. Adjustable diameters can be achieved by altering the concentration and cross-linking time of the hydrogel. Based on this rationale, biomimetic microvessels with diameters of 50-500 µm are cultivated in vitro by coculture of MHTs and human umbilical vein endothelial cells. In vivo studies show their excellent performance to promote microcirculation and improve the survival of random skin flaps. In conclusion, the present work proposes and validifies a biomimetic 3D self-forming method for the fabrication of biomimetic vessels and microvascular scaffolds with high biocompatibility and stability based on hydrogel materials, such as gelatin and hyaluronic acid.
Collapse
Affiliation(s)
- Liucheng Zhang
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai JiaoTong University School of Medicine639 Zhi Zao Ju RoadShanghai200011P. R. China
| | - Yi Xiang
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Hongbo Zhang
- Department of Pharmaceutical Sciences Laboratory and Turku Center for BiotechnologyÅbo Akademi UniversityTurkuFI‐20520Finland
| | - Liying Cheng
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai JiaoTong University School of Medicine639 Zhi Zao Ju RoadShanghai200011P. R. China
| | - Xiyuan Mao
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai JiaoTong University School of Medicine639 Zhi Zao Ju RoadShanghai200011P. R. China
| | - Ning An
- State Key Laboratory for Strength and Vibration of Mechanical StructuresSchool of AerospaceXi'an Jiaotong UniversityXi'an710049P. R. China
| | - Lu Zhang
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai JiaoTong University School of Medicine639 Zhi Zao Ju RoadShanghai200011P. R. China
| | - Jinxiong Zhou
- State Key Laboratory for Strength and Vibration of Mechanical StructuresSchool of AerospaceXi'an Jiaotong UniversityXi'an710049P. R. China
| | - Lianfu Deng
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Yuguang Zhang
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai JiaoTong University School of Medicine639 Zhi Zao Ju RoadShanghai200011P. R. China
| | - Xiaoming Sun
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai JiaoTong University School of Medicine639 Zhi Zao Ju RoadShanghai200011P. R. China
| | - Hélder A. Santos
- Drug Research ProgramDivision of Pharmaceutical Chemistry and TechnologyFaculty of PharmacyUniversity of HelsinkiHelsinkiFI‐00014Finland
- Helsinki Institute of Life Science (HiLIFE)University of HelsinkiHelsinkiFI‐00014Finland
| | - Wenguo Cui
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| |
Collapse
|
18
|
Bu S, Yan S, Wang R, Xia P, Zhang K, Li G, Yin J. In Situ Precipitation of Cluster and Acicular Hydroxyapatite onto Porous Poly(γ-benzyl-l-glutamate) Microcarriers for Bone Tissue Engineering. ACS APPLIED MATERIALS & INTERFACES 2020; 12:12468-12477. [PMID: 32091198 DOI: 10.1021/acsami.9b22559] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Bone tissue engineering scaffold based on microcarriers provides an effective approach for the repair of irregular bone defects. The implantation of microcarriers by injection can reduce surgical trauma and fill various irregular shaped bone defects. Microcarriers with porous structure and osteogenic properties have shown great potential in promoting the repair of bone defects. In this study, two kinds of hydroxyapatite/poly-(γ-benzyl-l-glutamate) (HA/PBLG) microcarriers were constructed by emulsion/in situ precipitation method and their structures and properties were studied. First, PBLG porous microcarriers were prepared by an emulsion method. Surface carboxylation of PBLG microcarriers was performed to promote the deposition of HA on PBLG microcarriers. Next, the modified porous PBLG microcarriers were used as the matrix, combined with the in situ precipitation method; the cluster HA and acicular HA were precipitated onto the surface of porous microcarriers in the presence of ammonia water and tri(hydroxymethyl)aminomethane (Tris) solution, respectively. The micromorphology, composition, and element distribution of the two kinds of microcarriers were characterized by TEM, SEM, and AFM. Adipose stem cells (ADSCs) were cultured on the cluster HA/PBLG and acicular HA/PBLG microcarriers, respectively. ADSCs could grow and proliferate normally on both kinds of microcarriers wherein the acicular HA/PBLG microcarriers were more favorable for early cell adhesion and showed a beneficial effect on mineralization and osteogenic differentiation of ADSCs. Successful healing of a rabbit femur defect verified the bone regeneration ability of acicular HA/PBLG microcarriers.
Collapse
Affiliation(s)
- Shuai Bu
- Department of Polymer Materials, Shanghai University, 99 Shangda Road, Shanghai 200444, People's Republic of China
| | - Shifeng Yan
- Department of Polymer Materials, Shanghai University, 99 Shangda Road, Shanghai 200444, People's Republic of China
| | - Ruanfeng Wang
- Department of Polymer Materials, Shanghai University, 99 Shangda Road, Shanghai 200444, People's Republic of China
| | - Pengfei Xia
- Department of Polymer Materials, Shanghai University, 99 Shangda Road, Shanghai 200444, People's Republic of China
| | - Kunxi Zhang
- Department of Polymer Materials, Shanghai University, 99 Shangda Road, Shanghai 200444, People's Republic of China
| | - Guifei Li
- Department of Polymer Materials, Shanghai University, 99 Shangda Road, Shanghai 200444, People's Republic of China
| | - Jingbo Yin
- Department of Polymer Materials, Shanghai University, 99 Shangda Road, Shanghai 200444, People's Republic of China
| |
Collapse
|
19
|
Cheng FM, Chen HX, Li HD. Recent advances in tough and self-healing nanocomposite hydrogels for shape morphing and soft actuators. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2019.109448] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
20
|
Yang R, Wang X, Liu S, Zhang W, Wang P, Liu X, Ren Y, Tan X, Chi B. Bioinspired poly (γ-glutamic acid) hydrogels for enhanced chondrogenesis of bone marrow-derived mesenchymal stem cells. Int J Biol Macromol 2020; 142:332-344. [DOI: 10.1016/j.ijbiomac.2019.09.104] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/12/2019] [Accepted: 09/13/2019] [Indexed: 11/30/2022]
|
21
|
Xia Y, Na X, Wu J, Ma G. The Horizon of the Emulsion Particulate Strategy: Engineering Hollow Particles for Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1801159. [PMID: 30260511 DOI: 10.1002/adma.201801159] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 07/06/2018] [Indexed: 05/13/2023]
Abstract
With their hierarchical structures and the substantial surface areas, hollow particles have gained immense research interest in biomedical applications. For scalable fabrications, emulsion-based approaches have emerged as facile and versatile strategies. Here, the recent achievements in this field are unfolded via an "emulsion particulate strategy," which addresses the inherent relationship between the process control and the bioactive structures. As such, the interior architectures are manipulated by harnessing the intermediate state during the emulsion revolution (intrinsic strategy), whereas the external structures are dictated by tailoring the building blocks and solidification procedures of the Pickering emulsion (extrinsic strategy). Through integration of the intrinsic and extrinsic emulsion particulate strategy, multifunctional hollow particles demonstrate marked momentum for label-free multiplex detections, stimuli-responsive therapies, and stem cell therapies.
Collapse
Affiliation(s)
- Yufei Xia
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiangming Na
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jie Wu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- PLA Key Laboratory of Biopharmaceutical Production & Formulation Engineering Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Guanghui Ma
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- PLA Key Laboratory of Biopharmaceutical Production & Formulation Engineering Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing, 211816, P. R. China
| |
Collapse
|
22
|
Newsom JP, Payne KA, Krebs MD. Microgels: Modular, tunable constructs for tissue regeneration. Acta Biomater 2019; 88:32-41. [PMID: 30769137 PMCID: PMC6441611 DOI: 10.1016/j.actbio.2019.02.011] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/24/2019] [Accepted: 02/11/2019] [Indexed: 01/02/2023]
Abstract
Biopolymer microgels are emerging as a versatile tool for aiding in the regeneration of damaged tissues due to their biocompatible nature, tunable microporous structure, ability to encapsulate bioactive factors, and tailorable properties such as stiffness and composition. These properties of microgels, along with their injectability, have allowed for their utilization in a multitude of different tissue engineering applications. Controlled release of growth factors, antibodies, and other bioactive factors from microgels have demonstrated their capabilities as transporters for essential bioactive molecules necessary for guiding tissue reconstruction. Additionally, recent in vitro studies of cellular interaction and proliferation within microgel structures have laid the initial groundwork for regenerative tissue engineering using these materials. Microgels have even been crosslinked together in various ways or 3D printed to form three-dimensional scaffolds to support cell growth. In vivo studies of microgels have pioneered the clinical relevance of these novel and innovative materials for regenerative tissue engineering. This review will cover recent developments and research of microgels as they pertain to bioactive factor release, cellular interaction and proliferation in vitro, and tissue regeneration in vivo. STATEMENT OF SIGNIFICANCE: This review is focused on state-of-the-art microgel technology and innovations within the tissue engineering field, focusing on the use of microgels in bioactive factor delivery and as cell-interactive scaffolds, both in vitro and in vivo. Microgels are hydrogel microparticles that can be tuned based on the biopolymer from which they are derived, the crosslinking chemistry used, and the fabrication method. The emergence of microgels for tissue regeneration applications in recent years illuminates their versatility and applicability in clinical settings.
Collapse
Affiliation(s)
- Jake P Newsom
- Chemical & Biological Engineering, Colorado School of Mines, Golden, CO, United States
| | - Karin A Payne
- Orthopedics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Melissa D Krebs
- Chemical & Biological Engineering, Colorado School of Mines, Golden, CO, United States.
| |
Collapse
|
23
|
Memic A, Colombani T, Eggermont LJ, Rezaeeyazdi M, Steingold J, Rogers ZJ, Navare KJ, Mohammed HS, Bencherif SA. Latest Advances in Cryogel Technology for Biomedical Applications. ADVANCED THERAPEUTICS 2019. [DOI: 10.1002/adtp.201800114] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Adnan Memic
- Center of NanotechnologyKing Abdulaziz University Jeddah 21589 Saudi Arabia
- Center for Biomedical EngineeringDepartment of MedicineBrigham and Women's HospitalHarvard Medical School Cambridge MA 02139 USA
- Department of Chemical EngineeringNortheastern University Boston MA 02115 USA
| | - Thibault Colombani
- Department of Chemical EngineeringNortheastern University Boston MA 02115 USA
| | - Loek J. Eggermont
- Department of Chemical EngineeringNortheastern University Boston MA 02115 USA
- Department of Tumor ImmunologyOncode Institute, Radboud Institute for Molecular Life SciencesRadboud University Medical Center Nijmegen 6500 The Netherlands
| | | | - Joseph Steingold
- Department of Pharmaceutical SciencesNortheastern University Boston MA 02115 USA
| | - Zach J. Rogers
- Department of Chemical EngineeringNortheastern University Boston MA 02115 USA
| | | | | | - Sidi A. Bencherif
- Department of Chemical EngineeringNortheastern University Boston MA 02115 USA
- Department of BioengineeringNortheastern University Boston MA 02115 USA
- Harvard John A. Paulson School of Engineering and Applied SciencesHarvard University Cambridge MA 02138 USA
- Sorbonne UniversityUTC CNRS UMR 7338Biomechanics and Bioengineering (BMBI)University of Technology of Compiègne Compiègne 60159 France
| |
Collapse
|
24
|
Kumar Meena L, Rather H, Kedaria D, Vasita R. Polymeric microgels for bone tissue engineering applications – a review. INT J POLYM MATER PO 2019. [DOI: 10.1080/00914037.2019.1570512] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Lalit Kumar Meena
- Biomaterials & Biomimetics laboratory, School of Life Sciences, Central University of Gujarat, Gandhinagar, India
| | - Hilal Rather
- Biomaterials & Biomimetics laboratory, School of Life Sciences, Central University of Gujarat, Gandhinagar, India
| | - Dhaval Kedaria
- Biomaterials & Biomimetics laboratory, School of Life Sciences, Central University of Gujarat, Gandhinagar, India
| | - Rajesh Vasita
- Biomaterials & Biomimetics laboratory, School of Life Sciences, Central University of Gujarat, Gandhinagar, India
| |
Collapse
|
25
|
Fu J. Strong and tough hydrogels crosslinked by multi-functional polymer colloids. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/polb.24728] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jun Fu
- Polymers and Composites Division & Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering; Chinese Academy of Sciences; Ningbo 315201 China
| |
Collapse
|
26
|
Agrawal G, Agrawal R. Stimuli-Responsive Microgels and Microgel-Based Systems: Advances in the Exploitation of Microgel Colloidal Properties and Their Interfacial Activity. Polymers (Basel) 2018; 10:E418. [PMID: 30966453 PMCID: PMC6415239 DOI: 10.3390/polym10040418] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/03/2018] [Accepted: 04/03/2018] [Indexed: 11/22/2022] Open
Abstract
In this paper, recent developments in the chemical design of functional microgels are summarized. A wide range of available synthetic methods allows the incorporation of various reactive groups, charges, or biological markers inside the microgel network, thus controlling the deformation and swelling degree of the resulting smart microgels. These microgels can respond to various stimuli, such as temperature, pH, light, electric field, etc. and can show unique deformation behavior at the interface. Due to their switchability and interfacial properties, these smart microgels are being extensively explored for various applications, such as antifouling coatings, cell encapsulation, catalysis, controlled drug delivery, and tissue engineering.
Collapse
Affiliation(s)
- Garima Agrawal
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Saharanpur Campus, Paper Mill Road, Saharanpur 247001, Uttar Pradesh, India.
| | - Rahul Agrawal
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-1500, USA.
| |
Collapse
|