1
|
Dos Santos JM, Hall D, Basumatary B, Bryden M, Chen D, Choudhary P, Comerford T, Crovini E, Danos A, De J, Diesing S, Fatahi M, Griffin M, Gupta AK, Hafeez H, Hämmerling L, Hanover E, Haug J, Heil T, Karthik D, Kumar S, Lee O, Li H, Lucas F, Mackenzie CFR, Mariko A, Matulaitis T, Millward F, Olivier Y, Qi Q, Samuel IDW, Sharma N, Si C, Spierling L, Sudhakar P, Sun D, Tankelevičiu Tė E, Duarte Tonet M, Wang J, Wang T, Wu S, Xu Y, Zhang L, Zysman-Colman E. The Golden Age of Thermally Activated Delayed Fluorescence Materials: Design and Exploitation. Chem Rev 2024; 124:13736-14110. [PMID: 39666979 DOI: 10.1021/acs.chemrev.3c00755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Since the seminal report by Adachi and co-workers in 2012, there has been a veritable explosion of interest in the design of thermally activated delayed fluorescence (TADF) compounds, particularly as emitters for organic light-emitting diodes (OLEDs). With rapid advancements and innovation in materials design, the efficiencies of TADF OLEDs for each of the primary color points as well as for white devices now rival those of state-of-the-art phosphorescent emitters. Beyond electroluminescent devices, TADF compounds have also found increasing utility and applications in numerous related fields, from photocatalysis, to sensing, to imaging and beyond. Following from our previous review in 2017 ( Adv. Mater. 2017, 1605444), we here comprehensively document subsequent advances made in TADF materials design and their uses from 2017-2022. Correlations highlighted between structure and properties as well as detailed comparisons and analyses should assist future TADF materials development. The necessarily broadened breadth and scope of this review attests to the bustling activity in this field. We note that the rapidly expanding and accelerating research activity in TADF material development is indicative of a field that has reached adolescence, with an exciting maturity still yet to come.
Collapse
Affiliation(s)
- John Marques Dos Santos
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - David Hall
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Biju Basumatary
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Megan Bryden
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Dongyang Chen
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Praveen Choudhary
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Thomas Comerford
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Ettore Crovini
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Andrew Danos
- Department of Physics, Durham University, Durham DH1 3LE, UK
| | - Joydip De
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Stefan Diesing
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Mahni Fatahi
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Máire Griffin
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Abhishek Kumar Gupta
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Hassan Hafeez
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Lea Hämmerling
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Emily Hanover
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- EaStCHEM School of Chemistry, The University of Edinburgh, Edinburgh, EH9 3FJ, UK
| | - Janine Haug
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - Tabea Heil
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Durai Karthik
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Shiv Kumar
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Oliver Lee
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Haoyang Li
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Fabien Lucas
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | | | - Aminata Mariko
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Tomas Matulaitis
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Francis Millward
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Yoann Olivier
- Laboratory for Computational Modeling of Functional Materials, Namur Institute of Structured Matter, Université de Namur, Rue de Bruxelles, 61, 5000 Namur, Belgium
| | - Quan Qi
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Ifor D W Samuel
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Nidhi Sharma
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Changfeng Si
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Leander Spierling
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Pagidi Sudhakar
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Dianming Sun
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Eglė Tankelevičiu Tė
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Michele Duarte Tonet
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Jingxiang Wang
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Tao Wang
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Sen Wu
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Yan Xu
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Le Zhang
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Eli Zysman-Colman
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| |
Collapse
|
2
|
Li H, Ren H, Wang J, Liu D, Li J. Cyano Decoration of π-Bridge to Boost Photoluminescence and Electroluminescence Quantum Yields of Triazine/Carbazole Based Blue TADF Emitter. Chemistry 2024; 30:e202303169. [PMID: 37965803 DOI: 10.1002/chem.202303169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 11/16/2023]
Abstract
In general, a large donor-acceptor dihedral angle is required to guarantee sufficient frontier molecular orbitals separation for thermally activated delayed fluorescence (TADF) emitters, which is intrinsically unfavorable for the radiative transition. We present a molecular design method favoring both reverse intersystem crossing (RISC) and radiative transitions even at a moderate D-A angle. A blue TADF emitter TrzBuCz-CN was designed with triazine/tert-butylcarbazole as donor/acceptor and cyano (CN) incorporated on the phenylene bridge. In comparison with the methyl decoration in similar way (TrzBuCz-Me), CN decoration reduced the D-A dihedral angle from 70° to 60°, which is intrinsically not favorable for sufficient FMO separation, but unexpectedly reduced the singlet and triplet energy gap (ΔEST ) and thus facilitated TADF feature by pulling down the lowest singlet state energy. While the reduced distorsion instead improved the HOMO-LUMO overlap and boosted the fluorescence quantum yield from 41 % to 94 %. The blue organic light-emitting diode of TrzBuCz-CN exhibited an external quantum efficiency of 13.7 % with emission peak at 466 nm, greatly superior to 6.0 % of TrzBuCz-Me. The result provides a feasible design strategy to facilitate both RISC and radiation processes by CN decoration of the linking bridge of TADF emitters.
Collapse
Affiliation(s)
- Huiting Li
- Key Laboratory of Natural Product Chemistry and Functional Molecular Synthesis, College of Chemistry and Materials, Inner Mongolia Minzu University, West Huolinhe Street, Tongliao, 028000, China
- Frontiers Science Center for Smart Materials, School of Chemistry, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, China
| | - Huicai Ren
- Yantai Sunera Limited Liability Company, Yantai Economic and Technological Development Zone, No. 7 Shaoxing Road, Yantai, China
| | - Jiahui Wang
- Frontiers Science Center for Smart Materials, School of Chemistry, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, China
| | - Di Liu
- Frontiers Science Center for Smart Materials, School of Chemistry, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, China
| | - Jiuyan Li
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai Economic and Technological Development Zone, 300 Changjiang Road, Yantai, China
| |
Collapse
|
3
|
Yang X, Waterhouse GIN, Lu S, Yu J. Recent advances in the design of afterglow materials: mechanisms, structural regulation strategies and applications. Chem Soc Rev 2023; 52:8005-8058. [PMID: 37880991 DOI: 10.1039/d2cs00993e] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Afterglow materials are attracting widespread attention owing to their distinctive and long-lived optical emission properties which create exciting opportunities in various fields. Recent research has led to the discovery of many new afterglow materials featuring high photoluminescence quantum yields (PLQY) and lifetimes of up to several hours under ambient conditions. Afterglow materials are typically categorized according to their luminescence mechanism, such as long-persistent luminescence (LPL), room temperature phosphorescence (RTP), or thermally activated delayed fluorescence (TADF). Through rational design and novel synthetic strategies to modulate spin-orbit coupling (SOC) and populate triplet exciton states (T1), luminophores with long lifetimes and bright afterglow characteristics can be realized. Initial research towards afterglow materials focused mainly on pure inorganic materials, many of which possessed inherent disadvantages such as metal toxicity or low energy emissions. In recent years, organic-inorganic hybrid afterglow materials (OIHAMs) have been developed with high PLQY and long lifetimes. These hybrid materials exploit the tunable structure and easy processing of organic molecules, as well as enhanced SOC and intersystem crossing (ISC) processes involving heavy atom dopants, to achieve excellent afterglow performance. In this review, we begin by briefly discussing the structure and composition of inorganic and organic-inorganic hybrid afterglow materials, including strategies for regulating their lifetime, PLQY and luminescence wavelength. The specific advantages of organic-inorganic hybrid afterglow materials, including low manufacturing costs, diverse molecular/electronic structures, tunable structures and optical properties, and compatibility with a variety of substrates, are emphasized. Subsequently, we discuss in detail the fundamental mechanisms used by afterglow materials, their classification, design principles, and end applications (including sensing, anticounterfeiting, and photoelectric devices, among others). Finally, existing challenges and promising future directions are discussed, laying a platform for the design of afterglow materials for specific applications.
Collapse
Affiliation(s)
- Xin Yang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China.
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
- International Center of Future Science, Jilin University, Changchun 130012, China
| | | | - Siyu Lu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Jihong Yu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China.
- International Center of Future Science, Jilin University, Changchun 130012, China
| |
Collapse
|
4
|
Jing YY, Li N, Cao X, Wu H, Miao J, Chen Z, Huang M, Wang X, Hu Y, Zou Y, Yang C. Precise modulation of multiple resonance emitters toward efficient electroluminescence with pure-red gamut for high-definition displays. SCIENCE ADVANCES 2023; 9:eadh8296. [PMID: 37506207 PMCID: PMC10381944 DOI: 10.1126/sciadv.adh8296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023]
Abstract
Multiple resonance (MR) compounds have garnered substantial attention for their prospective utility in wide color gamut displays. Nevertheless, developing red MR emitters with both high efficiency and saturated emission color remains demanding. We herein introduce a comprehensive strategy for spectral tuning in the red region by simultaneously regulating the π-conjugation and electron-donating strengths of a double boron-embedded MR skeleton while preserving narrowband characteristics. The proof-of-concept materials manifested emissions from orange-red to deep red, with bandwidths below 0.12 eV. The pure-red device based on CzIDBNO displayed superior color purity with CIE coordinates of (0.701, 0.298), approaching the Broadcast Television 2020 standard. In concert with high photoluminescence quantum yield and strong horizontal dipole orientation, CzIDBNO also achieved a maximum external quantum efficiency of 32.5% and a current efficiency of 20.2 cd A-1, outstripping prior reported organic light-emitting diodes (OLEDs) with CIEx exceeding 0.68. These findings offer a roadmap for designing high-performance emitters with exceptional color purity for future OLED material research advancements.
Collapse
Affiliation(s)
- Yan-Yun Jing
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
- College of Physics and Optoeletronic Engineering, Shenzhen University, Shenzhen, China
- Information Technology Research Institute, Shenzhen Institute of Information Technology, Shenzhen 518172, China
| | - Nengquan Li
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Xiaosong Cao
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Han Wu
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jingsheng Miao
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Zhanxiang Chen
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Manli Huang
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Xinzhong Wang
- Information Technology Research Institute, Shenzhen Institute of Information Technology, Shenzhen 518172, China
| | - Yuxuan Hu
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yang Zou
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Chuluo Yang
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
5
|
Oparina LA, Kolyvanov NA, Ushakov IA, Nikitina LP, Petrova OV, Sobenina LN, Petrushenko KB, Trofimov BA. Contributing to Biochemistry and Optoelectronics: Pyrrolo[1',2':2,3]imidazo[1,5- a]indoles and Cyclohepta[4,5]pyrrolo[1,2- c]pyrrolo[1,2- a]imidazoles via [3+2] Annulation of Acylethynylcycloalka[ b]pyrroles with Δ 1-Pyrrolines. Int J Mol Sci 2023; 24:ijms24043404. [PMID: 36834813 PMCID: PMC9959468 DOI: 10.3390/ijms24043404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/02/2023] [Accepted: 02/05/2023] [Indexed: 02/11/2023] Open
Abstract
Available pyrrolylalkynones with tetrahydroindolyl, cycloalkanopyrrolyl, and dihydrobenzo[g]indolyl moieties, acylethynylcycloalka[b]pyrroles, are readily annulated with Δ1-pyrrolines (MeCN/THF, 70 °C, 8 h) to afford a series of novel pyrrolo[1',2':2,3]imidazo[1,5-a]indoles and cyclohepta[4,5]pyrrolo[1,2-c]pyrrolo[1,2-a]imidazoles functionalized with an acylethenyl group in up to an 81% yield. This original synthetic approach contributes to the arsenal of chemical methods promoting drug discovery. Photophysical studies show that some of the synthesized compounds, e.g., benzo[g]pyrroloimidazoindoles, are prospective candidates for TADF emitters of OLED.
Collapse
|
6
|
Hauguel C, Pozzo J, Hamze A, Provot O. Recent Advances in Synthesis of Pyrrolo[3,2‐
b
]indole and Indolo[3,2‐
b
]indole Derivatives. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Camille Hauguel
- Université Paris-Saclay, CNRS, BioCIS 92290 Châtenay-Malabry France
| | - Jean‐Luc Pozzo
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR5255 351 cours Libération F-33405 Bordeaux France
| | - Abdallah Hamze
- Université Paris-Saclay, CNRS, BioCIS 92290 Châtenay-Malabry France
| | - Olivier Provot
- Université Paris-Saclay, CNRS, BioCIS 92290 Châtenay-Malabry France
| |
Collapse
|
7
|
Paul D, John J. Recent Advances towards the Synthesis and Material Applications of Indoloindoles. Chem Asian J 2022; 17:e202200460. [PMID: 35652360 DOI: 10.1002/asia.202200460] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/31/2022] [Indexed: 11/06/2022]
Abstract
An important class of N -heteroacenes is indoloindoles which are air-stable, electron-rich and possesses many tuneable properties. Initially, indoloindoles were explored for potential biological applications but current interest is based on their performance as photovoltaic materials. With growing applications of indoloindoles across multiple facets as organic functional materials, the need for efficient methods to synthesize and functionalize indoloindoles has taken a centre stage. Over the years, synthetic routes leading to indoloindoles have evolved from multistep protocols to one-pot multicomponent synthesis. Present literature boasts of a variety of reports that employ metals such as Cu, Ru, Rh, Pd, or Au to mediate the reaction towards indoloindoles. As alternatives to such metal-mediated methods, researchers have also developed metal-free and catalyst-free conditions. Indoloindoles, which are fundamentally fused-indoles, are often synthesized by transforming indole derivatives but methods that employ anilines or arynes as the starting substrates are equally abundant. The present review highlights the rich diversity and versatility of recent literature for the synthesis of indolo[3,2- b ]indoles, indolo[2,3- b ]indoles, indolo[7,6- g ]indoles, and indolo[5,4- e ]indoles. This review discusses protocols that were explicitly designed to obtain the above-mentioned indoloindoles and also explores several other methods that can be adapted to access said heteroacenes. Available mechanistic details pertaining to novel transformations have been detailed for the readers. Various applications where indoloindoles function as organic light-emitting diodes, organic field-effect transistors, solar cells, etc. have also been delved into before concluding with an outlook on future research.
Collapse
Affiliation(s)
- Dipankar Paul
- NIIST-CSIR: National Institute for Interdisciplinary Science and Technology CSIR, Chemical Sciences and Technology, 695019, Thiruvananthapuram, INDIA
| | - Jubi John
- CSIR-National Institute for Interdisciplinary Science and Technology, Chemical Sciences and Technology, Industrial Estate P. O., Pappanamcode, 695019, Thiruvananthapuram, INDIA
| |
Collapse
|
8
|
Rigid-induced aggregated annihilation electrochemiluminescence of 1,2,3-triaryl-substituted indoles in aqueous phase. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
9
|
Li J, Li T, Zhang M, Guo D, Zhang H. Rational designs of structurally similar TADF and HLCT emitters with benzo- or naphtho-carbazole units as electron donors. Phys Chem Chem Phys 2022; 24:25937-25949. [DOI: 10.1039/d2cp03500f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Structurally similar D–A type molecules with the combination of benzo- or naphtho-carbazole units as electron donors and tunable electron acceptors with different electron-withdrawing ability are designed to realize HLCT and TADF emissions.
Collapse
Affiliation(s)
- Jiaqi Li
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Tingyu Li
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Mingfan Zhang
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Dongxue Guo
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Houyu Zhang
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
10
|
Serdiuk IE, Mońka M, Kozakiewicz K, Liberek B, Bojarski P, Park SY. Vibrationally Assisted Direct Intersystem Crossing between the Same Charge-Transfer States for Thermally Activated Delayed Fluorescence: Analysis by Marcus-Hush Theory Including Reorganization Energy. J Phys Chem B 2021; 125:2696-2706. [PMID: 33661000 PMCID: PMC8028332 DOI: 10.1021/acs.jpcb.0c10605] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
![]()
Thermally activated
delayed fluorescence (TADF) has recently become
an extensively investigated phenomenon due to its high potential for
application in organic optoelectronics. Currently, there is still
lack of a model describing correctly basic photophysical parameters
of organic TADF emitters. This article presents such a photophysical
model describing the rates of intersystem crossing (ISC), reverse
ISC (rISC), and radiative deactivation in various media and emphasizing
key importance of molecular vibrations on the example of a popular
TADF dye 9,10-dihydro-9,9-dimethyl-10-(4-(4,6-diphenyl-1,3,5-triazin-2-yl)phenyl)-acridine
(DMAC-TRZ). The presented experimental and theoretical investigations
prove that ISC and rISC can occur efficiently between the singlet
and triplet states of the same charge-transfer nature (1CT and 3CT, respectively). In emitters with the orthogonal
donor and acceptor fragments, such spin-forbidden 1CT ↔ 3CT transitions are activated by molecular vibrations. Namely,
the change of dihedral angle between the donor and the acceptor affords
reasonable spin–orbit coupling, which together with a small
energy gap and reorganization energy enable 1CT ↔ 3CT transition rates reaching 1 × 107 s–1. Evidence of direct 1CT ↔ 3CT spin-flip and negligible role of a second triplet state,
widely believed as a key parameter in the design of (r)ISC materials,
change significantly the current understanding of TADF mechanism.
In authors’ opinion, photophysics, and molecular design principles
of TADF emitters should be revised considering the importance of vibrationally
enhanced 1CT ↔ 3CT transitions.
Collapse
Affiliation(s)
- Illia E Serdiuk
- Faculty of Mathematics, Physics and Informatics, University of Gdańsk, Wita Stwosza 57, 80-308 Gdańsk, Poland
| | - Michał Mońka
- Faculty of Mathematics, Physics and Informatics, University of Gdańsk, Wita Stwosza 57, 80-308 Gdańsk, Poland
| | - Karol Kozakiewicz
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Beata Liberek
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Piotr Bojarski
- Faculty of Mathematics, Physics and Informatics, University of Gdańsk, Wita Stwosza 57, 80-308 Gdańsk, Poland
| | - Soo Young Park
- Center for Supramolecular Optoelectronic Materials, Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, 151-744 Seoul, Republic of Korea
| |
Collapse
|
11
|
Liu H, Xue J, Wang S, Wu F, Zhao Y, Shen Z. Thermal switches between delayed fluorescence and persistent phosphorescence based on a keto-BODIPY electron acceptor. Org Biomol Chem 2021; 19:2030-2037. [PMID: 33595046 DOI: 10.1039/d0ob02390f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new type of twisted donor-acceptor molecular material 3a and 3b containing carbazole as an electron donor and keto-BODIPY bearing keto-isoindolinyl and pyridyl subunits as an acceptor has been prepared and characterized. Chemical modifications at the meso-position of keto-BODIPY with a nitrogen atom and a cyano group enhance the electron withdrawing ability and cause the emission color change from blue to yellow and red. Steady-state absorption and emission spectra of the two compounds show a strong intramolecular charge transfer (ICT) character. Time-resolved emission spectra and transient decay curves of 3a and 3b show efficient delayed fluorescence with a lifetime of 12.64 μs for 3a and 16.59 μs for 3b at room temperature, whereas persistent phosphorescence with a lifetime of 576.65 ms for 3a and 273.76 ms for 3b was obviously detected at 77 K. These photophysical behaviors have been fully revealed via X-ray diffraction analysis and theoretical calculations, and thus attributed to the hybridized local and charge-transfer (HLCT) states and increased spin-orbital coupling (SOC) strength by mixed n → π* and π → π* transitions involving heteroatom lone pairs and the π-conjugated skeleton, respectively.
Collapse
Affiliation(s)
- Hui Liu
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210046, P. R. China.
| | - Jiaying Xue
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210046, P. R. China.
| | - Sisi Wang
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210046, P. R. China.
| | - Fan Wu
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210046, P. R. China.
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210046, P. R. China.
| | - Zhen Shen
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210046, P. R. China.
| |
Collapse
|
12
|
Zhou T, Qian Y, Wang H, Feng Q, Xie L, Huang W. Recent Advances in Substituent Effects of Blue Thermally Activated Delayed Fluorescence Small Molecules. ACTA CHIMICA SINICA 2021. [DOI: 10.6023/a21010009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
13
|
Chen J, Xiao Y, Wang K, Sun D, Fan X, Zhang X, Zhang M, Shi Y, Yu J, Geng F, Lee C, Zhang X. Managing Locally Excited and Charge‐Transfer Triplet States to Facilitate Up‐Conversion in Red TADF Emitters That Are Available for Both Vacuum‐ and Solution‐Processes. Angew Chem Int Ed Engl 2020; 60:2478-2484. [DOI: 10.1002/anie.202012070] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/28/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Jia‐Xiong Chen
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Soochow University Suzhou Jiangsu 215123 P. R. China
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Chemistry City University of Hong Kong Hong Kong SAR P. R. China
- College of Energy, Soochow Institute for Energy and Materials Innovations (SIEMIS) Soochow University Suzhou 215123 P. R. China
| | - Ya‐Fang Xiao
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Chemistry City University of Hong Kong Hong Kong SAR P. R. China
| | - Kai Wang
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Soochow University Suzhou Jiangsu 215123 P. R. China
| | - Dianming Sun
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Soochow University Suzhou Jiangsu 215123 P. R. China
| | - Xiao‐Chun Fan
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Soochow University Suzhou Jiangsu 215123 P. R. China
| | - Xiang Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Soochow University Suzhou Jiangsu 215123 P. R. China
| | - Ming Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Soochow University Suzhou Jiangsu 215123 P. R. China
| | - Yi‐Zhong Shi
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Soochow University Suzhou Jiangsu 215123 P. R. China
| | - Jia Yu
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Soochow University Suzhou Jiangsu 215123 P. R. China
| | - Feng‐Xia Geng
- College of Energy, Soochow Institute for Energy and Materials Innovations (SIEMIS) Soochow University Suzhou 215123 P. R. China
| | - Chun‐Sing Lee
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Chemistry City University of Hong Kong Hong Kong SAR P. R. China
| | - Xiao‐Hong Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Soochow University Suzhou Jiangsu 215123 P. R. China
| |
Collapse
|
14
|
Chen J, Xiao Y, Wang K, Sun D, Fan X, Zhang X, Zhang M, Shi Y, Yu J, Geng F, Lee C, Zhang X. Managing Locally Excited and Charge‐Transfer Triplet States to Facilitate Up‐Conversion in Red TADF Emitters That Are Available for Both Vacuum‐ and Solution‐Processes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202012070] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Jia‐Xiong Chen
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Soochow University Suzhou Jiangsu 215123 P. R. China
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Chemistry City University of Hong Kong Hong Kong SAR P. R. China
- College of Energy, Soochow Institute for Energy and Materials Innovations (SIEMIS) Soochow University Suzhou 215123 P. R. China
| | - Ya‐Fang Xiao
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Chemistry City University of Hong Kong Hong Kong SAR P. R. China
| | - Kai Wang
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Soochow University Suzhou Jiangsu 215123 P. R. China
| | - Dianming Sun
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Soochow University Suzhou Jiangsu 215123 P. R. China
| | - Xiao‐Chun Fan
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Soochow University Suzhou Jiangsu 215123 P. R. China
| | - Xiang Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Soochow University Suzhou Jiangsu 215123 P. R. China
| | - Ming Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Soochow University Suzhou Jiangsu 215123 P. R. China
| | - Yi‐Zhong Shi
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Soochow University Suzhou Jiangsu 215123 P. R. China
| | - Jia Yu
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Soochow University Suzhou Jiangsu 215123 P. R. China
| | - Feng‐Xia Geng
- College of Energy, Soochow Institute for Energy and Materials Innovations (SIEMIS) Soochow University Suzhou 215123 P. R. China
| | - Chun‐Sing Lee
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Chemistry City University of Hong Kong Hong Kong SAR P. R. China
| | - Xiao‐Hong Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Soochow University Suzhou Jiangsu 215123 P. R. China
| |
Collapse
|
15
|
Shan XH, Yang B, Qu JP, Kang YB. CuSO 4-Catalyzed dual annulation to synthesize O, S or N-containing tetracyclic heteroacenes. Chem Commun (Camb) 2020; 56:4063-4066. [PMID: 32162642 DOI: 10.1039/d0cc01172j] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In this work, CuSO4 is utilized as a practical redox catalyst for tandem dual annulation in the synthesis of indole-fused tetracyclic heteroacenes, which are important skeletons in both medicinal chemistry and materials chemistry. The preparation of such skeletons in a convenient and efficient manner is in high demand. This method realizes the modular synthesis of benzofuro-, benzothieno-, and indoloindoles from abundant feedstocks such as 2-halobenzyl halides and nitrile derivatives in up to 99% yields, providing a rapid access to diverse indole-fused heteroacenes with biological or optoelectronic properties.
Collapse
Affiliation(s)
- Xiang-Huan Shan
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Bo Yang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Jian-Ping Qu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yan-Biao Kang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China.
| |
Collapse
|
16
|
Ai Q, Chai J, Lou W, Liu T, Wang D, Deng C, Wang C, Li G, Liu X, Liu Z, Zhang Q. Efficient and Stable Organic Light-Emitting Diodes Employing Indolo[2,3- b]indole-Based Thermally Activated Delayed Fluorescence Emitters. ACS APPLIED MATERIALS & INTERFACES 2020; 12:6127-6136. [PMID: 31847516 DOI: 10.1021/acsami.9b19474] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Triplet excitons can be effectively harvested in organic light-emitting diodes employing thermally activated delayed fluorescence (TADF) molecules as the emitter and host. A design strategy for blue and green emitters with small S1-T1 splitting (ΔEST) is to construct a donor-acceptor (D-A) type molecule with moieties combining a high T1 level with a strong electron-donating/withdrawing character. Here, we report a new kind of TADF emitter with an indolo[2,3-b]indole (IDID) donor. In comparison to other reported indolocarbazole and indoloindole donors, IDID has a higher T1 level, which is comparable to that of the classical donor 9,9-dimethyl-9,10-dihydroacridine (DMAC) for blue TADF emitters. The sky-blue and green TADF emitters based on the IDID donor and a phenyltriazine acceptor exhibit high photoluminescence quantum yields (0.78-0.92) and short TADF lifetimes (1.1-1.7 μs) in doped films. Devices employing these IDID-based emitters offer an external quantum efficiency of 19.2%, which is comparable to that obtained for a device employing an analogous compound with a DMAC donor, while the stability of the former is higher than that of the latter owing to the just-right D-A twisting angles (∼59°) in the IDID-based emitters leading to a balance between ΔEST and the fluorescence rate. The utilization of host materials with a similar polarity to the emitter is found to be an effective strategy to improve device stability.
Collapse
Affiliation(s)
- Qi Ai
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering , Zhejiang University , Hangzhou 310027 , China
- College of Optical and Electronic Technology , China Jiliang University , Hangzhou 310018 , China
| | - Jingshan Chai
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering , Zhejiang University , Hangzhou 310027 , China
| | - Weiwei Lou
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering , Zhejiang University of Technology , Hangzhou 310014 , China
| | - Tiangeng Liu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering , Zhejiang University , Hangzhou 310027 , China
| | - Dan Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering , Zhejiang University , Hangzhou 310027 , China
| | - Chao Deng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering , Zhejiang University , Hangzhou 310027 , China
| | - Chao Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering , Zhejiang University , Hangzhou 310027 , China
- Singapore University of Technology and Design , 8 Somapah Road , 487372 Singapore
| | - Guijie Li
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering , Zhejiang University of Technology , Hangzhou 310014 , China
| | - Xiaogang Liu
- Singapore University of Technology and Design , 8 Somapah Road , 487372 Singapore
| | - Zugang Liu
- College of Optical and Electronic Technology , China Jiliang University , Hangzhou 310018 , China
| | - Qisheng Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering , Zhejiang University , Hangzhou 310027 , China
| |
Collapse
|
17
|
Zhou D, Liu D, Gong X, Ma H, Qian G, Gong S, Xie G, Zhu W, Wang Y. Solution-Processed Highly Efficient Bluish-Green Thermally Activated Delayed Fluorescence Emitter Bearing an Asymmetric Oxadiazole-Difluoroboron Double Acceptor. ACS APPLIED MATERIALS & INTERFACES 2019; 11:24339-24348. [PMID: 31187977 DOI: 10.1021/acsami.9b07511] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Difluoroboron (BF2)-containing dyes have attracted great interest owing to their exceptionally high luminescence efficiency and good electron-withdrawing properties. However, only a few reports on difluoroboron-based thermally activated delayed fluorescence (TADF) have been addressed. In this contribution, a novel BF2-containing TADF molecule of BFOXD, which contains two acceptor fragments of oxadiazole (OXD) and BF2 and one donor unit of 9,9-dimethylacridine, was synthesized and characterized. For comparison, the precursor of OHOXD bearing one acceptor unit was also investigated. Both molecules clearly show TADF characteristics with sky-blue emission in solution and film state. Additionally, OHOXD undergoes excited-state intramolecular proton transfer-coupled intramolecular charge transfer processes. Using 9-(4-tert-butylphenyl)-3,6-bis(triphenylsilyl)-9H-carbazole (CzSi) as the host, the organic light-emitting diodes fabricated via a solution process show maximum external quantum efficiency (EQE) of 2.98 and 13.8% for OHOXD- and BFOXD-based devices, respectively. While the bipolar TADF host of 10-(4-((4-(9H-carbazol-9-yl)phenyl)sulfonyl)phenyl)-9,9-dimethyl-9,10-dihydroacridine (CzAcSF) is utilized instead of CzSi, the OHOXD- and BFOXD-based devices exhibit better performances with the maximum EQEs of 12.1 and 20.1%, respectively, which render the most efficient and the bluest emission ever reported for the BF2-based TADF molecules. This research demonstrates that introduction of one more acceptor unit into the TADF molecule could have a positive effect on emission efficiency, which opens a new way to design high-efficiency TADF molecules.
Collapse
Affiliation(s)
- Di Zhou
- National Experimental Demonstration Center for Materials Science and Engineering, Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications, School of Materials Science & Engineering , Changzhou University , Changzhou 213164 , China
- College of Chemistry , Xiangtan University , Xiangtan 411105 , China
| | - Denghui Liu
- National Experimental Demonstration Center for Materials Science and Engineering, Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications, School of Materials Science & Engineering , Changzhou University , Changzhou 213164 , China
| | - Xu Gong
- Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Department of Chemistry , Wuhan University , Wuhan 430072 , China
| | - Huili Ma
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech) , 30 South Puzhu Road , Nanjing 211816 , China
| | - Gaowei Qian
- National Experimental Demonstration Center for Materials Science and Engineering, Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications, School of Materials Science & Engineering , Changzhou University , Changzhou 213164 , China
| | - Shaolong Gong
- Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Department of Chemistry , Wuhan University , Wuhan 430072 , China
| | - Guohua Xie
- Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Department of Chemistry , Wuhan University , Wuhan 430072 , China
| | - Weiguo Zhu
- National Experimental Demonstration Center for Materials Science and Engineering, Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications, School of Materials Science & Engineering , Changzhou University , Changzhou 213164 , China
| | - Yafei Wang
- National Experimental Demonstration Center for Materials Science and Engineering, Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications, School of Materials Science & Engineering , Changzhou University , Changzhou 213164 , China
- Key Laboratory of Advanced Display and System Applications of Ministry of Education , Shanghai University , 149 Yanchang Road , Shanghai 200072 , China
| |
Collapse
|
18
|
Konidena RK, Lee KH, Lee JY, Hong WP. Triggering Thermally Activated Delayed Fluorescence by Managing the Heteroatom in Donor Scaffolds: Intriguing Photophysical and Electroluminescence Properties. Chem Asian J 2019; 14:2251-2258. [PMID: 30969458 DOI: 10.1002/asia.201900388] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 04/09/2019] [Indexed: 02/06/2023]
Abstract
Establishment of the structure-property relationships of thermally activated delayed fluorescence (TADF) materials has become a significant quest for the scientific community. Herein, two new donors, 10H-benzofuro[3,2-b]indole (BFI) and 10H-benzo[4,5]thieno[3,2-b]indole (BTI), have been developed and integrated with a aryltriazine acceptor to design the green TADF emitters benzofuro[3,2-b]indol-10-yl)-5-(4,6-diphenyl-1,3,5-triazin-2-yl)benzonitrile (BFICNTrz) and 2-(10H-benzo[4,5]thieno[3,2-b]indol-10-yl)-5-(4,6-diphenyl-1,3,5-triazin-2-yl)benzonitrile (BTICNTrz), respectively. The physicochemical and electroluminescence properties of the compounds were tuned by exchanging the heteroatom in the donor scaffold. Intriguingly, the electronegativity of the heteroatom and the ionization potential of the donor unit played vital roles in control of the singlet-triplet energy splitting and TADF mechanism of the compounds. Both compounds showed similar singlet excited states that originated from the charge transfer (CT) states (1 CT), whereas the triplet excited states were tuned by the heteroatom in the donor unit. The origin of phosphorescence in the BTICNTrz emitter was CT emission from the triplet state (3 CT), whereas that in the BFICNTrz emitter stemmed from the local triplet excited state (3 LE). Consequently, BTICNTrz showed a small singlet-triplet energy splitting of 0.08 eV, compared with 0.26 eV for BFICNTrz. Thus, BTICNTrz showed efficient delayed fluorescence with a high quantum yield and a short delayed exciton lifetime, whereas BFICNTrz displayed weak delayed fluorescence with a relatively long lifetime. Furthermore, a BTICNTrz-based device exhibited a maximum external quantum efficiency (EQE) of 15.2 % and reduced efficiency roll-off (12 %) compared with its BFICNTrz-based counterpart, which showed a maximum EQE of 6.4 % and severe efficiency roll-off (55 %) at a practical brightness range of 1000 cd m-2 . These results demonstrate that the choice of subunit plays a vital role in the design of efficient TADF emitters.
Collapse
Affiliation(s)
- Rajendra Kumar Konidena
- School of Chemical Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi, 440-746, Korea
| | - Kyung Hyung Lee
- School of Chemical Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi, 440-746, Korea
| | - Jun Yeob Lee
- School of Chemical Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi, 440-746, Korea
| | - Wan Pyo Hong
- LG Chem, Ltd, LG Science Park, 30, Magokjungang 10-ro, Gangseo-gu, Seoul, 07796, Republic of Korea
| |
Collapse
|
19
|
Lv X, Huang R, Sun S, Zhang Q, Xiang S, Ye S, Leng P, Dias FB, Wang L. Blue TADF Emitters Based on Indenocarbazole Derivatives with High Photoluminescence and Electroluminescence Efficiencies. ACS APPLIED MATERIALS & INTERFACES 2019; 11:10758-10767. [PMID: 30793589 DOI: 10.1021/acsami.8b20699] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
A series of blue thermally activated delayed fluorescence (TADF) emitters were designed and synthesized using 2,4,6-triphenyl-1,3,5-triazine as the acceptor unit and indenocarbazole derivatives as the electron-donating moiety. In contrast with other six-membered heterocycles, like phenothiazine, phenoxazine, and dihydroacridine, where the TADF efficiency is affected by the presence of different conformers, indenocarbazole derivatives do not show this effect. Therefore, InCz23FlTz, InCz23DPhTz, InCz23DMeTz, and InCz34DPhTz allow the investigation of the effect of different substituents and substitution positions on TADF properties, without the influence of different conformations. We have demonstrated that the substituted position on the carbazole and different substituents in the same position have clear influence on the donor character of indenocarbazole derivatives. Also, the color purity of blue emission and excited states could be adjusted by substituents and substituted position, and thus excellent blue emitters can be obtained. Besides, the four compounds show relatively small TADF contribution under optical excitation; however, excellent performances are obtained in the electroluminescent devices, especially with InCz34DPhTz, which shows a maximum external quantum efficiency of around 26%. In the end, we find an effective way to design high-efficiency blue TADF materials and deeply study the relation between the structure and property in indenocarbazole derivatives.
Collapse
Affiliation(s)
- Xialei Lv
- Wuhan National Laboratory for Optoelectronics , Huazhong University of Science and Technology , Wuhan 430074 , P. R. China
| | - Rongjuan Huang
- Physics Department , Durham University , South Road , Durham DH1 3LE , U.K
| | - Shuaiqiang Sun
- Wuhan National Laboratory for Optoelectronics , Huazhong University of Science and Technology , Wuhan 430074 , P. R. China
| | - Qing Zhang
- Wuhan National Laboratory for Optoelectronics , Huazhong University of Science and Technology , Wuhan 430074 , P. R. China
| | - Songpo Xiang
- Wuhan National Laboratory for Optoelectronics , Huazhong University of Science and Technology , Wuhan 430074 , P. R. China
| | - Shaofeng Ye
- Wuhan National Laboratory for Optoelectronics , Huazhong University of Science and Technology , Wuhan 430074 , P. R. China
| | - Panpan Leng
- Wuhan National Laboratory for Optoelectronics , Huazhong University of Science and Technology , Wuhan 430074 , P. R. China
| | - Fernando B Dias
- Physics Department , Durham University , South Road , Durham DH1 3LE , U.K
| | - Lei Wang
- Wuhan National Laboratory for Optoelectronics , Huazhong University of Science and Technology , Wuhan 430074 , P. R. China
| |
Collapse
|
20
|
Oh CS, Lee HL, Han SH, Lee JY. Rational Molecular Design Overcoming the Long Delayed Fluorescence Lifetime and Serious Efficiency Roll-Off in Blue Thermally Activated Delayed Fluorescent Devices. Chemistry 2019; 25:642-648. [PMID: 30338877 DOI: 10.1002/chem.201804666] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 10/19/2018] [Indexed: 01/28/2023]
Abstract
Blue thermally activated delayed fluorescent (TADF) devices with short excited-state lifetime, high reverse intersystem crossing rate, and low-efficiency roll-off were developed by managing the molecular structure of donor-acceptor-type blue emitters. Three isomers of blue TADF emitters with a diphenyltriazine acceptor and three carbazole donors were synthesized. The position of the donor moieties in the phenyl linker connecting the donor and acceptor moieties was controlled to devise compounds with a short delayed fluorescence lifetime. A blue TADF emitter with three carbazole donors at 2-, 3-, and 4- positions of a phenyl linker shortened the excited state lifetime to 4.1 μs, showed a high external quantum efficiency of 20.4 %, and low efficiency roll-off of less than 10 % at 1000 cd m-2 . Therefore, a molecular design distorting the donors by aligning them in a consecutive way is useful to resolve the issues of long delayed fluorescence lifetime and efficiency roll-off of blue TADF devices.
Collapse
Affiliation(s)
- Chan Seok Oh
- School of Chemical Engineering; Sungkyunkwan University; 2066, Seobu-ro Jangan-gu Suwon, Gyeonggi 440-746 Korea
| | - Ha Lim Lee
- School of Chemical Engineering; Sungkyunkwan University; 2066, Seobu-ro Jangan-gu Suwon, Gyeonggi 440-746 Korea
| | - Si Hyun Han
- School of Chemical Engineering; Sungkyunkwan University; 2066, Seobu-ro Jangan-gu Suwon, Gyeonggi 440-746 Korea
| | - Jun Yeob Lee
- School of Chemical Engineering; Sungkyunkwan University; 2066, Seobu-ro Jangan-gu Suwon, Gyeonggi 440-746 Korea
| |
Collapse
|
21
|
Tani Y, Ogawa T. Palladium-Catalyzed Double Carbonylative Cyclization of Benzoins: Synthesis and Photoluminescence of Bis-Ester-Bridged Stilbenes. Org Lett 2018; 20:7442-7446. [PMID: 30412413 DOI: 10.1021/acs.orglett.8b03169] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A palladium-catalyzed double carbonylative cyclization of benzoins has been developed, which realizes the synthesis of bis-ester-bridged stilbenes just in two steps from aldehydes. Thus, the obtained fully fused tetracyclic π-systems have a pyrano[3,2- b]pyran-2,6-dione (PPD) core on their center, showing two reversible reductions at low potentials. In addition, their photoluminescence properties are strikingly affected by the aromatic rings fused to the PPD core; bis- thieno-fused PPDs are found to be excellent fluorophores with quantum yields up to 0.98.
Collapse
Affiliation(s)
- Yosuke Tani
- Department of Chemistry, Graduate School of Science , Osaka University , Machikaneyama 1-1, Toyonaka , Osaka 560-0043 , Japan
| | - Takuji Ogawa
- Department of Chemistry, Graduate School of Science , Osaka University , Machikaneyama 1-1, Toyonaka , Osaka 560-0043 , Japan
| |
Collapse
|
22
|
Gan L, Gao K, Cai X, Chen D, Su SJ. Achieving Efficient Triplet Exciton Utilization with Large Δ E ST and Nonobvious Delayed Fluorescence by Adjusting Excited State Energy Levels. J Phys Chem Lett 2018; 9:4725-4731. [PMID: 30066563 DOI: 10.1021/acs.jpclett.8b01961] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Enhancing the rate of reverse intersystem crossing ( krisc) and the rate of radiative transition ( kr) has been regarded as the key to improve molecular design strategy in the field of thermally activated delayed fluorescence (TADF) materials. Herein, two sky-blue donor-acceptor (D-A)-type TADF materials, namely, CzDCNPy and tBuCzDCNPy, were designed following a strategy of controlling the energy difference among the charge-transfer singlet state (1CT), local exciton triplet state (3LE), and charge-transfer triplet state (3CT). Significantly different from most previously reported TADF materials, large values of kr and krisc and a nearly 100% exciton utilization efficiency were simultaneously achieved despite nonobvious delayed fluorescence and a large value of the singlet-triplet energy difference (Δ EST) being observed. This work presents a view that photoinduced delayed fluorescence and a small Δ EST are sufficient but not necessary for TADF materials. It also provides a reference that the high-energy 3LE state plays a key role in the RISC process in electroluminescence.
Collapse
Affiliation(s)
- Lin Gan
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and Devices , South China University of Technology , Wushan Road 381 , Tianhe District, Guangzhou 510640 , Guangdong Province , People's Republic of China
| | - Kuo Gao
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and Devices , South China University of Technology , Wushan Road 381 , Tianhe District, Guangzhou 510640 , Guangdong Province , People's Republic of China
| | - Xinyi Cai
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and Devices , South China University of Technology , Wushan Road 381 , Tianhe District, Guangzhou 510640 , Guangdong Province , People's Republic of China
| | - Dongcheng Chen
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and Devices , South China University of Technology , Wushan Road 381 , Tianhe District, Guangzhou 510640 , Guangdong Province , People's Republic of China
| | - Shi-Jian Su
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and Devices , South China University of Technology , Wushan Road 381 , Tianhe District, Guangzhou 510640 , Guangdong Province , People's Republic of China
| |
Collapse
|
23
|
Matsuda T, Ito H. Synthesis of indole-fused heteroacenes by cascade cyclisation involving rhodium(ii)-catalysed intramolecular C–H amination. Org Biomol Chem 2018; 16:6703-6707. [DOI: 10.1039/c8ob01837e] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Indole-fused heteroacenes have been synthesised from cascade cyclisation of 2-[(2-azidophenyl)ethynyl]anilines and -phenols in a catalytic manner under redox-neutral conditions.
Collapse
Affiliation(s)
- Takanori Matsuda
- Department of Applied Chemistry
- Tokyo University of Science
- Tokyo 162-8601
- Japan
| | - Hirotaka Ito
- Department of Applied Chemistry
- Tokyo University of Science
- Tokyo 162-8601
- Japan
| |
Collapse
|