1
|
Sultanov F, Tatykayev B, Bakenov Z, Mentbayeva A. The role of graphene aerogels in rechargeable batteries. Adv Colloid Interface Sci 2024; 331:103249. [PMID: 39032342 DOI: 10.1016/j.cis.2024.103249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/12/2024] [Accepted: 07/14/2024] [Indexed: 07/23/2024]
Abstract
Energy storage systems, particularly rechargeable batteries, play a crucial role in establishing a sustainable energy infrastructure. Today, researchers focus on improving battery energy density, cycling stability, and rate performance. This involves enhancing existing materials or creating new ones with advanced properties for cathodes and anodes to achieve peak battery performance. Graphene aerogels (GAs) possess extraordinary attributes, including a hierarchical porous and lightweight structure, high electrical conductivity, and robust mechanical stability. These qualities facilitate the uniform distribution of active sites within electrodes, mitigate volume changes during repeated cycling, and enhance overall conductivity. When integrated into batteries, GAs expedite electron/ion transport, offer exceptional structural stability, and deliver outstanding cycling performance. This review offers a comprehensive survey of the advancements in the preparation, functionalization, and modification of GAs in the context of battery research. It explores their application as electrodes and hosts for the dispersion of active material nanoparticles, resulting in the creation of hybrid electrodes for a wide range of rechargeable batteries including lithium-ion batteries (LIBs), Li-metal-air batteries, sodium-ion batteries (SIBs), zinc-ion batteries (AZIBs) and zinc-air batteries (ZABs), aluminum-ion batteries (AIBs) and aluminum-air batteries and other.
Collapse
Affiliation(s)
- Fail Sultanov
- National Laboratory Astana, Nazarbayev University, Kabanbay Batyr Ave. 53, Astana 010000, Kazakhstan
| | - Batukhan Tatykayev
- National Laboratory Astana, Nazarbayev University, Kabanbay Batyr Ave. 53, Astana 010000, Kazakhstan
| | - Zhumabay Bakenov
- National Laboratory Astana, Nazarbayev University, Kabanbay Batyr Ave. 53, Astana 010000, Kazakhstan; Department of Chemical and Materials Engineering, Nazarbayev University, Kabanbay Batyr Ave. 53, Astana 010000, Kazakhstan
| | - Almagul Mentbayeva
- National Laboratory Astana, Nazarbayev University, Kabanbay Batyr Ave. 53, Astana 010000, Kazakhstan; Department of Chemical and Materials Engineering, Nazarbayev University, Kabanbay Batyr Ave. 53, Astana 010000, Kazakhstan.
| |
Collapse
|
2
|
Liu S, Dong Y, Deng C, Chen F, Su Y, Li SY, Xu S. Low-content SnO 2 nanodots on N-doped graphene: lattice-confinement preparation and high-performance lithium/sodium storage. Dalton Trans 2023; 52:1642-1649. [PMID: 36648310 DOI: 10.1039/d2dt03616a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Rational construction of nanosized anode nanomaterials is crucial to enhance the electrochemical performance of lithium-/sodium-ion batteries (LIBs/SIBs). Various anode nanoparticles are created mainly via templating surface confinement, or encapsulation within precursors (such as metal-organic frameworks). Herein, low-content SnO2 nanodots on N-doped reduced graphene oxide (SnO2@N-rGO) were prepared as anode nanomaterials for LIBs and SIBs, via a distinctive lattice confinement of a CoAlSn-layered double hydroxide (CoAlSn-LDH) precursor. The SnO2@N-rGO composite exhibits the advantagous features of low-content (17.9 wt%) and uniform SnO2 nanodots (3.0 ± 0.5 nm) resulting from the lattice confinement of the Co and Al species to the surrounded Sn within the same crystalline layer, and high-content conductive rGO. The SnO2@N-rGO composite delivers a highly reversible capacity of 1146.2 mA h g-1 after 100 cycles at 0.1 A g-1 for LIBs, and 387 mA h g-1 after 100 cycles at 0.1 A g-1 for SIBs, outperforming N-rGO. Furthermore, the dominant capacitive contribution and the rapid electronic and ionic transfer, as well as small volume variation, all give rise to the enhancement. Precursor-based lattice confinement could thus be an effective strategy for designing and preparing uniform nanodots as anode nanomaterials for electrochemical energy storage.
Collapse
Affiliation(s)
- Shuaipeng Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Yan Dong
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Chengwei Deng
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Feijiang Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Yu Su
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Sheng-Yi Li
- Beijing Institute of Smart Energy, Beijing 102209, China.
| | - Sailong Xu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
3
|
Recent Advancements in Chalcogenides for Electrochemical Energy Storage Applications. ENERGIES 2022. [DOI: 10.3390/en15114052] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Energy storage has become increasingly important as a study area in recent decades. A growing number of academics are focusing their attention on developing and researching innovative materials for use in energy storage systems to promote sustainable development goals. This is due to the finite supply of traditional energy sources, such as oil, coal, and natural gas, and escalating regional tensions. Because of these issues, sustainable renewable energy sources have been touted as an alternative to nonrenewable fuels. Deployment of renewable energy sources requires efficient and reliable energy storage devices due to their intermittent nature. High-performance electrochemical energy storage technologies with high power and energy densities are heralded to be the next-generation storage devices. Transition metal chalcogenides (TMCs) have sparked interest among electrode materials because of their intriguing electrochemical properties. Researchers have revealed a variety of modifications to improve their electrochemical performance in energy storage. However, a stronger link between the type of change and the resulting electrochemical performance is still desired. This review examines the synthesis of chalcogenides for electrochemical energy storage devices, their limitations, and the importance of the modification method, followed by a detailed discussion of several modification procedures and how they have helped to improve their electrochemical performance. We also discussed chalcogenides and their composites in batteries and supercapacitors applications. Furthermore, this review discusses the subject’s current challenges as well as potential future opportunities.
Collapse
|
4
|
Fan S, Liu H, Bi S, Gao C, Meng X, Wang Y. Insight on the conversion reaction mechanism of NiCo2S4@CNTs as anode materials for lithium ion batteries and sodium ion batteries. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138618] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
5
|
Lu Y, Du Y, Li H. Template-Sacrificing Synthesis of Ni-Co Layered Double Hydroxides Polyhedron as Advanced Anode for Lithium Ions Battery. Front Chem 2020; 8:581653. [PMID: 33364227 PMCID: PMC7752803 DOI: 10.3389/fchem.2020.581653] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 10/30/2020] [Indexed: 12/04/2022] Open
Abstract
The novel hollowed Ni-Co layered double hydroxide polyhedron (H-(Ni, Co)-LDHP) is synthesized via a template-sacrificing approach using ZIF-67 as template. The morphology, crystallinity, porous texture, and chemical state of H-(Ni, Co)-LDHP are examined. It demonstrates that the H-(Ni, Co)-LDHP not only provides rich redox sites but also promotes the kinetics due to presence of numerous rational channels. As a result, the H-(Ni, Co)-LDHP manifests the desirable lithium ions storage performance when employed as anode. This study paves a new way for preparing hollowed nanostructure toward advanced electrochemical applications.
Collapse
Affiliation(s)
- Youjun Lu
- School of Materials Science and Engineering, North Minzu University, Yinchuan, China
| | - Yingjie Du
- Ningxia Key Laboratory of Photovoltaic Materials, Ningxia University, Yinchuan, China
| | - Haibo Li
- Ningxia Key Laboratory of Photovoltaic Materials, Ningxia University, Yinchuan, China
| |
Collapse
|
6
|
Huang X, Gou L. Design and synthesis of 3D hierarchical NiMoS 4@CuCo 2S 4 array electrode with excellent electrochemical performance. NANOTECHNOLOGY 2020; 31:185602. [PMID: 31958786 DOI: 10.1088/1361-6528/ab6d9a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Large capacitance energy storage materials have a great application prospect due to the development of portable devices. An electrochemical deposition method was used to combine amorphous CuCo2S4 with NiMoS4, which was prepared by a two-step hydrothermal method. The resulting grass-like nanowire array structure greatly promotes the utilization rate of active materials. By the addition of two variable valence metal ions, there is an increase in electrolyte touchable active sites and a decrease in the impedance of the electrode materials. Compared with bare NiMoS4, the binder-free composite electrode has a significantly better capacitance characteristic. In particular, the NiMoS4@CuCo2S4-8 has excellent capacity performance with a specific capacitance of 13.14 F cm-2 at the current density of 5 mA cm-2. The electrode shows 73% capacitance retention after 2000 charge-discharge cycles. It is shown that the combined effect of the nanowires and the several variable valence metal ions is effective to increase the specific capacitance of bimetallic sulfides.
Collapse
Affiliation(s)
- Xinle Huang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | | |
Collapse
|
7
|
Gao X, Wang P, Pan Z, Claverie JP, Wang J. Recent Progress in Two-Dimensional Layered Double Hydroxides and Their Derivatives for Supercapacitors. CHEMSUSCHEM 2020; 13:1226-1254. [PMID: 31797566 DOI: 10.1002/cssc.201902753] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/28/2019] [Indexed: 06/10/2023]
Abstract
High-performance supercapacitors have attracted great attention due to their high power, fast charging/discharging, long lifetime, and high safety. However, the generally low energy density and overall device performance of supercapacitors limit their applications. In recent years, the design of rational electrode materials has proven to be an effective pathway to improve the capacitive performances of supercapacitors. Layered double hydroxides (LDHs), have shown great potential in new-generation supercapacitors, due to their unique two-dimensional layered structures with a high surface area and tunable composition of the host layers and intercalation species. Herein, recent progress in LDH-based, LDH-derived, and composite-type electrode materials targeted for applications in supercapacitors, by tuning the chemical/metal composition, growth morphology, architectures, and device integration, is reviewed. The complicated relationships between the composition, morphology, structure, and capacitive performance are presented. A brief projection is given for the challenges and perspectives of LDHs for energy research.
Collapse
Affiliation(s)
- Xiaorui Gao
- School of Physics and Electronic Engineering, Changshu Institute of Technology, Changshu, Jiangsu, 215500, PR China
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117574, Singapore
| | - Peikui Wang
- Department of Chemistry, University of Sherbrooke, 2500, Boulevard de l'Universite, Sherbrooke, J1K 2R1, Québec, Canada
| | - Zhenghui Pan
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117574, Singapore
| | - Jerome P Claverie
- Department of Chemistry, University of Sherbrooke, 2500, Boulevard de l'Universite, Sherbrooke, J1K 2R1, Québec, Canada
| | - John Wang
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117574, Singapore
| |
Collapse
|
8
|
N-doped carbon matrix supported Fe3Ni6S8 hierarchical architecture with excellent sodium storage capability and electrocatalytic properties. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.134925] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Flower-like nickel–cobalt layered hydroxide nanostructures for super long-life asymmetrical supercapacitors. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.134711] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
10
|
Kandula S, Shrestha KR, Rajeshkhanna G, Kim NH, Lee JH. Kirkendall Growth and Ostwald Ripening Induced Hierarchical Morphology of Ni-Co LDH/MMoS x (M = Co, Ni, and Zn) Heteronanostructures as Advanced Electrode Materials for Asymmetric Solid-State Supercapacitors. ACS APPLIED MATERIALS & INTERFACES 2019; 11:11555-11567. [PMID: 30839189 DOI: 10.1021/acsami.9b02978] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
By changing the mixed metal sulfide composition, morphology tuning of an active electrode material can be possible, which can have a huge impact on its electrochemical performance. Here, effective morphology tuning of Ni-Co layered double hydroxide (LDH)/MMoS x (M = Co, Ni, and Zn) heteronanostructures is demonstrated by varying the composition of MMoS x. Taking advantage of the benefits associated with Kirkendall growth and Ostwald ripening, tunable morphologies were successfully achieved. Among the Ni-Co LDH/MMoS x (M = Co, Ni, and Zn) heteronanostructures, a Ni-Co LDH/NiMoS x core-shell structured electrode delivered a high specific capacity of 404 mAh g-1 at 3 mA cm-2 and an extraordinary cycling stability (after 10 000 cycles) of 93.2% at 50 mA cm-2. In addition, an asymmetric supercapacitor (ASC) device coupled with Ni-Co LDH/NiMoS x as the cathode and Fe2O3/reduced graphene oxide as the anode exhibited excellent cell capacity and extraordinary cycling stability. Moreover, the ASC device provided a very high specific energy of 72.6 Wh kg-1 at a specific power of 522.7 W kg-1 and maintained the specific power of 23.5 Wh kg-1 at 5357.6 W kg-1, demonstrating its high applicability to energy storage devices.
Collapse
|
11
|
Liu Z, Zhang H, Yang Q, Chen Y. Graphene / V2O5 hybrid electrode for an asymmetric supercapacitor with high energy density in an organic electrolyte. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.04.212] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|