1
|
Soares RRA, Milião GL, Pola CC, Jing D, Opare-Addo J, Smith E, Claussen JC, Gomes CL. Insights into solid-contact ion-selective electrodes based on laser-induced graphene: Key performance parameters for long-term and continuous measurements. Mikrochim Acta 2024; 191:615. [PMID: 39311973 DOI: 10.1007/s00604-024-06672-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 08/26/2024] [Indexed: 10/13/2024]
Abstract
This work aims to serve as a comprehensive guide to properly characterize solid-contact ion-selective electrodes (SC-ISEs) for long-term use as they advance toward calibration-free sensors. The lack of well-defined SC-ISE performance criteria limits the ability to compare results and track progress in the field. Laser-induced graphene (LIG) is a rapid and scalable method that, by adjusting the CO2 laser parameters, can create LIG substrates with tunable surface properties, including wettability, surface chemistry, and morphology. Herein, we fabricate laser-induced graphene (LIG) solid-contact electrodes using different laser settings and subsequently convert them into ion-selective sensors using a potassium-selective membrane. We measure the aforementioned tunable surface properties and correlate them with resultant low-frequency capacitance and water layer formation in an effort to pinpoint their effects on the sensitivity (Nernstian response), reproducibility (E°' variation), and potential stability of the LIG-based SC-ISEs. More specifically, we demonstrate that the surface wettability of the LIG substrate, which can be tuned by controlling the lasing parameters, can be modified to exhibit hydrophobic (contact angle > 90°) and even highly hydrophobic surfaces (contact angle ≈ 130°) to help reduce sensor drift. Recommendations are also provided to ensure proper and robust characterization of SC-ISEs for long-term and continuous measurements. Ultimately, we believe that a comprehensive understanding of the correlation between LIG tunable surface properties and SC-ISE performance can be used to improve the electrochemical behavior and stability of SC-ISEs designed with a wide range of materials beyond LIG.
Collapse
Affiliation(s)
- Raquel R A Soares
- Department of Mechanical Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Gustavo L Milião
- Department of Mechanical Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Cícero C Pola
- Department of Mechanical Engineering, Iowa State University, Ames, IA, 50011, USA
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, 50011, USA
| | - Dapeng Jing
- Materials Analysis and Research Laboratory, Iowa State University, Ames, IA, 50011, USA
| | - Jemima Opare-Addo
- Department of Chemistry, Iowa State University, Ames, IA, 50011, USA
| | - Emily Smith
- Department of Chemistry, Iowa State University, Ames, IA, 50011, USA
| | - Jonathan C Claussen
- Department of Mechanical Engineering, Iowa State University, Ames, IA, 50011, USA.
| | - Carmen L Gomes
- Department of Mechanical Engineering, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
2
|
Chipangura YE, Spindler BD, Bühlmann P, Stein A. Design Criteria for Nanostructured Carbon Materials as Solid Contacts for Ion-Selective Sensors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309778. [PMID: 38105339 DOI: 10.1002/adma.202309778] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/05/2023] [Indexed: 12/19/2023]
Abstract
The ability to miniaturize ion-selective sensors that enable microsensor arrays and wearable sensor patches for ion detection in environmental or biological samples requires all-solid-state sensors with solid contacts for transduction of an ion activity into an electrical signal. Nanostructured carbon materials function as effective solid contacts for this purpose. They can also contribute to improved potential signal stability, reducing the need for frequent sensor calibration. In this Perspective, the structural features of various carbon-based solid contacts described in the literature and their respective abilities to reduce potential drift during long-term, continuous measurements are compared. These carbon materials include nanoporous carbons with various architectures, carbon nanotubes, carbon black, graphene, and graphite-based solid contacts. The effects of accessibility of ionophores, ionic sites, and other components of an ion-selective membrane to the internal or external carbon surfaces are discussed, because this impacts double-layer capacitance and potential drift. The effects of carbon composition on water-layer formation are also considered, which is another contributor to potential drift during long-term measurements. Recommendations regarding the selection of solid contacts and considerations for their characterization and testing in solid-contact ion-selective electrodes are provided.
Collapse
Affiliation(s)
- Yevedzo E Chipangura
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, MN, 55454, USA
| | - Brian D Spindler
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, MN, 55454, USA
| | - Philippe Bühlmann
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, MN, 55454, USA
| | - Andreas Stein
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, MN, 55454, USA
| |
Collapse
|
3
|
Stein A. Achieving Functionality and Multifunctionality through Bulk and Interfacial Structuring of Colloidal-Crystal-Templated Materials. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:2890-2910. [PMID: 36757136 DOI: 10.1021/acs.langmuir.2c03297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Over the past 25 years, the field of colloidal crystal templating of inverse opal or three-dimensionally ordered macroporous (3DOM) structures has made tremendous progress. The degree of structural control over multiple length scales, understanding of mechanical properties, and complexity of systems in which 3DOM materials are a component have increased substantially. In addition, we are now seeing applications of 3DOM materials that make use of multiple features of their architecture at the same time. This Feature Article focuses on the different properties of 3DOM materials that provide functionality, including a relatively large surface area, the interconnectedness of the pores and the resulting good accessibility of the internal surface, the nanostructured features of the walls, the structural hierarchy and periodicity, well-defined surface roughness, and relative mechanical robustness at low density. It provides representative examples that illustrate the properties of interest related to applications including energy storage and conversion systems, sensors, catalysts, sorbents, photonics, actuators, and biomedical materials or devices.
Collapse
Affiliation(s)
- Andreas Stein
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455-0431, United States
| |
Collapse
|
4
|
Sanjuan-Navarro L, Moliner-Martínez Y, Campíns-Falcó P. The state of art of nanocarbon black as analyte in a variety of matrices: A review. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
5
|
Valappil MO, Forouzandeh F, Li X, Luong S, Atwa M, Birss VI. Understanding passive oxide formation at carbon and its role on corrosion susceptibility. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
6
|
Yu Q, Feng J, Li J, He A, Sheng GD. Mechanisms of aromatic molecule - Oxygen-containing functional group interactions on carbonaceous material surfaces. CHEMOSPHERE 2021; 275:130021. [PMID: 33647678 DOI: 10.1016/j.chemosphere.2021.130021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/09/2021] [Accepted: 02/15/2021] [Indexed: 06/12/2023]
Abstract
Surface oxygen-containing functional groups (OFGs) at different sites of carbonaceous materials showed different effects on the normalized monolayer adsorption capacity (QBET/A) obtained from the modified BET model. The OFGs on mesoporous surfaces inhibited the adsorption via the water competition, whereas those on the external surface promoted the adsorption due to the enhanced hydrophobic driving force and electrostatic forces, as analyzed from the adsorption molar free energy. Multiple linear relationships were established between the monolayer adsorption capacity QBET/A and the amounts of OFGs on mesoporous and the external surfaces ([O]meso and [O]external, respectively). The properties of aromatic adsorbate compounds, the polar area radio of aromatic molecule to water (PAad/w), and the log Kow together influenced the inhibition or promotion effects of OFGs. These results would allow predictions of adsorption behavior of aromatic compounds on carbonaceous materials on the basis of OFGs parameters. Theoretical calculations and simulations projected the configuration of aromatic molecules being parallel to the graphene sheets of carbonaceous materials. The symmetry-adapted perturbation theory (SAPT) energy decomposition showed that the electrostatic forces intensified with the increase of adsorbate polarity. These analyses revealed that the electrostatic forces were enhanced in the presence of OFGs and that the π-π EDA (electron donor-acceptor) was the main force.
Collapse
Affiliation(s)
- Qi Yu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Jingyi Feng
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Jie Li
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Anfei He
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - G Daniel Sheng
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| |
Collapse
|
7
|
Wetting dynamics of nanoliter water droplets in nanoporous media. J Colloid Interface Sci 2021; 589:411-423. [DOI: 10.1016/j.jcis.2020.12.108] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/11/2020] [Accepted: 12/27/2020] [Indexed: 01/19/2023]
|
8
|
Islam MN, Shrivastava U, Atwa M, Li X, Birss V, Karan K. Highly Ordered Nanoporous Carbon Scaffold with Controllable Wettability as the Microporous Layer for Fuel Cells. ACS APPLIED MATERIALS & INTERFACES 2020; 12:39215-39226. [PMID: 32805948 DOI: 10.1021/acsami.0c10755] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We introduce a novel self-standing, nanoporous carbon scaffold (NCS, 25 μm thick), with an ordered inverse opal pore structure (∼85 nm pore) as a microporous layer (MPL) in a polymer electrolyte membrane fuel cell. Unlike previous studies, through chemical functionalization of the pore surfaces, the wettability of the MPL is controllably modified without altering the pore structure. Ex situ environmental scanning electron microscopy experiments revealed water sorption in the hydrophilic NCS under moderate relative humidity (RH) conditions but not in the hydrophobic NCS, wherein water condensation on the surface was noted only at high RH. The influence of structure and wettability of different MPLs on cell performance was gleaned from steady-state cell polarization behavior. For cells operated under dry conditions (≤80% RH), the limiting current for cells with a hydrophilic NCS MPL was the highest while that for cells with a hydrophobic NCS MPL was the lowest regardless of the level of water saturation (RH).
Collapse
Affiliation(s)
- Muhammad Naoshad Islam
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Udit Shrivastava
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Marwa Atwa
- Department of Chemistry, University of Calgary, Calgary, Alberta T2N 1N4, Canada
- Department of Chemistry, Suez Canal University, El Salam District, Ismailia 41522, Egypt
| | - Xiaoan Li
- Department of Chemistry, University of Calgary, Calgary, Alberta T2N 1N4, Canada
- Nanjing Momentum Materials Technologies Limited Company, 368 East Zhe'ning Road, Lishui, Nanjing, Jiangsu 211215, China
| | - Viola Birss
- Department of Chemistry, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Kunal Karan
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
9
|
|
10
|
Influence of diazonium and surfactant modification of the mesoporous material on its adsorption properties. CHEMICAL PAPERS 2019. [DOI: 10.1007/s11696-019-00926-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Abstract
We describe a new and direct route to obtain Al-SBA-15-modified materials with different groups on their surface using diazonium salts. For comparison, modification using surfactants was also used. In the present study, we decided to examine the applicability of these materials in the adsorption of compounds released from dental fillings. The effectiveness of modification was proved by results of Fourier transform infrared spectroscopy and energy-dispersive spectrometry. The results indicate the formation of characteristic groups on the surface of the materials. The materials after modification are characterized by smaller surface area and pore volume, which is result of covering the surface with an aryl or surfactant layer. The adsorption properties change after modification and depend on the used modifier. Diazonium modification has a positive effect on sorptive properties when hydroxyl and dimethylamine groups are obtained. The methods of material modification presented in this work may in the future lead to the improvement in the properties of sorbents used in solid-phase extraction.
Collapse
|
11
|
Sandomierski M, Buchwald T, Strzemiecka B, Voelkel A. Carbon black modified with 4‐hydroxymethylbenzenediazonium salt as filler for phenol‐formaldehyde resins and abrasive tools. J Appl Polym Sci 2019. [DOI: 10.1002/app.48160] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Mariusz Sandomierski
- Institute of Chemical Technology and Engineering, Poznań University of Technology, Berdychowo 4 60‐965 Poznań Poland
| | - Tomasz Buchwald
- Institute of Materials Research and Quantum Engineering, Poznań University of Technology, Piotrowo 3 60‐965 Poznań Poland
| | - Beata Strzemiecka
- Institute of Chemical Technology and Engineering, Poznań University of Technology, Berdychowo 4 60‐965 Poznań Poland
| | - Adam Voelkel
- Institute of Chemical Technology and Engineering, Poznań University of Technology, Berdychowo 4 60‐965 Poznań Poland
| |
Collapse
|
12
|
Resistance of Superhydrophobic Surface-Functionalized TiO₂ Nanotubes to Corrosion and Intense Cavitation. NANOMATERIALS 2018; 8:nano8100783. [PMID: 30279353 PMCID: PMC6215275 DOI: 10.3390/nano8100783] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 09/25/2018] [Accepted: 09/27/2018] [Indexed: 12/17/2022]
Abstract
The availability of robust superhydrophobic materials with the ability to withstand harsh environments are in high demand for many applications. In this study, we have presented a simple method to fabricate superhydrophobic materials from TiO2 nanotube arrays (TNTAs) and investigated the resilience of the materials when they are subjected to harsh conditions such as intense cavitation upon ultrasonication, corrosion in saline water, water-jet impact, and abrasion. The TNTAs were prepared by anodization of Ti foil in buffered aqueous electrolyte containing fluoride ions. The hydrophilic TNTAs were functionalized with octadecylphosphonic acid (ODPA) or 1H, 1H′, 2H, 2H′-perfluorodecyl phosphonic acid (PFDPA) to form a self-assembled monolayer on the TNTA surface to produce superhydrophobic ODPA@TNTA or PFDPA@TNTA surfaces. The superhydrophobic ODPA@TNTA and PFDPA@TNTA have contact angles of 156.0° ± 1.5° and 168° ± 1.5°, and contact angle hysteresis of 3.0° and 0.8°, respectively. The superhydrophobic ODPA@TNTA and PFDPA@TNTA were subjected to ultrasonication, corrosion in saline water, and water-jet impact and abrasion, and the resilience of the systems was characterized by electrochemical impedance spectroscopy (EIS), contact angle (CA) measurements, diffuse reflectance Fourier transform infrared spectroscopy (DRIFTS), and field-emission scanning electron microscopy (FESEM). The results presented here show that superhydrophobic ODPA@TNTA and PFDPA@TNTA are robust and resilient under the harsh conditions studied in this work, and indicate the potential of these materials to be deployed in practical applications.
Collapse
|