1
|
Lindner FP, Strasser N, Schultze M, Wieser S, Slugovc C, Elsayad K, Koski KJ, Zojer E, Czibula C. Combining Brillouin Light Scattering Spectroscopy and Machine-Learned Interatomic Potentials to Probe Mechanical Properties of Metal-Organic Frameworks. J Phys Chem Lett 2025; 16:1213-1220. [PMID: 39862191 PMCID: PMC11808784 DOI: 10.1021/acs.jpclett.4c03070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025]
Abstract
The mechanical properties of metal-organic frameworks (MOFs) are of high fundamental and practical relevance. A particularly intriguing technique for determining anisotropic elastic tensors is Brillouin scattering, which so far has rarely been used for highly complex materials like MOFs. In the present contribution, we apply this technique to study a newly synthesized MOF-type material, referred to as GUT2. The experiments are combined with state-of-the-art simulations of elastic properties and phonon bands, which are based on machine-learning force fields and dispersion-corrected density functional theory. This provides a comprehensive understanding of the experimental signals, which can be correlated to the longitudinal and transverse sound velocities of the material. Notably, the combination of the insights from simulations and experiments allows the determination of approximate values for the components of the elastic tensor of the studied material even when dealing with comparably small single crystals, which limit the range of accessible experimental data.
Collapse
Affiliation(s)
- Florian P. Lindner
- Institute
of Solid State Physics, Graz University
of Technology, Petersgasse 16, 8010 Graz, Austria
- Institute
of Experimental Physics, Graz University
of Technology, Petersgasse
16, 8010 Graz, Austria
| | - Nina Strasser
- Institute
of Solid State Physics, Graz University
of Technology, Petersgasse 16, 8010 Graz, Austria
| | - Martin Schultze
- Institute
of Experimental Physics, Graz University
of Technology, Petersgasse
16, 8010 Graz, Austria
| | - Sandro Wieser
- Institute
of Materials Chemistry, TU Wien, Getreidemarkt 9, 1060 Wien, Austria
| | - Christian Slugovc
- Institute
for Chemistry and Technology of Materials, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
| | - Kareem Elsayad
- Division
of Anatomy, Center for Anatomy and Cell Biology, Medical University of Vienna, Währinger Straße 13, 1090 Vienna, Austria
| | - Kristie J. Koski
- Department
of Chemistry, University of California Davis, 1 Shields Ave. 222 Chemistry, Davis, California 95616, United States
| | - Egbert Zojer
- Institute
of Solid State Physics, Graz University
of Technology, Petersgasse 16, 8010 Graz, Austria
| | - Caterina Czibula
- Institute
of Bioproducts and Paper Technology, Graz
University of Technologyy, Inffeldgasse 23, 8010 Graz, Austria
| |
Collapse
|
2
|
Lee I, Lee J, Kim M, Park J, Kim H, Lee S, Min K. Uncovering the Relationship between Metal Elements and Mechanical Stability for Metal-Organic Frameworks. ACS APPLIED MATERIALS & INTERFACES 2024; 16:52162-52178. [PMID: 39308060 DOI: 10.1021/acsami.4c07775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Assessing the mechanical robustness of metal-organic frameworks (MOFs) is crucial to enhance their applicability in various fields. Although considerable research has been conducted on the relationship between the mechanical properties of MOFs and their structural features (such as pore size, surface area, and topology), the insufficient exploration of metal elements has prevented researchers from fully understanding their mechanical behavior. To plug this knowledge gap, we constructed a database of mechanical properties for 20,342 MOFs included in the QMOF database using molecular simulations to investigate the impact of metal elements on mechanical stability. Through Shapley additive explanations (SHAP) analysis, we found that Co and Ln could enhance the structural stability of MOFs. We validated these findings using newly generated hypothetical MOFs. Notably, we adopted an interpretable machine learning technique to analyze the contribution of remarkably diverse metal elements in the 20,342 MOFs to the mechanical properties of each MOF. We anticipate that this research will serve as a valuable tool for future studies on identifying mechanically robust MOFs suitable for various industrial applications.
Collapse
Affiliation(s)
- Inhyo Lee
- School of Mechanical Engineering, Soongsil University, 369 Sangdo-ro, Dongjak-gu, Seoul 06978, Republic of Korea
| | - Jaejun Lee
- Department of Mechanical Engineering, Pohang University of Science and Technology, 77 Cheongam-ro, Pohang 37673, Republic of Korea
| | - Minseon Kim
- School of Mechanical Engineering, Soongsil University, 369 Sangdo-ro, Dongjak-gu, Seoul 06978, Republic of Korea
| | - Jaejung Park
- Department of Mechanical Engineering, Pohang University of Science and Technology, 77 Cheongam-ro, Pohang 37673, Republic of Korea
| | - Heekyu Kim
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Seungchul Lee
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Kyoungmin Min
- School of Mechanical Engineering, Soongsil University, 369 Sangdo-ro, Dongjak-gu, Seoul 06978, Republic of Korea
| |
Collapse
|
3
|
Payam AF, Khalil S, Chakrabarti S. Synthesis and Characterization of MOF-Derived Structures: Recent Advances and Future Perspectives. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310348. [PMID: 38660830 DOI: 10.1002/smll.202310348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 03/11/2024] [Indexed: 04/26/2024]
Abstract
Due to their facile tunability, metal-organic frameworks (MOFs) are employed as precursors and templates to construct advanced functional materials with unique and desired chemical, physical, mechanical, and morphological properties. By tuning MOF precursor composition and manipulating conversion processes, various MOF-derived materials commonly known as MOF derivatives can be constructed. The possibility of controlled and predictable properties makes MOF derivatives a preferred choice for numerous advanced technological applications. The innovative synthetic designs besides the plethora of interdisciplinary characterization approaches applicable to MOF derivatives provide the opportunity to perform a myriad of experiments to explore the performance and offer key insight to develop the next generation of advanced materials. Though there are many published works of literature describing various synthesis and characterization techniques of MOF derivatives, it is still not clear how the synthesis mechanism works and what are the best techniques to characterize these materials to probe their properties accurately. In this review, the recent development in synthesis techniques and mechanisms for a variety of MOF derivates such as MOF-derived metal oxides, porous carbon, composites/hybrids, and sulfides is summarized. Furthermore, the details of characterization techniques and fundamental working principles are summarized to probe the structural, mechanical, physiochemical, electrochemical, and electronic properties of MOF and MOF derivatives. The future trends and some remaining challenges in the synthesis and characterization of MOF derivatives are also discussed.
Collapse
Affiliation(s)
- Amir Farokh Payam
- Nanotechnology and Integrated Bioengineering Centre (NIBEC), School of Engineering, Ulster University, 2-24 York Street, Belfast, BT15 1AP, UK
| | - Sameh Khalil
- Nanotechnology and Integrated Bioengineering Centre (NIBEC), School of Engineering, Ulster University, 2-24 York Street, Belfast, BT15 1AP, UK
| | - Supriya Chakrabarti
- Nanotechnology and Integrated Bioengineering Centre (NIBEC), School of Engineering, Ulster University, 2-24 York Street, Belfast, BT15 1AP, UK
| |
Collapse
|
4
|
Qin Z, Jiang Q, Zou Y, Chen M, Li J, Li Y, Zhang H. Synthesis of Nanosized γ-Cyclodextrin Metal-Organic Frameworks as Carriers of Limonene for Fresh-Cut Fruit Preservation Based on Polycaprolactone Nanofibers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400399. [PMID: 38607266 DOI: 10.1002/smll.202400399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/31/2024] [Indexed: 04/13/2024]
Abstract
To address the issue of bacterial growth on fresh-cut fruits, this paper reports the synthesis of nanosized γ-cyclodextrin metal-organic frameworks (CD-MOFs) using an ultrasound-assisted method and their application as carriers of limonene for antibacterial active packaging. The effects of the processing parameters on the morphology and crystallinity of the CD-MOFs are investigated, and the results prove that the addition of methanol is the key to producing nanosized CD-MOFs. The limonene loading content of the nanosized CD-MOFs can reach approximately 170 mg g-1. The sustained-release behaviors of limonene in the CD-MOFs are evaluated. Molecular docking simulations reveal the distribution and binding sites of limonene in the CD-MOFs. CD-MOFs are deposited on the surfaces of polycaprolactone (PCL) nanofibers via an immersion method, and limonene-loaded CD-MOF@PCL nanofibers are prepared. The morphology, crystallinity, thermal stability, mechanical properties, and antibacterial activity of the nanofibers are also studied. The nanofiber film effectively inhibits bacterial growth and prolongs the shelf life of fresh-cut apples. This study provides a novel strategy for developing antibacterial active packaging materials based on CD-MOFs and PCL nanofibers.
Collapse
Affiliation(s)
- Zeyu Qin
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Qinbo Jiang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Yucheng Zou
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Meiyu Chen
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Jiawen Li
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Yang Li
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Hui Zhang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
5
|
Chen X, Wang B, Ying P, Zhang J. Indentation Depth-Dependent Hardness of Metal-Organic Framework Crystals: The Effect of Local Amorphization Induced by Indentation. Chemphyschem 2024; 25:e202300647. [PMID: 37840017 DOI: 10.1002/cphc.202300647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/13/2023] [Accepted: 10/13/2023] [Indexed: 10/17/2023]
Abstract
The hardness of metal-organic frameworks (MOFs) is an important mechanical property metric measuring their resistance to the permanent plastic deformation. The hardness of most MOFs measured from nanoindentation experiments usually exhibits the similar unique indentation depth dependence feature, the mechanism of which still remains unclear. In order to explain the effect of the indentation depth on the hardness of MOFs, we conducted nanoindentation simulations on HKUST-1 by using reactive molecular dynamics simulations. Our simulations reveal that the HKUST-1 material near the indenter can transform from the parent crystalline phase to a new amorphous phase due to the high pressure generated, while its counterpart far from the indenter remains in the crystalline phase. By considering the crystalline-amorphous interface in the energy analysis of MOFs, we derived an analytical expression of the hardness at different indentation depths. It is found that the interface effect can greatly increase the hardness of MOFs, as observed in nanoindentation simulations. Moreover, the proposed analytical expression can well explain the indentation depth-dependent hardness of many MOF crystals measured in nanoindentation experiments. Overall, this work can provide a better understanding of the indentation depth dependence of the hardness of MOFs.
Collapse
Affiliation(s)
- Ximing Chen
- School of Science, Harbin Institute of Technology, 518055, Shenzhen, PR China
| | - Bing Wang
- School of Science, Harbin Institute of Technology, 518055, Shenzhen, PR China
| | - Penghua Ying
- Department of Physical Chemistry, School of Chemistry, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Jin Zhang
- School of Science, Harbin Institute of Technology, 518055, Shenzhen, PR China
| |
Collapse
|
6
|
Mishra MK, Mahur P, Manimunda P, Mishra K. Recent Advances in Nanomechanical Measurements and Their Application for Pharmaceutical Crystals. Mol Pharm 2023; 20:4848-4867. [PMID: 37642458 DOI: 10.1021/acs.molpharmaceut.3c00441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Mechanical behavior of pharmaceutical crystals directly impacts the formulation development and manufacturing of drug products. The understanding of crystal structure-mechanical behavior of pharmaceutical and molecular crystals has recently gained substantial attention among pharmaceutical and materials scientists with the advent of advanced nanomechanical testing instruments like nanoindentation. For the past few decades, instrumented nanoindentation was a popular technique for measuring the mechanical properties of thin films and small-length scale materials. More recently it is being implemented to investigate the mechanical properties of pharmaceutical crystals. Integration of correlative microscopy techniques and environmental control opened the door for advanced structure-property correlation under processing conditions. Preventing the degradation of active pharmaceutical ingredients from external factors such as humidity, temperature, or pressure is important during processing. This review deals with the recent developments in the synchronized nanomechanical measurements of pharmaceutical crystals toward the fast and effective development of high-quality pharmaceutical drug products. This review also summarizes some recent reports to intensify how one can design and control the nanomechanical properties of pharmaceutical solids. Measurement challenges and the scope for studying nanomechanical properties of pharmaceutical crystals using nanoindentation as a function of crystal structure and in turn to develop fundamental knowledge in the structure-property relationship with the implications for drug manufacturing and development are discussed in this review. This review further highlights recently developed capabilities in nanoindentation, for example, variable temperature nanoindentation testing, in situ imaging of the indented volume, and nanoindentation coupled Raman spectroscopy that can offer new quantitative details on nanomechanical behavior of crystals and will play a decisive role in the development of coherent theories for nanomechanical study of pharmaceutical crystal.
Collapse
Affiliation(s)
- Manish Kumar Mishra
- Department of Chemistry, School of Advanced Sciences (SAS), VIT University, Vellore 632014, Tamil Nadu, India
| | - Pinki Mahur
- Department of Chemistry, School of Advanced Sciences (SAS), VIT University, Vellore 632014, Tamil Nadu, India
| | | | - Kamini Mishra
- Department of Chemistry, School of Advanced Sciences (SAS), VIT University, Vellore 632014, Tamil Nadu, India
| |
Collapse
|
7
|
Monjezi BH, Okur S, Limbach R, Chandresh A, Sen K, Hashem T, Schwotzer M, Wondraczek L, Wöll C, Knebel A. Fast Dynamic Synthesis of MIL-68(In) Thin Films in High Optical Quality for Optical Cavity Sensing. ACS NANO 2023; 17:6121-6130. [PMID: 36877629 DOI: 10.1021/acsnano.3c01558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Fabrication of metal-organic framework (MOF) thin films rigidly anchored on suitable substrates is a crucial prerequisite for the integration of these porous hybrid materials into electronic and optical devices. Thus, far, the structural variety for MOF thin films available through layer-by-layer deposition was limited, as the preparation of those surface-anchored metal-organic frameworks (SURMOFs) has several requirements: mild conditions, low temperatures, day-long reaction times, and nonaggressive solvents. We herein present a fast method for the preparation of the MIL SURMOF on Au-surfaces under rather harsh conditions: Using a dynamic layer-by-layer synthesis for MIL-68(In), thin films of adjustable thickness between 50 and 2000 nm could be deposited within only 60 min. The MIL-68(In) thin film growth was monitored in situ using a quartz crystal microbalance. In-plane X-ray diffraction revealed oriented MIL-68(In) growth with the pore-channels of this interesting MOF aligned parallel to the support. Scanning electron microscopy data demonstrated an extraordinarily low roughness of the MIL-68(In) thin films. Mechanical properties and lateral homogeneity of the layer were probed through nanoindentation. These thin films showed extremely high optical quality. By applying a poly(methyl methacrylate) layer and further depositing an Au-mirror to the top, a MOF optical cavity was fabricated that can be used as a Fabry-Perot interferometer. The MIL-68(In)-based cavity showed a series of sharp resonances in the ultraviolet-visible regime. Changes in the refractive index of MIL-68(In) caused by exposure to volatile compounds led to pronounced position shifts of the resonances. Thus, these cavities are well suited to be used as optical read-out sensors.
Collapse
Affiliation(s)
- Bahram Hosseini Monjezi
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Salih Okur
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - René Limbach
- Otto Schott Institute of Materials Research, Friedrich Schiller University Jena, Fraunhoferstraße 6, 07743 Jena, Germany
| | - Abhinav Chandresh
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Kaushik Sen
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Tawheed Hashem
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Matthias Schwotzer
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Lothar Wondraczek
- Otto Schott Institute of Materials Research, Friedrich Schiller University Jena, Fraunhoferstraße 6, 07743 Jena, Germany
| | - Christof Wöll
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Alexander Knebel
- Otto Schott Institute of Materials Research, Friedrich Schiller University Jena, Fraunhoferstraße 6, 07743 Jena, Germany
| |
Collapse
|
8
|
Kulachenkov N, Barsukova M, Alekseevskiy P, Sapianik AA, Sergeev M, Yankin A, Krasilin AA, Bachinin S, Shipilovskikh S, Poturaev P, Medvedeva N, Denislamova E, Zelenovskiy PS, Shilovskikh VV, Kenzhebayeva Y, Efimova A, Novikov AS, Lunev A, Fedin VP, Milichko VA. Dimensionality Mediated Highly Repeatable and Fast Transformation of Coordination Polymer Single Crystals for All-Optical Data Processing. NANO LETTERS 2022; 22:6972-6981. [PMID: 36018814 DOI: 10.1021/acs.nanolett.2c01770] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A family of coordination polymers (CPs) based on dynamic structural elements are of great fundamental and commercial interest addressing modern problems in controlled molecular separation, catalysis, and even data processing. Herein, the endurance and fast structural dynamics of such materials at ambient conditions are still a fundamental challenge. Here, we report on the design of a series of Cu-based CPs [Cu(bImB)Cl2] and [Cu(bImB)2Cl2] with flexible ligand bImB (1,4-bis(imidazol-1-yl)butane) packed into one- and two-dimensional (1D, 2D) structures demonstrating dimensionality mediated flexibility and reversible structural transformations. Using the laser pulses as a fast source of activation energy, we initiate CP heating followed by anisotropic thermal expansion and 0.2-0.8% volume changes with the record transformation rates from 2220 to 1640 s-1 for 1D and 2D CPs, respectively. The endurance over 103 cycles of structural transformations, achieved for the CPs at ambient conditions, allows demonstrating optical fiber integrated all-optical data processing.
Collapse
Affiliation(s)
- Nikita Kulachenkov
- School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
| | - Marina Barsukova
- Nikolaev Institute of Inorganic Chemistry SB RAS, Novosibirsk 630090, Russia
- Functional Materials Design, Discovery and Development Research Group (FMD3), Advanced Membranes and Porous Materials Center (AMPM), Division of Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Pavel Alekseevskiy
- School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
| | - Aleksandr A Sapianik
- Nikolaev Institute of Inorganic Chemistry SB RAS, Novosibirsk 630090, Russia
- Functional Materials Design, Discovery and Development Research Group (FMD3), Advanced Membranes and Porous Materials Center (AMPM), Division of Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Maxim Sergeev
- School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
| | - Andrei Yankin
- School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
| | - Andrei A Krasilin
- School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
- Ioffe Institute, St. Petersburg 194021, Russia
| | - Semyon Bachinin
- School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
| | - Sergei Shipilovskikh
- School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
- Department of Chemistry, Perm State University, Perm, 614990, Russia
| | - Petr Poturaev
- Department of Chemistry, Perm State University, Perm, 614990, Russia
| | - Natalia Medvedeva
- Department of Chemistry, Perm State University, Perm, 614990, Russia
| | | | - Pavel S Zelenovskiy
- Institute of Natural Sciences and Mathematics, Ural Federal University, Yekaterinburg 620000, Russia
| | | | - Yuliya Kenzhebayeva
- School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
| | - Anastasiia Efimova
- School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
| | - Alexander S Novikov
- Saint Petersburg State University, Saint Petersburg 198504, Russia
- Peoples' Friendship University of Russia (RUDN University), Moscow 117198, Russia
| | - Artem Lunev
- School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
| | - Vladimir P Fedin
- Nikolaev Institute of Inorganic Chemistry SB RAS, Novosibirsk 630090, Russia
| | - Valentin A Milichko
- School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
- Institut Jean Lamour, Universit de Lorraine, UMR CNRS 7198, 54011 Nancy, France
| |
Collapse
|
9
|
Gutiérrez M, Zhang Y, Tan JC. Confinement of Luminescent Guests in Metal-Organic Frameworks: Understanding Pathways from Synthesis and Multimodal Characterization to Potential Applications of LG@MOF Systems. Chem Rev 2022; 122:10438-10483. [PMID: 35427119 PMCID: PMC9185685 DOI: 10.1021/acs.chemrev.1c00980] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Indexed: 12/27/2022]
Abstract
This review gives an authoritative, critical, and accessible overview of an emergent class of fluorescent materials termed "LG@MOF", engineered from the nanoscale confinement of luminescent guests (LG) in a metal-organic framework (MOF) host, realizing a myriad of unconventional materials with fascinating photophysical and photochemical properties. We begin by summarizing the synthetic methodologies and design guidelines for representative LG@MOF systems, where the major types of fluorescent guest encompass organic dyes, metal ions, metal complexes, metal nanoclusters, quantum dots, and hybrid perovskites. Subsequently, we discuss the methods for characterizing the resultant guest-host structures, guest loading, photophysical properties, and review local-scale techniques recently employed to elucidate guest positions. A special emphasis is paid to the pros and cons of the various methods in the context of LG@MOF. In the following section, we provide a brief tutorial on the basic guest-host phenomena, focusing on the excited state events and nanoscale confinement effects underpinning the exceptional behavior of LG@MOF systems. The review finally culminates in the most striking applications of LG@MOF materials, particularly the "turn-on" type fluorochromic chemo- and mechano-sensors, noninvasive thermometry and optical pH sensors, electroluminescence, and innovative security devices. This review offers a comprehensive coverage of general interest to the multidisciplinary materials community to stimulate frontier research in the vibrant sector of light-emitting MOF composite systems.
Collapse
Affiliation(s)
- Mario Gutiérrez
- Multifunctional
Materials & Composites (MMC) Laboratory, Department of Engineering
Science, University of Oxford, Parks Road, Oxford OX1 3PJ, United
Kingdom
- Departamento
de Química Física, Facultad de Ciencias Ambientales
y Bioquímica, INAMOL, Universidad
de Castilla-La Mancha, Avenida Carlos III, S/N, 45071 Toledo, Spain
| | - Yang Zhang
- Multifunctional
Materials & Composites (MMC) Laboratory, Department of Engineering
Science, University of Oxford, Parks Road, Oxford OX1 3PJ, United
Kingdom
| | - Jin-Chong Tan
- Multifunctional
Materials & Composites (MMC) Laboratory, Department of Engineering
Science, University of Oxford, Parks Road, Oxford OX1 3PJ, United
Kingdom
| |
Collapse
|
10
|
Möslein A, Donà L, Civalleri B, Tan JC. Defect Engineering in Metal-Organic Framework Nanocrystals: Implications for Mechanical Properties and Performance. ACS APPLIED NANO MATERIALS 2022; 5:6398-6409. [PMID: 35655928 PMCID: PMC9150067 DOI: 10.1021/acsanm.2c00493] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 02/27/2022] [Indexed: 05/21/2023]
Abstract
The growth process of metal-organic framework (MOF) nanocrystals defines their properties and functions. However, defects may be prevalent during the crystallization of even seemingly perfect MOFs, such as zeolitic imidazolate framework-8 (ZIF-8), and yet direct probing of such structural defects has been challenging because of the lack of nanoscale techniques to locally examine individual nanocrystals. Here, we directly study local defects, such as missing linkers or metal vacancies, in ZIF-8 nano- and microcrystals with near-field IR nanospectroscopy combined with density functional theory calculations. We track the chemical changes during crystallization and show that structural defects like zinc cations that are bound to molecules of the reactant gradually disappear with ripening of the crystals, while dangling and missing linker defects prevail. The resulting defect-terminating groups or open-metal sites produce mechanical anisotropy and reduce the Young's modulus, as measured via tip force microscopy with nanoscale resolution and supported by theoretical modeling. However, these structural defects also open the door for defect engineering to tune the performance of ZIF-8 by offering additional adsorption sites for targeted catalytic reactions, chemical sensing, or gas capture.
Collapse
Affiliation(s)
- Annika
F. Möslein
- Multifunctional
Materials and Composites Laboratory, Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, U.K.
| | - Lorenzo Donà
- Dipartimento
di Chimica, Università di Torino, Via P. Giuria 5, Torino 10125, Italy
| | - Bartolomeo Civalleri
- Dipartimento
di Chimica, Università di Torino, Via P. Giuria 5, Torino 10125, Italy
| | - Jin-Chong Tan
- Multifunctional
Materials and Composites Laboratory, Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, U.K.
| |
Collapse
|
11
|
Möslein A, Tan JC. Vibrational Modes and Terahertz Phenomena of the Large-Cage Zeolitic Imidazolate Framework-71. J Phys Chem Lett 2022; 13:2838-2844. [PMID: 35324212 PMCID: PMC9084598 DOI: 10.1021/acs.jpclett.2c00081] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
The zeolitic imidazole framework ZIF-71 has the potential to outperform other well-studied metal-organic frameworks due to its intrinsic hydrophobicity and relatively large pore size. However, a detailed description of its complex physical phenomena and structural dynamics has been lacking thus far. Herein, we report the complete assignment of the vibrational modes of ZIF-71 using high-resolution inelastic neutron scattering measurements and synchrotron radiation infrared spectroscopy, corroborated by density functional theory (DFT) calculations. With its 816 atoms per unit cell, ZIF-71 is the largest system yet for which frequency calculations have been accomplished employing the CRYSTAL17 DFT code. We discover low-energy terahertz dynamics such as gate-opening and shearing modes that are central to the functions and stability of the ZIF-71 framework structure. Nanoscale analytical methods based on atomic force microscopy (near-field infrared spectroscopy and AFM nanoindentation) further unravel the local chemical and mechanical properties of ZIF-71 single crystals.
Collapse
|
12
|
Xing Y, Luo L, Li Y, Wang D, Hu D, Li T, Zhang H. Exploration of Hierarchical Metal-Organic Framework as Ultralight, High-Strength Mechanical Metamaterials. J Am Chem Soc 2022; 144:4393-4402. [PMID: 35230831 DOI: 10.1021/jacs.1c11136] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Due to the extraordinarily high surface to volume ratio and enormous structural and chemical diversities, metal-organic frameworks (MOFs) have drawn much attention in applications such as heterogeneous catalysis, gas storage separation, and drug delivery, and so on. However, the potential of MOF materials as mechanical metamaterials has not been investigated. In this work, we demonstrated that through the concerted effort of molecular construct and mesoscopic structural design, hierarchical MOFs can exhibit superb mechanical properties. With the cutting-edge in situ transmission and scanning electron microscope (TEM and SEM) techniques, the mechanical properties of hollow UiO-66 octahedron particles were quantitatively studied by compression on individual specimens. Results showed that the yield strength and Young's modulus of the hierarchical porous framework material presented a distinct "smaller is stronger and stiffer" size dependency, and the maximum yield strength and Young's modulus reached 580 ± 55 MPa and 4.3 ± 0.5 GPa, respectively. The specific strengths were measured as 0.15 ± 0.03 to 0.68 ± 0.11 GPa g-1 cm3, which is comparable to the previously reported state-of-the-art mechanical metamaterials like glassy carbon nanolattices and pyrolytic carbon nanolattices. This work revealed that MOF materials can be made into a new class of low-density, high-strength mechanical metamaterials and provided insight into the mechanical stability of nanoscale MOFs for practical applications.
Collapse
Affiliation(s)
- Yurui Xing
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, PR China
| | - Lianshun Luo
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, PR China
| | - Yansong Li
- Department of Aircraft Airworthiness Engineering, School of Transportation Science and Engineering, Beihang University (BUAA), Beijing 100191, PR China
| | - Dongxu Wang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, PR China
| | - Dayong Hu
- Department of Aircraft Airworthiness Engineering, School of Transportation Science and Engineering, Beihang University (BUAA), Beijing 100191, PR China
| | - Tao Li
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, PR China.,Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, PR China
| | - Hongti Zhang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, PR China.,Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, PR China
| |
Collapse
|
13
|
Alharbi N, Teerakanok S, Satterthwaite JD, Giordano R, Silikas N. Quantitative nano-mechanical mapping AFM-based method for elastic modulus and surface roughness measurements of model polymer infiltrated ceramics. Dent Mater 2022; 38:935-945. [DOI: 10.1016/j.dental.2022.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 11/03/2022]
|
14
|
Iacomi P, Maurin G. ResponZIF Structures: Zeolitic Imidazolate Frameworks as Stimuli-Responsive Materials. ACS APPLIED MATERIALS & INTERFACES 2021; 13:50602-50642. [PMID: 34669387 DOI: 10.1021/acsami.1c12403] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Zeolitic imidazolate frameworks (ZIFs) have long been recognized as a prominent subset of the metal-organic framework (MOF) family, in part because of their ease of synthesis and good thermal and chemical stability, alongside attractive properties for diverse potential applications. Prototypical ZIFs like ZIF-8 have become embodiments of the significant promise held by porous coordination polymers as next-generation designer materials. At the same time, their intriguing property of experiencing significant structural changes upon the application of external stimuli such as temperature, mechanical pressure, guest adsorption, or electromagnetic fields, among others, has placed this family of MOFs squarely under the umbrella of stimuli-responsive materials. In this review, we provide an overview of the current understanding of the triggered structural and electronic responses observed in ZIFs (linker and bond dynamics, crystalline and amorphous phase changes, luminescence, etc.). We then describe the state-of-the-art experimental and computational methodology capable of shedding light on these complex phenomena, followed by a comprehensive summary of the stimuli-responsive nature of four prototypical ZIFs: ZIF-8, ZIF-7, ZIF-4, and ZIF-zni. We further expose the relevant challenges for the characterization and fundamental understanding of responsive ZIFs, including how to take advantage of their flexible properties for new application avenues.
Collapse
Affiliation(s)
- Paul Iacomi
- UMR 5253, CNRS, ENSCM, Institut Charles Gerhardt Montpellier, University of Montpellier, Montpellier 34293, France
| | - Guillaume Maurin
- UMR 5253, CNRS, ENSCM, Institut Charles Gerhardt Montpellier, University of Montpellier, Montpellier 34293, France
| |
Collapse
|
15
|
Yuan H, Liu G, Qiao Z, Li N, Buenconsejo PJS, Xi S, Karmakar A, Li M, Cai H, Pennycook SJ, Zhao D. Solution-Processable Metal-Organic Framework Nanosheets with Variable Functionalities. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2101257. [PMID: 34057259 DOI: 10.1002/adma.202101257] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 04/12/2021] [Indexed: 06/12/2023]
Abstract
Metal-organic frameworks (MOFs) intrinsically lack fluidity and thus solution processability. Direct synthesis of MOFs exhibiting solution processability like polymers remains challenging but highly sought-after for multitudinous applications. Herein, a one-pot, surfactant-free, and scalable synthesis of highly stable MOF suspensions composed of exceptionally large (average area > 15 000 µm2 ) NUS-8 nanosheets with variable functionalities and excellent solution processability is presented. This is achieved by adding capping molecules during the synthesis, and by judicious controls of precursor concentration and MOF nanosheet-solvent interactions. The resulting 2D NUS-8 nanosheets with variable functionalities exhibit excellent solution processability. As such, relevant monoliths, aero- and xerogels, and large-area textured films with a great homogeneity, controllable thickness, and appreciable mechanical properties can be facilely fabricated. Additionally, from both the molecular- and chip-level it is demonstrated that capacitive sensors integrated with NUS-8 films functionalized with different terminal groups exhibit distinguishable sensing behaviors toward acetone due to their disparate host-guest interactions. It is envisioned that this simple approach will greatly facilitate the integration of MOFs in miniaturized electronic devices and benefit their mass production.
Collapse
Affiliation(s)
- Hongye Yuan
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Guoliang Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Zhiwei Qiao
- Guangzhou Key Laboratory for New Energy and Green Catalysis, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, P. R. China
| | - Nanxi Li
- Institute of Microelectronics, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, #08-02 Innovis Tower, Singapore, 138634, Singapore
| | - Pio John S Buenconsejo
- Facility for Analysis Characterization Testing Simulation (FACTS), Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Shibo Xi
- Institute of Chemical and Engineering Sciences, A*STAR, Jurong Island, Singapore, 627833, Singapore
| | - Avishek Karmakar
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Mengsha Li
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117575, Singapore
| | - Hong Cai
- Institute of Microelectronics, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, #08-02 Innovis Tower, Singapore, 138634, Singapore
| | - Stephen John Pennycook
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117575, Singapore
| | - Dan Zhao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| |
Collapse
|
16
|
Zhang Z, Dell'Angelo D, Momeni MR, Shi Y, Shakib FA. Metal-to-Semiconductor Transition in Two-Dimensional Metal-Organic Frameworks: An Ab Initio Dynamics Perspective. ACS APPLIED MATERIALS & INTERFACES 2021; 13:25270-25279. [PMID: 34015222 DOI: 10.1021/acsami.1c04636] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Two-dimensional (2D) π-stacked layered metal-organic frameworks (MOFs) are permanently porous and electrically conductive materials with easily tunable crystal structures. Here, we provide an accurate examination of the correlation between structural features and electronic properties of Ni3(HITP)2, HITP = 2,3,6,7,10,11-hexaiminotriphenylene, as an archetypical 2D MOF. The main objective of this work is to unravel the responsive nature of the layered architecture to external stimuli such as temperature and show how the layer flexibility translates to different conductive behaviors. To this end, we employ a combination of quantum mechanical tools, ab initio molecular dynamics (AIMD) simulations, and electronic band structure calculations. We compare the band structure and projected density of states of equilibrated system at 293 K to that of the 0 K optimized structure. Effect of interlayer π-π and intralayer d-π interactions on charge mobility is disentangled and studied by increasing the distance between layers of Ni3(HITP)2 and comparison to an exemplary case of Zn3(HITP)2 2D MOF. Our findings show how a structural change, which can be deformations along the layers, slipping of layers, or change of the interlayer distance, can induce metal-to-semiconductor or indirect-to-direct semiconductor transition, suggesting a way to adjust or even switch between the intralayer vs interlayer conductive anisotropy in Ni3(HITP)2, in particular, and 2D MOFs in general.
Collapse
Affiliation(s)
- Zeyu Zhang
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - David Dell'Angelo
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Mohammad R Momeni
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Yuliang Shi
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Farnaz A Shakib
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| |
Collapse
|
17
|
Turangan N, Xu Y, Spratt H, Rintoul L, Bottle S, MacLeod J. Self-supporting covalent organic framework membranes synthesized through two different processes: solvothermal annealing and solvent vapor annealing. NANOTECHNOLOGY 2021; 32:075604. [PMID: 32937612 DOI: 10.1088/1361-6528/abb903] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Rigid, freestanding covalent organic framework (COF-1) membranes have been synthesized from 1,4-benzenediboronic acid (BDBA) precursors using two different approaches: room temperature solvent-vapour annealing (SVA) and solvothermal annealing (SA). Characterization of films using Fourier-transform infrared (FTIR) spectroscopy, x-ray diffraction (XRD), and various microscopies shows that the films obtained through the two different routes vary in their retained BDBA proportion, crystal size and macroscale morphology. Gas adsorption measurements give specific surface areas of 579 ± 7 m2 g-1 and 739 ± 11 m2 g-1 respectively, suggesting that the average porosity of these films is competitive with bulk-synthesized COF-1 particles. The films have a stratified structure, with a dense, thin top layer and a thicker, sponge-like base layer. Using nanoindentation, we measured the Young's modulus at the top surface of the SVA and SA films to be 3.64 ± 1.20 GPa and 3.33 ± 0.12 GPa respectively, with the smaller uncertainty for the SA film attributed to a more uniform morphology. These measurements provide useful experimental data pertaining to COF-1 mechanical properties, furnishing information relevant to the use of these free-standing membranes in applications such as gas filtration or storage.
Collapse
Affiliation(s)
- Nikka Turangan
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane 4000, Australia
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane 4000, Australia
| | - Yanan Xu
- Institute of Future Environments (IFE), Queensland University of Technology (QUT), 2 George Street, Brisbane 4000, Australia
| | - Henry Spratt
- Institute of Future Environments (IFE), Queensland University of Technology (QUT), 2 George Street, Brisbane 4000, Australia
| | - Llewellyn Rintoul
- Institute of Future Environments (IFE), Queensland University of Technology (QUT), 2 George Street, Brisbane 4000, Australia
| | - Steven Bottle
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane 4000, Australia
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane 4000, Australia
| | - Jennifer MacLeod
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane 4000, Australia
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane 4000, Australia
| |
Collapse
|
18
|
Rehn SM, Gerrard-Anderson TM, Qiao L, Zhu Q, Wehmeyer G, Jones MR. Mechanical Reshaping of Inorganic Nanostructures with Weak Nanoscale Forces. NANO LETTERS 2021; 21:130-135. [PMID: 33301332 DOI: 10.1021/acs.nanolett.0c03383] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Inorganic nanomaterials are often depicted as rigid structures whose shape is permanent. However, forces that are ordinarily considered weak can exert sufficient stress at the nanoscale to drive mechanical deformation. Here, we leverage van der Waals (VdW) interactions to mechanically reshape inorganic nanostructures from planar to curvilinear. Modified plate deformation theory shows that high-aspect-ratio two-dimensional particles can be plastically deformed via VdW forces. Informed by this finding, silver nanoplates were deformed over spherical iron oxide template particles, resulting in distinctive bend contour patterns in bright-field (BF) transmission electron microscopy (TEM) images. High-resolution TEM images of deformed areas reveal the presence of highly strained bonds in the material. Finally, we show that the distance between two nearby template particles allows for the engineering of several distinct curvilinear morphologies. This work challenges the traditional view of nanoparticles as static objects and introduces methods for postsynthetic mechanical shape control.
Collapse
Affiliation(s)
- Sarah M Rehn
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | | | - Liang Qiao
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Qing Zhu
- Department of Mechanical Engineering, Rice University, Houston, Texas 77005, United States
| | - Geoff Wehmeyer
- Department of Mechanical Engineering, Rice University, Houston, Texas 77005, United States
| | - Matthew R Jones
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
19
|
Krajczewski J, Ambroziak R, Kudelski A. Photo-assembly of plasmonic nanoparticles: methods and applications. RSC Adv 2021; 11:2575-2595. [PMID: 35424232 PMCID: PMC8694033 DOI: 10.1039/d0ra09337h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 12/19/2020] [Indexed: 12/28/2022] Open
Abstract
In this review article, various methods for the light-induced manipulation of plasmonic nanoobjects are described, and some sample applications of this process are presented. The methods of the photo-induced nanomanipulation analyzed include methods based on: the light-induced isomerization of some compounds attached to the surface of the manipulated object causing formation of electrostatic, host-guest or covalent bonds or other structural changes, the photo-response of a thermo-responsive material attached to the surface of the manipulated nanoparticles, and the photo-catalytic process enhanced by the coupled plasmons in manipulated nanoobjects. Sample applications of the process of the photo-aggregation of plasmonic nanosystems are also presented, including applications in surface-enhanced vibrational spectroscopies, catalysis, chemical analysis, biomedicine, and more. A detailed comparative analysis of the methods that have been applied so far for the light-induced manipulation of nanostructures may be useful for researchers planning to enter this fascinating field.
Collapse
Affiliation(s)
- Jan Krajczewski
- University of Warsaw, Faculty of Chemistry 1 Pasteur St. 02-093 Warsaw Poland
| | - Robert Ambroziak
- University of Warsaw, Faculty of Chemistry 1 Pasteur St. 02-093 Warsaw Poland
| | - Andrzej Kudelski
- University of Warsaw, Faculty of Chemistry 1 Pasteur St. 02-093 Warsaw Poland
| |
Collapse
|
20
|
Tiba AA, Conway MT, Hill CS, Swenson DC, MacGillivray LR, Tivanski AV. Mechanical rigidity of a shape-memory metal-organic framework increases by crystal downsizing. Chem Commun (Camb) 2021; 57:89-92. [PMID: 33305781 DOI: 10.1039/d0cc05684g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Soft porous nanocrystals with a pronounced shape-memory effect exhibit two- to three-fold increase in elastic modulus compared to the microcrystalline counterpart as determined by atomic force microscopy nanoindentation. The increase in rigidity is consistent with the known shape-memory effect displayed by the framework solid at the nanoscale. Crystal downsizing can offer new avenues for tailoring the mechanical properties of metal-organic frameworks.
Collapse
Affiliation(s)
- Al A Tiba
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242-1294, USA.
| | - Matthew T Conway
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242-1294, USA.
| | - Collin S Hill
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242-1294, USA.
| | - Dale C Swenson
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242-1294, USA.
| | | | - Alexei V Tivanski
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242-1294, USA.
| |
Collapse
|
21
|
Zeng Z, Flyagina IS, Tan JC. Nanomechanical behavior and interfacial deformation beyond the elastic limit in 2D metal-organic framework nanosheets. NANOSCALE ADVANCES 2020; 2:5181-5191. [PMID: 36132033 PMCID: PMC9419612 DOI: 10.1039/d0na00475h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 08/11/2020] [Indexed: 05/30/2023]
Abstract
Nanoscale mechanical property measurements of nanoporous nanosheets face many challenges. Herein we show atomic force microscope (AFM)-based nanoindentation to probe the nanoscale mechanical properties of a 2-D metal-organic framework (MOF) nanosheet material containing atomic-sized pores, termed CuBDC [copper 1,4-benzenedicarboxylate]. The sample thickness ranged from ∼10 nm (tens of monolayers) up to ∼400 nm (a stack of multilayers). In terms of its elastic-plastic properties, the Young's modulus (E ∼ 23 GPa) and yield strength (σ y ∼ 450 MPa) were determined in the through-thickness direction. Moreover, we characterized the failure mechanisms of the CuBDC nanosheets, where three failure mechanisms were identified: interfacial slippage, fracture of the framework, and delamination of multilayered nanosheets. Threshold forces and indentation depths corresponding to these failure modes were determined. To gain insights into the failure mechanisms, we employ finite-element models with cohesive elements to simulate the interfacial debonding of a stack of 2-D nanosheets during the indentation process. The nanomechanical AFM methodology elucidated here will pave the way for the study of other 2-D hybrid nanosheets and layered van der Waals solids.
Collapse
Affiliation(s)
- Zhixin Zeng
- Multifunctional Materials & Composites (MMC) Laboratory, Department of Engineering Science, University of Oxford Parks Road Oxford OX1 3PJ UK
| | - Irina S Flyagina
- Multifunctional Materials & Composites (MMC) Laboratory, Department of Engineering Science, University of Oxford Parks Road Oxford OX1 3PJ UK
- Frumkin Institute of Physical Chemistry and Electrochemistry Russian Academy of Sciences 31, bld.4, Leninsky prospect Moscow 119071 Russia
| | - Jin-Chong Tan
- Multifunctional Materials & Composites (MMC) Laboratory, Department of Engineering Science, University of Oxford Parks Road Oxford OX1 3PJ UK
| |
Collapse
|
22
|
Wang Z, Schmalbach KM, Combs RL, Chen Y, Penn RL, Mara NA, Stein A. Effects of Phase Purity and Pore Reinforcement on Mechanical Behavior of NU-1000 and Silica-Infiltrated NU-1000 Metal-Organic Frameworks. ACS APPLIED MATERIALS & INTERFACES 2020; 12:49971-49981. [PMID: 33079519 DOI: 10.1021/acsami.0c12877] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Metal-organic framework (MOF) materials have shown promise in many applications, ranging from gas storage to absorption and catalysis. Because of the high porosity and low density of many MOFs, densification methods such as pelletization and extrusion are needed for practical use and for commercialization of MOF materials. Therefore, it is important to elucidate the mechanical properties of MOFs and to develop methods of further enhancing their mechanical strength. Here, we demonstrate the influence of phase purity and the presence of a pore-reinforcing component on elastic modulus and yield stress of NU-1000 MOFs through nanoindentation methods and finite element simulation. Three types of NU-1000 single crystals were compared: phase-pure NU-1000 prepared with biphenyl-4-carboxylic acid as a modulator (NU-1000-bip), NU-1000 prepared with benzoic acid as a modulator (NU-1000-ben), which results in an additional, denser impurity phase of NU-901, and NU-1000-bip whose mesopores were infiltrated with silica (SiOx(OH)y@NU-1000) by nanocasting methods. By maintaining phase purity and minimizing defects, the elastic modulus could be enhanced by nearly an order of magnitude: phase-pure NU-1000-bip crystals exhibited an elastic modulus of 21 GPa, whereas the value for NU-1000-ben crystals was only 3 GPa. The introduction of silica into the mesopores of NU-1000-bip did not strongly affect the measured elastic modulus (19 GPa) but significantly increased the load at failure from 2000 μN to 3000-4000 μN.
Collapse
Affiliation(s)
- Zhao Wang
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Kevin M Schmalbach
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, Minnesota 55455, United States
| | - Rebecca L Combs
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Youxing Chen
- Department of Mechanical Engineering, UNC Charlotte, 9201 University City Blvd., Charlotte, North Carolina 28223, United States
| | - R Lee Penn
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Nathan A Mara
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, Minnesota 55455, United States
| | - Andreas Stein
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
23
|
Sun Y, Zeng K. Characterization of Catalysts by Advanced Scanning Probe Microscopy and Spectroscopy. ChemCatChem 2020. [DOI: 10.1002/cctc.201901877] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Yao Sun
- Department of Mechanical EngineeringNational University of Singapore 9 Engineering Drive 1 117576 Singapore Singapore
| | - Kaiyang Zeng
- Department of Mechanical EngineeringNational University of Singapore 9 Engineering Drive 1 117576 Singapore Singapore
| |
Collapse
|
24
|
Fan TF, Park S, Shi Q, Zhang X, Liu Q, Song Y, Chin H, Ibrahim MSB, Mokrzecka N, Yang Y, Li H, Song J, Suresh S, Cho NJ. Transformation of hard pollen into soft matter. Nat Commun 2020; 11:1449. [PMID: 32193375 PMCID: PMC7081183 DOI: 10.1038/s41467-020-15294-w] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 02/23/2020] [Indexed: 12/27/2022] Open
Abstract
Pollen’s practically-indestructible shell structure has long inspired the biomimetic design of organic materials. However, there is limited understanding of how the mechanical, chemical, and adhesion properties of pollen are biologically controlled and whether strategies can be devised to manipulate pollen beyond natural performance limits. Here, we report a facile approach to transform pollen grains into soft microgel by remodeling pollen shells. Marked alterations to the pollen substructures led to environmental stimuli responsiveness, which reveal how the interplay of substructure-specific material properties dictates microgel swelling behavior. Our investigation of pollen grains from across the plant kingdom further showed that microgel formation occurs with tested pollen species from eudicot plants. Collectively, our experimental and computational results offer fundamental insights into how tuning pollen structure can cause dramatic alterations to material properties, and inspire future investigation into understanding how the material science of pollen might influence plant reproductive success. Pollen is an abundant material; but, currently has limited applications. Here, the authors turn pollen grains into soft microgel by de-esterification of pectin molecules and explore the mechanical and structural changes of the pollen grains using physical and modelling approaches.
Collapse
Affiliation(s)
- Teng-Fei Fan
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Soohyun Park
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Qian Shi
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - Xingyu Zhang
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Qimin Liu
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Yoohyun Song
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Hokyun Chin
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Mohammed Shahrudin Bin Ibrahim
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Natalia Mokrzecka
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Yun Yang
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Hua Li
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore.
| | - Juha Song
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore.
| | - Subra Suresh
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore.
| | - Nam-Joon Cho
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore. .,School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore.
| |
Collapse
|
25
|
Tiba AA, Tivanski AV, MacGillivray LR. Size-Dependent Mechanical Properties of a Metal-Organic Framework: Increase in Flexibility of ZIF-8 by Crystal Downsizing. NANO LETTERS 2019; 19:6140-6143. [PMID: 31433659 DOI: 10.1021/acs.nanolett.9b02125] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Size engineering is an emerging strategy to modulate the mechanical properties of crystalline materials. Herein, micro- and nanodimensional single crystals of the prototypical metal-organic framework (MOF) ZIF-8 are generated using solvothermal and solution methods, respectively. Atomic force microscopy-based nanoindentation technique was used to measure the Young's modulus values of micro- and nanodimensional individual ZIF-8 crystals. We demonstrate that crystal downsizing to nanoscale dimensions results in a 40% reduction in crystal stiffness. The change is attributed to a greater contribution of surface effects to the physical properties of nanocrystalline ZIF-8. The observed change in the mechanical properties may be used to explain reported size-dependent changes in gas adsorption of ZIF-8, thought to be a result of differences in framework flexibility at the nanoscale. Our work provides an important example on how downsizing of crystalline metal-organic materials can give rise to specific and tunable physical properties.
Collapse
Affiliation(s)
- Al A Tiba
- Department of Chemistry , University of Iowa , Iowa City , Iowa 52242-1294 United States
| | - Alexei V Tivanski
- Department of Chemistry , University of Iowa , Iowa City , Iowa 52242-1294 United States
| | - Leonard R MacGillivray
- Department of Chemistry , University of Iowa , Iowa City , Iowa 52242-1294 United States
| |
Collapse
|
26
|
Ray KK, Lee HD, Gutierrez MA, Chang FJ, Tivanski AV. Correlating 3D Morphology, Phase State, and Viscoelastic Properties of Individual Substrate-Deposited Particles. Anal Chem 2019; 91:7621-7630. [DOI: 10.1021/acs.analchem.9b00333] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Kamal K. Ray
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - Hansol D. Lee
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - Miguel A. Gutierrez
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - Franklin J. Chang
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - Alexei V. Tivanski
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
27
|
Muflikhun MA, Frommelt MC, Farman M, Chua AY, Santos GNC. Structures, mechanical properties and antibacterial activity of Ag/TiO 2 nanocomposite materials synthesized via HVPG technique for coating application. Heliyon 2019; 5:e01475. [PMID: 31008403 PMCID: PMC6453804 DOI: 10.1016/j.heliyon.2019.e01475] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 03/08/2019] [Accepted: 04/01/2019] [Indexed: 11/06/2022] Open
Abstract
In this study, the structures and mechanical properties of the silver-titanium dioxide nanocomposite material were investigated using Atomic Force Microscopy (AFM). These properties include surface roughness, hardness, and reduced Young's modulus. The nanocomposite material was successfully synthesized using the Horizontal Vapor Phase Growth (HVPG) technique which yielded shapes such as nanoparticles, nanospheres, nanorods, triangular nanocomposites, and nanocrystals. Characterization of nanocomposite materials was done through Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray (EDX) spectroscopy to elucidate material shape, diameter, and composition. The pour plate technique combined with McFarland standards was used to evaluate the antibacterial activity of the nanocomposite material against Staphylococcus aureus. The nanocomposite material was able to eradicate bacteria and was suitable for coating applications effectively.
Collapse
Affiliation(s)
- Muhammad Akhsin Muflikhun
- Department of Mechanical and Industrial Engineering, Faculty of Engineering, Gadjah Mada University, Jl. Grafika No. 2, Yogyakarta 55281, Indonesia
| | | | - Madiha Farman
- Mechanical Engineering Department, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Alvin Y Chua
- Mechanical Engineering Department, De La Salle University, 2401, Taft Avenue, Manila, Philippines
| | - Gil Nonato C Santos
- Physics Department, De La Salle University, 2401, Taft Avenue, Manila, Philippines
| |
Collapse
|
28
|
Singaraju AB, Bahl D, Stevens LL. Brillouin Light Scattering: Development of a Near Century-Old Technique for Characterizing the Mechanical Properties of Materials. AAPS PharmSciTech 2019; 20:109. [PMID: 30746575 DOI: 10.1208/s12249-019-1311-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 01/15/2019] [Indexed: 11/30/2022] Open
Abstract
Brillouin light scattering (BLS), a technique theoretically described nearly a century back by the French physicist Léon Brillouin in 1922, is a light-scattering method for determining the mechanical properties of materials. This inelastic scattering method is described by the Bragg diffraction of light from a propagating fluctuation in the local dielectric. These fluctuations arise spontaneously from thermally populated sound waves intrinsic to all materials, and thus BLS may be broadly applied to transparent samples of any phase. This review begins with a brief historical overview of the development of BLS, from its theoretical prediction to the current state of the art, and notes specific technological advancements that enabled the development of BLS. Despite the broad utility of BLS, no commercial spectrometer is currently available for purchase, but rather individual components are assembled to suit a specific application. Central to any BLS spectrometer is the interferometer, and its performance characteristics-scanning or non-scanning, multi-passing, and stabilization-are critical considerations for spectrometer design. Consistent with any light-scattering method, the frequency shift is a key observable in BLS, and we summarize the connection of this measurement to evaluate the mechanical properties of materials. With emphasis toward pharmaceutical materials analysis, we introduce the traditional BLS approach for single-crystal elasticity, and this is followed by a discussion of more recent developments in powder BLS. We conclude our review with a perspective on future developments in BLS that may enable BLS as a novel addition to the current catalog of process analytical technologies.
Collapse
|
29
|
Ehrenreich MG, Zeng Z, Burger S, Warren MR, Gaultois MW, Tan JC, Kieslich G. Mechanical properties of the ferroelectric metal-free perovskite [MDABCO](NH4)I3. Chem Commun (Camb) 2019; 55:3911-3914. [DOI: 10.1039/c9cc00580c] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We here probe the mechanical properties of the metal-free perovskite [MDABCO](NH4)I3, a material that recently has been discovered as promising ferroelectric.
Collapse
Affiliation(s)
- Michael G. Ehrenreich
- Department of Chemistry and Catalysis Research Center, Technical University of Munich
- D-85748 Garching
- Germany
| | - Zhixin Zeng
- Multifunctional Materials & Composites (MMC) Laboratory, Department of Engineering Science, University of Oxford
- Oxford OX1 3PJ
- UK
| | - Stefan Burger
- Department of Chemistry and Catalysis Research Center, Technical University of Munich
- D-85748 Garching
- Germany
| | - Mark R. Warren
- Diamond Light Source, Diamond House, Harwell Science and Innovation Campus
- OX11 ODE Oxfordshire
- UK
| | - Michael W. Gaultois
- Leverhulme Research Centre of Functional Materials Design, The Materials Innovation Factory, Department of Chemistry, University of Liverpool
- L3 3NY Liverpool
- UK
| | - Jin-Chong Tan
- Multifunctional Materials & Composites (MMC) Laboratory, Department of Engineering Science, University of Oxford
- Oxford OX1 3PJ
- UK
| | - Gregor Kieslich
- Department of Chemistry and Catalysis Research Center, Technical University of Munich
- D-85748 Garching
- Germany
| |
Collapse
|
30
|
Mukherjee S, Zeng Z, Shirolkar MM, Samanta P, Chaudhari AK, Tan JC, Ghosh SK. Self-Assembled, Fluorine-Rich Porous Organic Polymers: A Class of Mechanically Stiff and Hydrophobic Materials. Chemistry 2018; 24:11771-11778. [PMID: 29808943 DOI: 10.1002/chem.201802200] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Indexed: 11/11/2022]
Abstract
Fluorous organic building blocks were utilized to develop two self-assembled, hydrophobic, fluorinated porous organic polymers (FPOPs), namely, FPOP-100 and FPOP-101. Comprehensive mechanical analyses of these functionalised triazine network polymers marked the introduction of mechanical stiffness among all porous organic network materials; the recorded stiffnesses are analogous to those of their organic-inorganic hybrid polymer congeners, that is, metal-organic frameworks. Furthermore, this study introduces a new paradigm for the simultaneous installation of mechanical stiffness and high surface hydrophobicity into polymeric organic networks, with the potential for transfer among all porous solids. Control experiments with non-fluorinated congeners underlined the key role of fluorine, in particular, bis-trifluoromethyl functionalization in realizing the dual features of mechanical stiffness and superhydrophobicity.
Collapse
Affiliation(s)
- Soumya Mukherjee
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pashan, Pune-, 411008, India
| | - Zhixin Zeng
- Multifunctional Materials & Composites (MMC) Laboratory, Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK
| | - Mandar M Shirolkar
- Department of Physics, Tamkang University, Tamsui, 251, Taiwan.,Hefei National Laboratory for Physical Science at the Microscale, University of Science and Technology of China, Hefei, Anhui-, 230026, P. R. China
| | - Partha Samanta
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pashan, Pune-, 411008, India
| | - Abhijeet K Chaudhari
- Multifunctional Materials & Composites (MMC) Laboratory, Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK
| | - Jin-Chong Tan
- Multifunctional Materials & Composites (MMC) Laboratory, Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK
| | - Sujit K Ghosh
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pashan, Pune-, 411008, India.,Centre for Energy Science, IISER Pune, Pune-, 411008, India
| |
Collapse
|
31
|
Heinen J, Ready AD, Bennett TD, Dubbeldam D, Friddle RW, Burtch NC. Elucidating the Variable-Temperature Mechanical Properties of a Negative Thermal Expansion Metal-Organic Framework. ACS APPLIED MATERIALS & INTERFACES 2018; 10:21079-21083. [PMID: 29873475 DOI: 10.1021/acsami.8b06604] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We report the first experimental study into the thermomechanical and viscoelastic properties of a metal-organic framework (MOF) material. Nanoindentations show a decrease in the Young's modulus, consistent with classical molecular dynamics simulations, and hardness of HKUST-1 with increasing temperature over the 25-100 °C range. Variable-temperature dynamic mechanical analysis reveals significant creep behavior, with a reduction of 56% and 88% of the hardness over 10 min at 25 and 100 °C, respectively. This result suggests that, despite the increased density that results from increasing temperature in the negative thermal expansion MOF, the thermally induced softening due to vibrational and entropic contributions plays a more dominant role in dictating the material's temperature-dependent mechanical behavior.
Collapse
Affiliation(s)
- Jurn Heinen
- Van't Hoff Institute for Molecular Sciences , University of Amsterdam , Science Park 904 , 1098 XH Amsterdam , The Netherlands
| | - Austin D Ready
- Sandia National Laboratories , 7011 East Avenue , Livermore , California 94551 , United States
| | - Thomas D Bennett
- Department of Materials Science and Metallurgy , University of Cambridge , 27 Charles Babbage Road , Cambridge CB3 0FS , United Kingdom
| | - David Dubbeldam
- Van't Hoff Institute for Molecular Sciences , University of Amsterdam , Science Park 904 , 1098 XH Amsterdam , The Netherlands
| | - Raymond W Friddle
- Sandia National Laboratories , 7011 East Avenue , Livermore , California 94551 , United States
| | - Nicholas C Burtch
- Sandia National Laboratories , 7011 East Avenue , Livermore , California 94551 , United States
| |
Collapse
|
32
|
Ryder MR, Zeng Z, Titov K, Sun Y, Mahdi EM, Flyagina I, Bennett TD, Civalleri B, Kelley CS, Frogley MD, Cinque G, Tan JC. Dielectric Properties of Zeolitic Imidazolate Frameworks in the Broad-Band Infrared Regime. J Phys Chem Lett 2018; 9:2678-2684. [PMID: 29724101 DOI: 10.1021/acs.jpclett.8b00799] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The field of metal-organic framework (MOF) materials is rapidly advancing toward practical applications; consequently, it is urgent to achieve a better understanding and precise control of their physical properties. Yet, research on the dielectric properties of MOFs is at its infancy, where studies are confined to the static dielectric behavior or lower-frequency response (kHz-MHz) only. Herein, we present the pioneering use of synchrotron-based infrared reflectivity experiments combined with density functional theory (DFT) calculations to accurately determine the dynamic dielectric properties of zeolitic imidazolate frameworks (ZIFs, a topical family of MOFs). We show, for the first time, the frequency-dependent dielectric response of representative ZIF compounds, bridging the near-, mid-, and far-infrared (terahertz, THz) broad-band frequencies. We establish the structure-property relations as a function of framework porosity and structural change. Our comprehensive results will pave the way for novel ZIF-based terahertz applications, such as infrared optical sensors and high-speed wireless communications.
Collapse
Affiliation(s)
- Matthew R Ryder
- Multifunctional Materials & Composites (MMC) Laboratory, Department of Engineering Science , University of Oxford , Parks Road , Oxford OX1 3PJ , United Kingdom
- Diamond Light Source , Harwell Campus, Chilton, Oxford OX11 0DE , United Kingdom
- ISIS Facility , Rutherford Appleton Laboratory , Chilton, Didcot OX11 0QX , United Kingdom
| | - Zhixin Zeng
- Multifunctional Materials & Composites (MMC) Laboratory, Department of Engineering Science , University of Oxford , Parks Road , Oxford OX1 3PJ , United Kingdom
| | - Kirill Titov
- Multifunctional Materials & Composites (MMC) Laboratory, Department of Engineering Science , University of Oxford , Parks Road , Oxford OX1 3PJ , United Kingdom
| | - Yueting Sun
- Multifunctional Materials & Composites (MMC) Laboratory, Department of Engineering Science , University of Oxford , Parks Road , Oxford OX1 3PJ , United Kingdom
| | - E M Mahdi
- Multifunctional Materials & Composites (MMC) Laboratory, Department of Engineering Science , University of Oxford , Parks Road , Oxford OX1 3PJ , United Kingdom
| | - Irina Flyagina
- Multifunctional Materials & Composites (MMC) Laboratory, Department of Engineering Science , University of Oxford , Parks Road , Oxford OX1 3PJ , United Kingdom
| | - Thomas D Bennett
- Department of Materials Science and Metallurgy , University of Cambridge , Cambridge CB3 0FS , United Kingdom
| | - Bartolomeo Civalleri
- Department of Chemistry, NIS and INSTM Reference Centre , University of Turin , via Pietro Giuria 7 , 10125 Torino , Italy
| | - Chris S Kelley
- Diamond Light Source , Harwell Campus, Chilton, Oxford OX11 0DE , United Kingdom
| | - Mark D Frogley
- Diamond Light Source , Harwell Campus, Chilton, Oxford OX11 0DE , United Kingdom
| | - Gianfelice Cinque
- Diamond Light Source , Harwell Campus, Chilton, Oxford OX11 0DE , United Kingdom
| | - Jin-Chong Tan
- Multifunctional Materials & Composites (MMC) Laboratory, Department of Engineering Science , University of Oxford , Parks Road , Oxford OX1 3PJ , United Kingdom
| |
Collapse
|
33
|
Mendiratta S, Usman M, Lu KL. Expanding the dimensions of metal–organic framework research towards dielectrics. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.01.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
34
|
Sun Y, Li Y, Tan JC. Framework flexibility of ZIF-8 under liquid intrusion: discovering time-dependent mechanical response and structural relaxation. Phys Chem Chem Phys 2018; 20:10108-10113. [DOI: 10.1039/c8cp00447a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The structural flexibility of ZIF-8 has been elucidated by liquid intrusion under moderate pressures of tens of MPa.
Collapse
Affiliation(s)
- Yueting Sun
- Multifunctional Materials & Composites (MMC) Laboratory
- Department of Engineering Science
- University of Oxford
- Oxford OX1 3PJ
- UK
| | - Yibing Li
- State Key Laboratory of Automotive Safety and Energy
- Tsinghua University
- Beijing
- P. R. China
| | - Jin-Chong Tan
- Multifunctional Materials & Composites (MMC) Laboratory
- Department of Engineering Science
- University of Oxford
- Oxford OX1 3PJ
- UK
| |
Collapse
|